A COEFFICIENT PROBLEM FOR A CLASS OF UNIVALENT FUNCTIONS

T. J. Suffridge

1. INTRODUCTION

Let $E_r = \{z: |z| < r\}$, let $E_1 = E$, and let

$$S_r = \{f: f \in S \text{ and } f(E) \supset E_r \},$$

where S denotes the collection of functions $f(z) = z + a_2 z^2 + \cdots$ that are regular and univalent in E. Let S_r^* consist of the functions $f \in S_r$ for which f(E) is starlike, and write $S_{1/4}^* = S^*$. Consider the following extremal problems.

Problem 1. Find max $|a_2|$ for $f(z) = z + a_2 z^2 + \cdots \in S_r$.

Problem 2. Find max $|a_2|$ for $f(z) = z + a_2 z^2 + \cdots \in S_r^*$.

It is clear that for $r \le 1/4$ the Koebe function solves both problems, and that for r = 1 the function f(z) = z solves both problems.

In this paper we solve Problem 2, and we make a conjecture concerning Problem 1. We also conjecture that for the class σ of biunivalent functions (see [4]), the coefficient a_2 satisfies the sharp inequality $|a_2| \le 4/3$. We give an example of a function $f \in \sigma$ for which $|a_2| = 4/3$.

For 1/4 < r < 1, an extremal domain for Problem 2 consists of the entire complex plane minus a set $\{z: |z| \ge r, \pi - \psi \le \arg z \le \pi + \psi\}$ $(0 < \psi < \pi)$. To be more specific, if we choose ϕ so that

(1)
$$r = [(1 + \cos \phi)^{1 + \cos \phi} (1 - \cos \phi)^{1 - \cos \phi}]^{-1} (0 < \phi < \pi/2),$$

then $|a_2| = 2 \cos^2 \phi$ for the extremal function $f(z) = z + a_2 z^2 + \cdots$; and if we take $a_2 > 0$, the extremal domain is as described above, with $\psi = \pi(1 - \cos \phi)$.

It is interesting to note the relation between this solution and the solution to another extremal problem. Let M>1, and consider the functions $g(z)=z+b_2z^2+\cdots$ in S with $\left|g(z)\right|< M$ ($z\in E$). The function $g\in S$ determined by the differential equation

$$\frac{z g'(z)}{g(z)} = G(z) = \left(1 + \frac{4\left(1 - \frac{1}{M}\right)z}{(1 - z)^2}\right)^{-1/2}$$
 (G(0) = 1)

maximizes $|b_2|$ in this class of functions [5, p. 244, Exercise 4]. If we take $\cos^2\phi = 1 - \frac{1}{M}$ and r has the value in (1), then the function $f \in S$ satisfying the equation

Received October 25, 1967.

(2)
$$\frac{z f'(z)}{f(z)} = \frac{1}{G(z)} = \left(1 + \frac{4z \cos^2 \phi}{(1-z)^2}\right)^{1/2}$$

solves Problem 2.

2. PROPERTIES OF A PARTICULAR STARLIKE MAPPING

We now show that the function f, given by (2) with $0 < \phi < \pi/2$, has the properties claimed for the solution of Problem 2.

Consider

$$F(z) = \frac{z f'(z)}{f(z)} = \left(1 + \frac{4z \cos^2 \phi}{(1-z)^2}\right)^{1/2} \qquad (F(0) = 1, \ 0 < \phi < \pi/2).$$

From the properties of the Koebe function it follows that the function $F^2(z)$ maps the disk E onto the plane minus the slit $w \le 1 - \cos^2 \phi$. Hence F(z) maps the disk onto the half-plane $\Re w > 0$ minus the slit $0 \le w \le \sin \phi$. Therefore $f \in S^*$.

Now let $u + iv = F(e^{i\theta})$ $(2\pi > \theta > 0)$. Again it follows from the properties of the Koebe function that u = 0 and v > 0 when $\pi - 2\phi > \theta > 0$, that u > 0 and v = 0 when $\pi + 2\phi > \theta > \pi - 2\phi$, and that u = 0 and v < 0 when $2\pi > \theta > \pi + 2\phi$. Since

$$u + iv = \frac{\partial \arg f(e^{i\theta})}{\partial \theta} - i \frac{\partial \log |f(e^{i\theta})|}{\partial \theta}$$

(any branch of $\arg f(e^{i\theta})$ $(2\pi > \theta > 0)$ can be chosen), it follows that f(E) is the complement of a set of points of the form $\{w: |w| \ge r, \pi - \alpha \le \arg w \le \pi + \alpha\}$, for some r and α . That the power series for f has real coefficients implies symmetry with respect to the real axis.

A straightforward but rather long computation yields the identity

$$\log \frac{f(z)}{z} = \int_0^z \left[F(w) - 1 \right] w^{-1} dw$$

$$= 2 \cos \phi \log \left[\left(\left(1 + \frac{4z \cos^2 \phi}{(1-z)^2} \right)^{1/2} + \cos \phi \frac{1+z}{1-z} \right) (1 + \cos \phi)^{-1} \right]$$

$$+ 2 \log 2 \left[1 + z + ((1-z)^2 + 4z \cos^2 \phi)^{1/2} \right]^{-1}.$$

From the previous discussion of the boundary behavior of F(z) it follows that r = |f(-1)| and $\alpha = \arg[f(e^{i(\pi+2\phi)})/f(-1)]$, so that r is given by (1) and α has the value $\pi(1 - \cos \phi)$.

The function f is a limiting case of a class of functions considered by Goodman [1].

3. THE SOLUTION OF PROBLEM 2

The following four lemmas show that the function f in (2) solves Problem 2, for the value r given by (1).

LEMMA 1. If 1/4 < r < 1, Problem 2 has a solution f for which $a_2 > 0$ and a_k is real (k = 3, 4, ...).

Proof. Since S^* is compact and S^*_r is closed (that is, since the assumptions $S^*_r \supset \{g_n(z)\}_{n=1}^{\infty}$ and $g_n(z) \to g(z)$ imply that $g(z) \in S^*_r$), the problem has a solution.

Suppose $g(z)=z+a_2z^2+\sum_{n=3}^{\infty}b_nz^n$ solves Problem 2. Clearly, we may assume $a_2>0$. Also, it follows from the minimum principle that if $f\in S^*$, then $f\in S^*_r$ if and only if $|f(z)/z|\geq r$ ($z\in E$). Define

$$\frac{z f'(z)}{f(z)} = \frac{1}{2} \frac{z g'(z)}{g(z)} + \frac{1}{2} \overline{\left(\frac{\overline{z} g'(\overline{z})}{g(\overline{z})}\right)},$$

where $f(z) = z + \sum_{n=2}^{\infty} c_n z^n$ ($z \in E$). Then

$$f(z) = z \left(\frac{g(z)}{z}\right)^{1/2} \left(\frac{\overline{g(\overline{z})}}{z}\right)^{1/2} = z + a_2 z^2 + \sum_{n=3}^{\infty} a_n z^n,$$

where a_n is real for $n=3,\,4,\,\cdots$. The inequality $\Re\left(\frac{z\,f'(z)}{f(z)}\right)>0$ ($z\in E$) implies that $f\in S^*$. Since

$$|f(z)/z| = |g(z)/z|^{1/2} |\overline{g(\overline{z})}/z|^{1/2} > r$$
 for $z \in E$,

we conclude that $f \in S_r^*$.

LEMMA 2. If $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ with $a_2 > 0$ solves Problem 1, then $\lim\inf_{\rho\to 1} \left|f(\rho e^{i\phi})\right| = r$ provided $-\cos\phi > a_2/2$. If f solves Problem 2 with $a_2 > 0$ and all coefficients real, then $\lim_{\rho\to 1} f(-\rho) = -r$.

Proof. Suppose $\liminf_{\rho\to 1} f(\rho e^{i\phi}) \neq r$. If f solves Problem 1, there exists ρ_0 $(1>\rho_0>0)$ such that $\left|f(\rho e^{i\phi})\right|>r$ for $1>\rho>\rho_0$. Let

$$g(z) = \frac{z}{(1+ze^{-i\phi})^2}$$
 and $g_M(z) = Mg^{-1}(\frac{g(z)}{M}) = z - 2e^{-i\phi}(1-\frac{1}{M})z^2 + \cdots$,

where M>1. The function g_M maps the disk E onto the disk |z|< M with a rectilinear slit from $Me^{i\phi}$ to $\lambda e^{i\phi}$, where $4\lambda M^2=(\lambda+M)^2$ [5, p. 224, Exercise 4]. We may choose M so that $\lambda/M>\rho_0$. Then the function

$$M f(g_M(z)/M) = z + \left(-2 e^{-i\phi} \left(1 - \frac{1}{M}\right) + \frac{a_2}{M}\right) z^2 + \cdots$$

belongs to S_r and

$$\begin{split} \left| -2\,\mathrm{e}^{\mathrm{i}\,\phi}\left(\,1\,-\frac{1}{M}\,\right)\,+\frac{\mathrm{a}_2}{M} \right| \, \geq \, \left| \frac{\mathrm{a}_2}{M} -\,2\cos\,\phi\,\left(\,1\,-\frac{1}{M}\,\right) \right| \\ \\ &= \, \left| \mathrm{a}_2 \right| \, \left| \frac{1}{M} - \frac{2\cos\,\phi}{\left|\mathrm{a}_2\right|} \, \left(\,1\,-\frac{1}{M}\,\right) \, \right| \, > \, \left|\mathrm{a}_2\right| \,, \end{split}$$

provided $-\cos\phi > |a_2|/2$. This contradicts the extremal property of f. If f solves Problem 2 and has real coefficients, then $f(-\rho)$ is real and $Mf(g_M(z)/M) \in S^*$ if $\phi = \pi$. A proof similar to the one above then shows that $f(-\rho) \to -r$ as $\rho \to 1$.

Now suppose $f(z) = z + a_2 z^2 + \cdots$ (all a_n real, and $a_2 > 0$) solves Problem 2. Since $f \in S_r^*$, we can represent f in the form

$$\frac{z f'(z)}{f(z)} = \int_{-\pi}^{\pi} \frac{1 + z e^{-it}}{1 - z e^{-it}} d\mu(t), \quad \text{where } \int_{-\pi}^{\pi} d\mu(t) = 1$$

and where μ is an increasing function of t $(-\pi \le t \le \pi)$. Since f has real coefficients, we may require that $\mu(t) = -\mu(-t)$. Hence

$$\frac{z f'(z)}{f(z)} = \int_0^{\pi} \frac{1 + z e^{-it}}{1 - z e^{-it}} d\mu(t) - \int_{-\pi}^0 \frac{1 + z e^{-it}}{1 - z e^{-it}} d\mu(-t)$$

$$= \int_0^{\pi} \left[\frac{1 + z e^{-it}}{1 - z e^{-it}} + \frac{1 + z e^{it}}{1 - z e^{it}} \right] d\mu(t).$$

It then follows that

(3)
$$\log \frac{f(z)}{z} = -2 \int_0^{\pi} \log (1 - 2z \cos t + z^2) d\mu(t),$$

the logarithmic function being chosen so that $\log 1 = 0$.

The following lemma is due to Keogh [3].

LEMMA 3. $\lim_{\rho \to 1} \arg f(\rho e^{i\theta}) = \pi [\mu(\theta^+) + \mu(\theta^-)]$ (0 < \theta < \pi), where the branch of the argument is chosen so that $\arg (f(\rho)) = 0$ for $\rho > 0$.

We wish to show that for some $\,\phi < \pi\,$ the extremal function f satisfies the condition

$$\operatorname{arg} f(e^{i\theta}) = \lim_{\rho \to 1} \operatorname{arg} f(\rho e^{i\theta}) = \operatorname{constant} \quad (0 < \theta < \phi),$$

while

$$\left| f(e^{i\theta}) \right| = \lim_{\rho \to 1} \left| f(\rho e^{i\theta}) \right| = r \quad (\phi < \theta \le \pi).$$

Suppose f does not have this property. By Lemmas 2 and 3, it is clear that there exist ψ_1 and ψ_2 with $\lim_{\rho \to 1} |f(\rho e^{i\theta})| \neq r$ whenever $0 < \psi_1 \leq \theta \leq \psi_2 < \pi$, and with $\mu(\psi_2^-) > \mu(\psi_1^+)$. Also, there exist values θ_1 , θ_2 , and θ_3 such that $(\psi_1 < \theta_1 < \theta_2 < \theta_3 < \psi_2)$ and

$$\mu(\theta_{2}^{+}) \geq \frac{1}{2} \left[\mu(\theta_{3}^{-}) + \mu(\theta_{1}^{+}) \right] \geq \mu(\theta_{2}^{-}),$$

where $\mu(\theta_3^-) > \mu(\theta_1^+)$. Without changing f as given by (3), we may redefine μ so that

$$\mu(\theta_1) = \mu(\theta_1^+), \quad \mu(\theta_3) = \mu(\theta_3^-), \quad \mu(\theta_2) = \frac{1}{2} \left[\mu(\theta_3^-) + \mu(\theta_1^+) \right].$$

With θ_1 , θ_2 , and θ_3 satisfying the conditions in the preceding paragraph, we now define a function

$$f_{\varepsilon}(z) = z + a_2(\varepsilon) z^2 + \cdots \in S_r^*$$
 with $|a_2(\varepsilon)| > |a_2|$.

For $0 < t < \pi$ and $1 > \varepsilon > -1$, choose $g(t, \varepsilon)$ so that $0 < g(t, \varepsilon) < \pi$ and

(4)
$$(1+\varepsilon)\log\frac{2}{1+\cos g(t,\varepsilon)} = \log\frac{2}{1+\cos t}.$$

From this definition it follows that $\epsilon>0$ implies $g(t,\,\epsilon)< t$ and $\epsilon<0$ implies $g(t,\,\epsilon)>t$, and that $g(t,\,\epsilon)$ is a strictly increasing function of t. Let $f_{\epsilon}(z)$ be defined by the relation

$$\log[f_{\varepsilon}(z)/z] = -2 \int_{I} \log(1 - 2z \cos t + z^{2}) d\mu(t)$$

$$-2(1+\varepsilon) \int_{\theta_{I}}^{\theta_{2}} \log(1 - 2z \cos g(t, \varepsilon) + z^{2}) d\mu(t)$$

$$-2(1-\varepsilon) \int_{\theta_{2}}^{\theta_{3}} \log(1 - 2z \cos g(t, -\varepsilon) + z^{2}) d\mu(t),$$

where $I = [0, \theta_1] \cup [\theta_3, \pi]$ and where $0 \le \varepsilon < 1$.

LEMMA 4. For sufficiently small $\epsilon > 0$, $f_{\epsilon}(z) \in S_{r}^{*}$.

Proof. Since $\frac{\partial g(t, \varepsilon)}{\partial t} > 0$, there is an increasing function v(t) with v(-t) = -v(t)

$$(-\pi \le t \le \pi)$$
 such that $\int_{-\pi}^{\pi} dv(t) = 1$ and

$$\log[f_{\varepsilon}(z)/z] = -2 \int_{0}^{\pi} \log(1 - 2z \cos t + z^{2}) dv(t).$$

This implies

$$\frac{z f_{\varepsilon}'(z)}{f_{\varepsilon}(z)} = \int_{-\pi}^{\pi} \frac{1 + z e^{-it}}{1 - z e^{-it}} dv(t),$$

so that $f_{\varepsilon} \in S^*$.

The relation

$$\frac{\partial \log |f_{\varepsilon}(z)/z|}{\partial \varepsilon}$$

$$=-2\left[\int_{\theta_1}^{\theta_2}\left(\log\left|1-2z\cos g(t,\,\epsilon)+z^2\right|+(1+\epsilon)\frac{\partial\log\left|1-2z\cos g(t,\,\epsilon)+z^2\right|}{\partial\,\epsilon}\right)d\mu(t)\right]$$

$$+\int_{\theta_2}^{\theta_3} \left(-\log \left|1-2z \cos g(t,-\epsilon)+z^2\right|+(1-\epsilon) \frac{\partial \log \left|1-2z \cos g(t,-\epsilon)+z^2\right|}{\partial \epsilon}\right) d\mu(t)\right]$$

holds because the partial derivatives are uniformly bounded for each fixed z. Now let $z = \rho e^{i\,\theta}$, where either $0 \le \theta < \psi_1$ or $\psi_2 < \theta \le \pi$. If ϵ is sufficiently small, then $\psi_1 < g(\theta_1, \, \epsilon)$ and $g(\theta_2, \, -\epsilon) < \psi_2$, so that

$$\lim_{\rho \to 1} \frac{\partial \log |f_{\epsilon}(z)/z|}{\partial \epsilon}$$

$$=-2\left[\int_{\theta_1}^{\theta_2} \left(\log 2\left|\cos \theta - \cos g(t, \epsilon)\right| + (1+\epsilon) \frac{\partial \log 2\left|\cos \theta - \cos g(t, \epsilon)\right|}{\partial \epsilon}\right) d\mu\right]$$

$$+ \int_{\theta_2}^{\theta_3} \left(-\log 2 \left| \cos \theta - \cos g(t, -\varepsilon) \right| + (1 - \varepsilon) \frac{\partial \log 2 \left| \cos \theta - \cos g(t, -\varepsilon) \right|}{\partial \varepsilon} \right) d\mu \right],$$

by virtue of uniform boundedness and continuity of the partial derivatives.

Therefore

$$\lim_{\rho \to 1} \frac{\partial \log |f_{\varepsilon}(z)/z|}{\partial \varepsilon} = -2 \left[\int_{\theta_1}^{\theta_2} k(g(t, \varepsilon)) d\mu - \int_{\theta_2}^{\theta_3} k(g(t, -\varepsilon)) d\mu \right],$$

where $k(\psi) = \log 2 |\cos \theta - \cos \psi| - \frac{1 + \cos \psi}{\cos \theta - \cos \psi} \log \frac{2}{1 + \cos \psi}$. Now we see that

$$k'(\psi) = \frac{\sin \psi (1 + \cos \theta)}{[\cos \theta - \cos \psi]^2} \log \frac{2}{1 + \cos \psi} > 0 \qquad (\pi \neq \theta \neq \psi, \ 0 \leq \psi < \pi).$$

In the first integral above, g(t, ϵ) < t \le θ ₂, and in the second, g(t, $-\epsilon$) > t \ge θ ₂, while θ is not in the interval [g(θ ₁, ϵ), g(θ ₃, $-\epsilon$)]. Hence

$$\lim_{\rho \to 1} \frac{\partial \log |f_{\varepsilon}(z)/z|}{\partial \varepsilon} > -2 \left[\int_{\theta_1}^{\theta_2} k(\theta_2) d\mu - \int_{\theta_2}^{\theta_3} k(\theta_2) d\mu \right] = 0.$$

This implies that for some $\rho_0 < 1$

$$\frac{\partial \log \left| f_{\epsilon}(\rho e^{i\theta})/\rho e^{i\theta} \right|}{\partial \epsilon} > 0 \quad \text{whenever } 1 > \rho > \rho_0,$$

so that

$$\begin{split} \left|f_{\epsilon}(\rho \mathrm{e}^{\mathrm{i}\theta})/\rho \mathrm{e}^{\mathrm{i}\theta}\right| \, \geq \, \left|f(\rho \mathrm{e}^{\mathrm{i}\theta})/\rho \mathrm{e}^{\mathrm{i}\theta}\right| \, \geq \, \mathrm{r} \\ (6) \qquad \qquad (1>\rho>\rho_0 \text{ and } 0<\theta<\psi_1 \text{ or } \psi_2<\theta<\pi) \, . \end{split}$$

Now $\lim_{\rho \to 1} |f(\rho e^{i\theta})| \neq r$ for $\psi_1 \leq \theta \leq \psi_2$. Since $[\psi_1, \psi_2]$ is a closed interval, it follows that there exist $r_0 > r$ and $\rho_1 < 1$ such that

$$|f(\rho e^{i\theta})| \geq r_0$$
 if $1 > \rho \geq \rho_1$ and $\psi_1 \leq \theta \leq \psi_2$.

Since for $|z| \le \rho < 1$, $f_{\epsilon}(z)$ converges uniformly to f(z) as $\epsilon \to 0$, we see that $|f_{\epsilon}(\rho e^{i\theta})| \ge r$, provided $\psi_1 \le \theta \le \psi_2$, $\rho_1 \le \rho < 1$, and ϵ is sufficiently small. Using this together with (6), we conclude that $f_{\epsilon} \in S_r^*$ if ϵ is sufficiently small $(\epsilon > 0)$.

THEOREM 1. The solution of Problem 2 with $a_2>0$ is the function $f\in S_r^*$ given by (2), where r is given by (1) and $a_2=2\cos^2\phi$. The solution is unique, up to rotations.

Proof. Suppose the solution is not as described in the theorem. Then, by Lemmas 3 and 4, the function $f_{\varepsilon}(z) = z + a_2(\varepsilon)z^2 + \cdots$ belongs to $S_{\mathbf{r}}^*$, where f_{ε} is given by (5) and ε is sufficiently small ($\varepsilon > 0$).

Since

$$\begin{split} \log \frac{f_{\epsilon}(z)}{f(z)} &= \left[a_{2}(\epsilon) - a_{2} \right] z + \cdots \\ &= -2 \int_{\theta_{1}}^{\theta_{2}} \log \frac{1 - 2z \cos g(t, \, \epsilon) + z^{2}}{1 - 2z \cos t + z^{2}} \, d\mu - 2 \int_{\theta_{2}}^{\theta_{3}} \log \frac{1 - 2z \cos g(t, \, -\epsilon) + z^{2}}{1 - 2z \cos t + z^{2}} \, d\mu \\ &- 2\epsilon \left[\int_{\theta_{1}}^{\theta_{2}} \log (1 - 2z \cos g(t, \, \epsilon) + z^{2}) \, d\mu - \int_{\theta_{2}}^{\theta_{3}} \log (1 - 2z \cos g(t, \, -\epsilon) + z^{2}) \, d\mu \right], \end{split}$$

it follows that

$$\begin{aligned} \mathbf{a}_{2}(\varepsilon) - \mathbf{a}_{2} &= 4 \int_{\theta_{1}}^{\theta_{2}} \left[\cos g(t, \, \varepsilon) - \cos t + \varepsilon \cos g(t, \, \varepsilon) \right] d\mu \\ &+ \int_{\theta_{2}}^{\theta_{3}} \left[\cos g(t, \, -\varepsilon) - \cos t - \varepsilon \cos g(t, \, -\varepsilon) \right] d\mu \end{aligned}$$

$$= 4\varepsilon \left[\int_{\theta_{1}}^{\theta_{2}} \mathbf{h}(t) d\mu - \int_{\theta_{2}}^{\theta_{3}} \mathbf{h}(t) d\mu \right] + 2\varepsilon^{2} \left[\int_{\theta_{1}}^{\theta_{2}} \mathbf{k}(t) d\mu + \int_{\theta_{2}}^{\theta_{3}} \mathbf{k}(t) d\mu \right] + O(\varepsilon^{3}),$$

where

$$h(t) = (1 + \cos t) \log \frac{2}{1 + \cos t} + \cos t$$
 and $k(t) = (1 + \cos t) \log^2 \frac{2}{1 + \cos t}$.

Since h'(t) = - sin t $\log \frac{2}{1 + \cos t} < 0$ for $0 < t < \pi$, we conclude that

$$\begin{aligned} \mathbf{a}_2(\epsilon) - \mathbf{a}_2 &\geq 4 \left[\int_{\theta_1}^{\theta_2} \mathbf{h}(\theta_2) d\mu - \int_{\theta_2}^{\theta_3} \mathbf{h}(\theta_2) d\mu \right] \\ &+ 2\epsilon^2 \int_{\theta_1}^{\theta_3} (1 + \cos t) \log^2 \frac{2}{1 + \cos t} d\mu + O(\epsilon^3) > 0 \end{aligned}$$

for sufficiently small values of ε ($\varepsilon > 0$). This proves that (2) gives a solution.

That the solution is unique follows from the fact that if g is extremal with $a_2 > 0$, then the function

$$f(z) = z \left(\frac{g(z)}{z}\right)^{1/2} \left(\frac{\overline{g(\overline{z})}}{\overline{z}}\right)^{1/2}$$

is also extremal and has real coefficients, and by the proof above, f must then be given by (2). But $\lim_{\rho \to 1} |f(\rho e^{i\theta})| = r$ if and only if the same is true for both |g(z)| and $|\overline{g(\overline{z})}|$; moreover, arg $f(e^{i\theta})$ is constant if and only if the same is true for g(z) and $\overline{g(\overline{z})}$. This implies that g(z) = f(z).

4. TWO CONJECTURES

Let F(z) be normalized so that F(0) = 0 and F'(0) = 1, where

(7)
$$\frac{z \mathbf{F}'(z)}{\mathbf{F}(z)} = \frac{1}{\cos \phi} \frac{z \mathbf{f}'(z)}{\mathbf{f}(z)} + \left(1 - \frac{1}{\cos \phi}\right) \frac{\mathbf{f}(z)}{z \mathbf{f}'(z)} = \frac{1 + 4\cos \phi \frac{z}{(1 - z)^2}}{\sqrt{1 + 4\cos^2 \phi \frac{z}{(1 - z)^2}}},$$

and where f is given by (2). Letting $z = e^{i\theta}$ (0 < θ < π) and writing $\frac{e^{i\theta} F'(e^{i\theta})}{F(e^{i\theta})} = u + iv$, we see that

$$\begin{split} u &= 0 \text{ and } v > 0 \qquad \text{if } 0 < \sin^2\theta/2 < \cos^2\phi\,, \\ u &< 0 \text{ and } v = 0 \qquad \text{if } \cos^2\phi < \sin^2\theta/2 < \cos\phi\,, \\ u &> 0 \text{ and } v = 0 \qquad \text{if } \cos\phi < \sin^2\theta/2\,. \end{split}$$

From the discussion in Section 2 concerning the properties of f and $g \in S^*$, where $\frac{z \, g'(z)}{g(z)} = \frac{f(z)}{z \, f'(z)}$, we find that

$$\begin{split} \arg \frac{\mathbf{F}(-1)}{\mathbf{F}(\mathrm{e}^{\mathrm{i}(\pi-2\phi)})} &= \int_{\pi-2\phi}^{\pi} \mathbf{u}(\theta) \, \mathrm{d}\theta \\ &= \frac{1}{\cos \phi} \int_{\pi-2\phi}^{\pi} \frac{\mathrm{e}^{\mathrm{i}\theta} \, \mathrm{f}'(\mathrm{e}^{\mathrm{i}\theta})}{\mathrm{f}(\mathrm{e}^{\mathrm{i}\,\theta})} \, \mathrm{d}\theta + \left(1 - \frac{1}{\cos \phi}\right) \int_{\pi-2\phi}^{\pi} \frac{\mathrm{f}(\mathrm{e}^{\mathrm{i}\,\theta})}{\mathrm{e}^{\mathrm{i}\theta} \, \mathrm{f}'(\mathrm{e}^{\mathrm{i}\,\theta})} \, \mathrm{d}\theta \end{split}$$

$$=\frac{1}{\cos\phi}\cdot\pi(1-\cos\phi)+\left(1-\frac{1}{\cos\phi}\right)\pi=0.$$

Since
$$F(z) = z \left(\frac{f(z)}{z}\right)^{\frac{1}{\cos \phi}} \left(\frac{g(z)}{z}\right)^{1 - \frac{1}{\cos \phi}}$$
, it follows that

$$F(-1) = -(r)^{\frac{1}{\cos \phi}} (M)^{1 - \frac{1}{\cos \phi}} = -\frac{1}{(1 + \cos \phi)^2},$$

where r is given by (1) and where $M=\frac{1}{1-\cos^2\phi}$. Since F has real coefficients, we conclude that the image of E under the mapping F is the entire plane less the set of points

$$\left\{w: w \leq \frac{-1}{\left(1 + \cos \phi\right)^2} \text{ or } \left|w\right| = \frac{1}{\left(1 + \cos \phi\right)^2} \text{ and } \pi - \psi \leq \arg w \leq \pi + \psi\right\},\,$$

for some ψ . Further analysis shows that

$$\psi = \pi - 2\cos^{-1}\left[\frac{1-\cos\phi}{1+\cos\phi}\right].$$

Applying the principle of the argument to 1/F(z) and using the fact that $F(z) \neq 0$ if $z \neq 0$ and $z \in E$, we conclude that $F \in S$. An interesting extremal property of this mapping was proved by Goodman and Reich [2].

Conjecture 1. If $F(z)=z+a_2\,z^2+\cdots \in S_r$, then $\left|a_2\right|\leq 8/\sqrt{r}$ - 6 - 2/r, and equality is reached for the function F given by (7) with $r=\frac{1}{(1+\cos\phi)^2}$.

Lemma 2 seems to support this conjecture. Also, it is interesting to compare the conjecture with a result of Singh [6]. Singh considers the class of univalent functions $f(z) = \sum_{1}^{\infty} a_n z^n$ (all a_n real, f(1) = 1) that are regular in E and whose image domains cover E. He shows that in this class of functions the maximum of a_2 is attained by a function f that maps the disk onto the plane, minus the real axis from 1 to ∞ and from -1 to $-\infty$, and minus an arc of a circle symmetric about -1.

Lewin [4] introduced the class σ of biunivalent functions, which is defined as follows: $f \in \sigma$ if and only if $f \in S$ and there exists $g \in S$ such that g(f(z)) = z in the disk |z| < r, for some r > 0. Lewin pointed out that if f, $g \in S_r$, then $\frac{1}{r} f(g^{-1}(rz)) \in \sigma$. If $f(z) = z + a_2 z^2 + \cdots$ and g(z) = -f(-z), then

$$\frac{1}{r} (f(g^{-1}(rz)) = z + 2r a_2 z^2 + \cdots.$$

This, together with Conjecture 1 and the fact that $8\sqrt{r}$ - 6r - 2 is largest when r = 4/9, suggests the following conjecture.

Conjecture 2. If $g(z) = z + a_2 z^2 + \cdots \in \sigma$, then $|a_2| < 4/3$.

It is clear that $a_2 = 4/3$ for the function $g(z) = \frac{1}{r} F(-F^{-1}(-rz))$, where F is given by (7) and $r = \frac{1}{(1 + \cos \phi)^2} = \frac{4}{9}$.

REFERENCES

- 1. A. W. Goodman, Conformal mapping onto certain curvilinear polygons. Univ. Nac. Tucumán Rev. Ser. A 13 (1960), 20-26.
- 2. A. W. Goodman and E. Reich, On regions omitted by univalent functions, II. Canadian J. Math. 7 (1955), 83-88.
- 3. F. R. Keogh, Some theorems on conformal mapping of bounded star-shaped domains. Proc. London Math. Soc. (3) 9 (1959), 481-491.
- 4. M. Lewin, On a coefficient problem for bi-univalent functions. Proc. Amer. Math. Soc. 18 (1967), 63-68.
- 5. Z. Nehari, Conformal mapping. McGraw-Hill, New York, 1952.
- 6. V. Singh, Some extremal problems for a new class of univalent functions. J. Math. Mech. 7 (1958), 811-821.

University of Kentucky Lexington, Kentucky 40506