A COEFFICIENT PROBLEM FOR A CLASS
OF UNIVALENT FUNCTIONS

T. J. Suffridge

1. INTRODUCTION
Let E, = {z: |z| <r}, let E; = E, and let
S, = {f: £ € S and £(E)D E;},

where S denotes the collection of functions f(z) =z +a, 2% 4 --- that are regular and
univalent in E. Let S{. consist of the functions f € S, for which f(E) is starlike,
and write S} j4= S*. Consider the following extremal problems.

Pyroblem 1. Find max lazl for f(z) =z +a; 2% + - € Sy .
Pyoblem 2. Find max |3.2| for f(z) = z+a.2z2 + -c € S’:..

It is clear that for r < 1/4 the Koebe function solves both problems, and that for
r =1 the function f(z) = z solves both problems.

In this paper we solve Problem 2, and we make a conjecture concerning Problem
1. We also conjecture that for the class o of biunivalent functions (see [4] ), the co-
efficient a, satisfies the sharp inequality |a2| < 4/3. We give an example of a
function f € o for which |a,| =4/3.

For 1/4 <r <1, an extremal domain for Problem 2 consists of the entire com-
plex plane minus a set {z: |z| >r,n-¥<argz<n+y¢} (0<y¥ <u). Tobe
more specific, if we choose ¢ so that

(1) r = [(1+cos ¢)11co5 b (1 - cos ¢)1COS -l (0<o< T/2),

then |az| =2 cos?¢ for the extremal function f(z) =z +a,z% + ---; and if we take
ap > 0, the extremal domain is as described above, with ¥ = 7(1 - cos ¢).

It is interesting to note the relation between this solution and the solution to
another extremal problem. Let M > 1, and consider the functions
g(z) =z +bpz?+ .-+ in S with |g(z)] <M (z € E). The function g € S determined
by the differential equation

4(1 1 ) -1/2
zg'(z) _ _ ' "M)Z ; _
c@) - G(z)=1\1 +——-~——(1 T2 (G(0) = 1)

maximizes |bz| in this class of functions [5, p. 244, Exercise 4]. If we take
cosl¢=1- 1\—1/1 and r has the value in (1), then the function f € S satisfying the

equation
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@) zf'(z) 1 ( 1+ 4z cos? ¢>1/2
f(z) = G(z) (1 - z)2

solves Problem 2.

2. PROPERTIES OF A PARTICULAR STARLIKE MAPPING

We now show that the function f, given by (2) with 0 < ¢ < 7/2, has the properties
claimed for the solution of Problem 2.

Consider

1/2

From the properties of the Koebe function it follows that the function F2(z) maps the
disk E onto the plane minus the slit w < 1 - cos? ¢. Hence F(z) maps the disk onto
the half-plane % w > 0 minus the slit 0 < w < sin ¢. Therefore f ¢ S*.

Now let u +iv = F(el?) (27 > 6 > 0). Again it follows from the properties of the
Koebe function that u =0 and v > 0 when 7 - 2¢> 6 > 0, that u> 0 and v = 0 when
T+26> 60 >7 - 2¢, and that u=0 and v < 0 when 27 > 6 > 7 + 2¢. Since

9 arg f(elt) aloglf(e19)|
00 00

u-+tiv =

(any branch of arg f(eif) (27 > 6 > 0) can be chosen), it follows that f(E) is the
complement of a set of points of the form {w: ]wl >r,n-a<argw< 7+ a}, for
some r and «. That the power series for f has real coefficients implies symmetry

with respect to the real axis.

A straightforward but rather long computation yields the identity

log% = S: [F(w) - 1]w-1aw

1/2

2
2cos¢1og[((1+-4(—zl—9%-2‘—b) +cos<f>1 )(1+cos¢)" ]

+ 2log 2[1 +z + ((1 - 2)% + 4z cos® ¢)! /2],

From the previous discussion of the boundary behavior of F(z) it follows that
r = |f(-1)| and « = arg [f(el(T+29)) /f(-1)], so that r is given by (1) and @ has the
value 7(1 - cos ¢).

The function f is a limiting case of a class of functions considered by Good-
man [1].

3. THE SOLUTION OF PROBLEM 2

The following four lemmas show that the function f in (2) solves Problem 2, for
the value r given by (1).
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LEMMA 1. If 1/4 <r <1, Problem 2 has a solution £ for which a, > 0 and ay
is real (k =3, 4, «++).
Proof. Since S* is compact and S% is closed (that is, since the assumptions

S* o {gn(z)}ne1 and gn(z) — g(z) imply that g(z) € S%), the problem has a solution.

[oe]
Suppose g(z) =z + a2z + En::), b,z" solves Problem 2. Clearly, we may as-
sume a, > 0. Also, it follows from the minimum principle that if f € S*, then
f € S¥ if and only if |f(z)/z] >r (z € E). Define

zf'(z) _1zg'(z) 1 ( ig'(i))

f(z) ~ 2 glz) 2\ g(z)
«© n
where f(z) =z + Enzz cnz” (z € E). Then
1/2 , ==, 1/2 *
f(z)=z(@) (—)) =z+a2z2+2anzn,
P 2
n=3
i . oo o [ 2EY(2) . .
where a, is real for n = 3, 4, ---. The inequality % o) > 0 (z € E) implies

that f € S*. Since

|f(z)/z| = |g(z)/z|1/2 Igiz'i/zlllz >r for zeE,
we conclude that f € S%.

[e]
LEMMA 2. If f(z) =z + Z;nzz a,z" with ay > 0 solves Problem 1, then
lim inf, |f(pei®)| = r provided -cos ¢ >a,/2. If £ solves Problem 2 with
az > 0 and all coefficients real, then lim, ) f(-p) = -r.

Proof. Suppose lim infp_,l f(pei®) # r. If f solves Problem 1, there exists
po (1> py > 0) such that If(pei‘p)l >r for 1>p>py. Let

-1(g@)Y _ - 1
and  gp(z) = Mg (-ﬁ') =z - 2e 1¢(1_M)ZZ+...,
where M > 1. The function gp; maps the disk E onto the disk |z| <M with a

rectilinear slit from Mei?® to A ei®, where 4xM? = (A + M)? [5, p. 224, Exercise 4].
We may choose M so that A/M > py. Then the function

Mi(gp(e)/M) = z+ (271 (1- L) +22) 2%+

belongs to S,. and

l-zei¢(1-i)+f“—2

az i)
M—2cos¢>(1—M l

_ _1__2cosqb(1__1_)|>
Jaz] |5 - 27 o2l

>
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provided - cos ¢ > Iazl /2. This contradicts the extremal property of f. If f solves
Problem 2 and has real coefficients, then f(-p) is real and Mf(gy(z)/M) € S* if
¢ =w. A proof similar to the one above then shows that f(-p) —» -r as p — 1.

Now suppose f(z) =z +a,z%+ --- (all a, real, and a; > 0) solves Problem 2.
Since f € S* ) we can represent f in the form

z1'(z) ‘S'ﬂ 1+ze-it 5”
= ————— du(t) where du() =1
f(Z) -7 1- Ze_lt ’ -7

and where p is an increasing function of t (-7 <t < 7). Since f has real coeffi-
cients, we may require that u(t) = -u(-t). Hence

zf'(z T1+ze-it 0 14ge-it
R e L ICRN Mese LI
z 01-ze? -ml-ze?
Tl 1+ze it  1+zeit
= — + > du.(t).
-S(‘) I:l-ze'lt 1-ze't

It then follows that
Vi
(3) log% = -2 SO log (1 - 2z cos t + z2)du(t),

the logarithmic function being chosen so that log 1 = 0.
The following lemma is due to Keogh [3].

LEMMA 3. lim,_,) arg f(peit) = n[u(6*) + n(6-)] (0 < 6 < m), where the
branch of the avgument is chosen so that arg(f(p)) =0 for p> 0.
We wish to show that for some ¢ < 7 the extremal function f satisfies the con-
dition
arg f(ei?) = lim arg f(pel?) = constant (0< 8 < ¢),
p—1
while

If(e19)| = lim ]f(peie)l =r (<0< m).
p—1

Suppose { does not have this property. By Lemmas 2 and 3, it is clear that
there exist y; and y, with lim,_,; ]f(pela)l #r whenever 0 <y <0 <y, <m,
and with u(y3) > p(y}). Also, there exist values 6, 02, and 83 such that

w(6%) > 2 [n(03) +n(0D] > n(o3),
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where p(65) > u( 9’;). Without changing f as given by (3), we may redefine p so
that

p(0)) = (6, u(0y) = u(03), w0, = k03 +uEH].

With 6;, 62, and 83 satisfying the conditions in the preceding paragraph, we
now define a function

fo(z) = z +ay(e)z?+ - € S&  with |ay(e)| > |az] -
For 0 <t<w and 1> ¢ > -1, choose g(t, €) so that 0 < g(t, €) <7 and

2 2

(4) (1+¢)log 1+ cos g(t, e) log 1+cost’

From this definition it follows that € > 0 implies g(t, £¢) <t and ¢ < 0 implies
g(t, €) > t, and that g(t, €) is a strictly increasing function of t. Let fg(z) be de-
fined by the relation

log[f.(2)/z] = -2 S log (1 - 2z cos t + z2)du(t)
I

62
(5) - 21 +¢) S log (1 - 22 cos g(t, &) + 22)du(t)
61
63
-2(1 -¢) log (1 - 2z cos g(t, -€) + z%)du(t),
62

where I=1[0, 6;] U [85, 7] and where 0 <& < 1.
LEMMA 4. For sufficiently small ¢ > 0, fo(z) € Sk.

2 glt, €)

Proof. Since 3t

> 0, there is an increasing function v(t) with v(-t) = -v(t)

T
(-m <t < 7) such that S dv(t) =1 and
-7

T
log [fc(z)/z] = -2 S log (1 - 2z cos t + z2)dv(t).
0
This implies

z f¢(2) (T 14ze't

t
TG —— dv(t
fa V4 -7 1 - ze'—lt V( )’

so that f; € S*.

The relation
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o log Ifs(z)/z|
de

) au®

) 2
2 olog |1 - 2z cos gft, €) +z
~2l:5 (logll-ZZcosg(t, £)+ 22| +(1+¢) | n |

63
+‘S‘ (~log|1—chosg(t, —8)+Z2'l+(1-8)
62

9 log |1 - 2z cos g(t, -€) + z°2

holds because the partial derivatives are uniformly bounded for each fixed z. Now
let z = pelt where either 0< 8 <yyor Yy, <0 <L7. I ¢ is sufficiently small,
then y, < g(6;, €) and g(6,, -€) <y, so that

3 log | fe(2)/z|

1i
1m 5e

p—1

2 log 2|cos 6 - cos glt, €)] )d
L

92
= -2 S (logzlcose—cosg(t, e)] +(1+¢) 7E

61

o log 2|cos 6 - cos glt, -s)l )d

63
+S (-1og2|cose-cosg(t, —8)|+(1—8) 7 e

6,

by virtue of uniform boundedness and continuity of the partial derivatives.

Therefore
0 log |fc(z)/z 62 03
lim lai /2] - -2{ ‘S‘ k(g(t, €))dp - S k(g(t, -€))dp |,
p_"l 91 92

1+ cos Y 2

cos 0 - cos ¥ 0g1+cosw,b' Now we see that

where k(¥) = log 2|cos 6 - cos i,l/| -

sin ¢ (1 + cos 6) 2

0 20 2y, 0< Y <),
[cos 6 - cos y]? g1+cos:,!/> (m Y, 0< ¢ <)

k'(Y) =

In the first integral above, g(t, £¢) <t < 6,, and in the second, g(t, -g) >t > 05,
while @ is not in the interval [g(6;, €), g(93, -¢)]. Hence

3 log | f.(z)/z 62 03
m ggif /2| > -2 5 k(6,)dy - S k(92)du:| = 0.
p—1 0) 02

This implies that for some py <1

3 log | fo(pel?)/pel? | S

5 0 whenever 1> p > pg,

so that
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: ) Ifg(peie)/peiel 2 ]f(peie)/peiel Z r
6
(1>p>pyand 0< 6 <y, or ¥, <6 <m).

Now limp_,1 |f(pe19)| #r for ¢; < 0 <¢Y,. Since [a,lxl, 1,!/2] is a closed inter-
val, it follows that there exist rj > r and p; <1 such that

|#(pei?)| > ro if 1>p>p) and ¥, <0 <y,

Since for |z| < p <1, fg(z) converges uniformly to f(z) as € — 0, we see that
|f8(pele)| >r, provided 1 < 0 <y, p1 <p <1, and ¢ is sufficiently small.
Using this together with (6), we conclude that f € St if £ is sufficiently small
(e > 0).

THEOREM 1. The solution of Problem 2 with a; > 0 is the fzmction fe St
given by (2), where r is given by (1) and ap = 2 cos2¢. The solution is unique, up
to' rotations,

Proof. Suppose the solution is not as described in the theorem. Then, by
Lemmas 3 and 4, the function f¢(z) = z + az(S)ZZ + -++ belongs to S%, where f is
given by (5) and ¢ is sufficiently small (¢ > 0).

Since
f.(z)
£
log 3oy = la2(e) - aglz + -+
b2 1 - 2z cos g(t, €) + z2 03 1 - 2z cos g(t, -&) + z°
= -2 S log > >—du - 2 log 2 5 du
6, 1-2zcost+z 9, 1-2zcost+z

0 03
- 2¢ S 2log(l - 2z cos g(t, ) + z%)du - S log (1 - 2z cos g(t, -&) + z%)du J ,
01 62

it follows that

2
az(e)-ap = 4 S [cos g(t, €) - cos t + & cos g(t, £)]du
6
1

03
+ S [cos g(t, -€) - cos t - € cos g(t, -&)ldu

92
o 6 6

- 4 g Zh(t)du—S *ht)dy |+ 262 S zk(t)du+§63k(t)du +0(e3),
61 6, 6, 62

where

ht) = (1+cos Ylog Tgoop Heos t  and  K(t) = 1+ cos () log? oy
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Since h'(t) = - sin t log ﬂ_%ﬁ <0 for 0 <t <, we conclude that

62 03
aze) -2z > 4| | “m6)an - {7 no2)an
01 02

03
2 2 2
+ 2¢ S (1 + cos t)log T

a4 3
0, costd,u+0(s)>0

for sufficiently small values of € (¢ > 0). This proves that (2) gives a solution.

That the solution is unique follows from the fact that if g is extremal with
ay > 0, then the function

1/2

@ -+ (42) " ()

is also extremal and has real coefficients, and by the proof above, { must then be
given by (2). But limg ) |f(pe19 )| =r if and only if the same is true for both

|g(z)| and |g(Z)|; moreover, arg f(ei?) is constant if and only if the same is true
for g(z) and g(z). This implies that g(z) = £(z).

4. TWO CONJECTURES

Let F(z) be normalized so that F(0) = 0 and F'(0) = 1, where

z
m  2EE__1 st (; 1) 6 1+dcos 1 )2

F(z)  cos ¢ f(z) cos ¢/ zf'(z) ~ > 7 ’

\/1 + 4 cos ¢>——-——-(1 o)

a{lg Whe;‘g f is given by (2). Letting z = eld (0 < 8 < 7) and writing
1 1 1
E—E-.-(g—) =u+ iv, we see that
F(el?) e
u=0and v>0 if0<sin29/2<cos2qb,
u<0and v=0 if cos?‘gb < sin? 6/2 < cos ¢,
u>0and v=0 ifcos¢<sin26/2.

From the discussion in Section 2 concerning the properties of f and g € S*, where

z gg(g) =.fo('2(3Z 5 we find that
F(-1) T
arg —— 75 - = u(Q)dg
F(el(ﬂ_z¢)) 577-2¢
1L (T etf1'(elf) 1 m feib)
: H(et0) i —5 i d¢
cos ¢ S"-qu f(el 9) o+ (1 cos ¢ ) Sﬂ-2¢ elf f'(elB)
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1 _ ( 1 ) _
= Sos & 7(1 - cos ¢)+ | 1 o5 ¢ 7T=0.
1 1
cos ¢ “cos¢
Since F(z) =z (f(_zz2) (%Z)) , it follows that
1 1
cos ¢ 1-cos o) 1
F(-1) = - M = —
where r is given by (1) and where M = 1——1—2— Since F has real coefficients,
- cos“ ¢

we conclude that the image of E under the mapping F is the entire plane less the set
of points

w:w < —— or |w =———and7r~1,b<argw<1r+z,!/},
{ — (1 +cos q&)z l I (1 + cos 4))2 - -

for some Y. Further analysis shows that

Y= —2cos‘l|:————¢-)1 - coS :‘

1+ cos ¢

Applying the principle of the argument to 1/F(z) and using the fact that F(z) # 0 if
z #0 and z € E, we conclude that F € S. An interesting extremal property of this
mapping was proved by Goodman and Reich [2].

Conjecture 1. If F(z) =2z +ayz% + -+ € S, then |a,| <8/ T -6 - 2/r, and

equality is reached for the function F given by (7) with r =———.
(1 + cos ¢)

Lemma 2 seems to support this conjecture. Also, it is interesting to compare
the conjecture with a result of Singh [6]. Singh considers the class of univalent func-
o]
tions f(z) = 27 1 an 2" (all a, real, f(1) = 1) that are regular in E and whose image
domains cover E. He shows that in this class of functions the maximum of a; is at-

tained by a function f that maps the disk onto the plane, minus the real axis from 1
to «© and from -1 to -o, and minus an arc of a circle symmetric about -1.

Lewin [4] introduced the class ¢ of biunivalent functions, which is defined as
follows: f € o if and only if f € S and there exists g € S such that g(f(z)) = z in the

disk |z| <r, for some r > 0. Lewin pointed out that if f, g € S;, then
% flgl(rz)) € 0. If f(z) =2z + a, z% + --- and g(z) = -1(-z), then

% (i(g™Y(rz)) = z + 2ra, z2 4 e
This, together with Conjecture 1 and the fact that 8Vr - 6r - 2 is largest when

r = 4/9, suggests the following conjecture.

Conjecture 2. If g(z) =z +a,z% + -+ € 0, then |a,| <4/3.
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It is clear that a, = 4/3 for the function g(z) =% F(—F'l(—rz)), where F is given

1 4

by (1) and r =————— ==,
y (7)and r (1 +cos ¢)> 9
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