PARTS IN ANALYTIC POLYHEDRA
Donald R. Wilken

1. INTRODUCTION

The nontrivial Gleason parts in the maximal ideal spaces of several large
classes of function algebras have been shown to carry analytic structures. For ex-
ample, Wermer [7] has shown that a nontrivial part of a Dirichlet algebra is the
continuous one-to-one image of the open unit disc in the complex plane, all functions
in the algebra being analytic on this disc in the obvious sense. Hoffman [6] obtained
the same result for logmodular algebras. Although the general conjecture that a
nontrivial part always carries analytic structure does not hold (see [2]), the class
of algebras for which it is true is much larger than the cases (of essentially one
complex dimension) mentioned above.

In this paper we examine the parts of algebras on analytic polyhedra in n-dimen-
sional complex space C". In particular, we consider the function algebra that is the
uniform closure on an analytic polyhedron of the functions holomorphic in a neighbor-
hood of the polyhedron. As one would hope, the parts carry analytic structures on
which the functions in the algebra are analytic. We show that the nontrivial parts are
analytic subvarieties in relatively compact open sets in ™. Moreover, any part
containing an isolated point (that is, a point at which the subvariety describing the
part is 0O-dimensional) must reduce to the trivial part consisting of just the point
itself. Actually, by appealing to Hoffman’s characterization (in terms of analytic
varieties) of points in the minimal boundary of analytic polyhedra [5], we can make a
stronger statement: an isolated point of a payrt must lie in the minimal boundary.
Viewed as a statement about the connectedness of parts, this says that a component
of a nontrivial part cannot consist of a point. We would like to show that in general
the parts of polyhedra are connected analytic varieties, but we have not been able to
do this.

In Section 2, we include a brief review of the relevant definitions and terminology
as well as a summary of the properties of analytic subvarieties that we use later.
The main tool, which shows that connected analytic subvarieties are always con-
tained in a single part with respect to the algebra of bounded holomorphic functions,
is established in Section 3. The final section contains the applications to analytic
polyhedra.

2. PARTS AND ANALYTIC SUBVARIETIES

If X is a compact Hausdorff space and A is a function algebra on X, then there
exists a natural equivalence relation on the space M 5 of maximal ideals of A. To
define this equivalence relation, we identify the set of nonzero multiplicative linear
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functionals on A with M, and realize A as a function algebra on M a via the Gel- j
fand representation. '

2.1. Definition. Two points p and q in Ma are (Gleason) equivalent with re-
spect to A (we write p~ q or p ~a q) if

sup { |£(p) - f(@)]: £ e A, [ <1} <2 ([|t] = sup|t]).
Ma

This defines an equivalence relation on M, and the equivalence classes are called .
(Gleason) parts. The fact that “~” is an equivalence relation was noted by Gleason |
in [3]. A proof of this fact is given in [8]. E

2.2. Definition. A point x in My is a peak point of A if there exists a function’
f in A for which x is the unique point at which f attains its maximum modulus. If l
M, is metrizable, the set of peak points is called the minimal boundary of A (see |

[1]).

A peak point is always a trivial part; in other words, the equivalence class con-
taining the point is a singleton. In fact, it is not difficult to show that whenever a
pair of points has the property that only one of the points lies in the maximum-
modulus set of a function in the algebra, then they lie in different parts.

relatively closed subset V of U with the property that to each point p in V there
correspond an open neighborhood Wp of p in U and functions 1, fz, -+, fx, holo-
morphic in Wy, such that Wp N V = {q € Wp: fi(q) =0 for i =1, 2, - k}.

2.4. Definition, An analytic subvariety V in U is ¢rreducible if the relation
V =V; UV, (where V) and V) denote analytic subvarieties in U) implies that
either V=V; or V=V,.

2.5. Definition. An analytic subvariety V in U is irveducible at a point p in V
if there exists an open set U, in €™ such that the subvariety VN Up in Up is ir- |
reducible. !

|

|
2.3. Definition. Let U be open in 6. Ananalytic subvariely V in U is a E
;
|

!

2.6. Facts about analytic subvarieties. Let V be an analytic subvariety in a
relatively compact open set U in ¢". Then for each point p in V there exists a
neighborhood Up in €™ such that the subvariety Vp =V N Up in Up has the follow-
ing three properties. [

2.6.1. Vp=V1UV2U --- U Vj, where each V; is a subvariety in Up, irreduci-
ble at p [4, p 89]. 1

2.6.2. If V; is irreducible at p, there exists a connected open dense subset V
of V, and an 1nteger k < n such that V' is a complex submanifold of Up of dimen-.
sion k The set Vg =V, - V' is called the set of singular points of Vp [4, p. 111].

2.6.3. If Vp is irreducible at p, there exists a coordinate system in (S such
that for some connected open set UK in gX the projection map n: ¢* — ¢k is an
s-sheeted covering map of V,, - Vo onto Uk - 7(Vy), with #(p) € UK (p becomes the
origin in €™ with respect to the new coordinate system); see [4, pp. 98 and 114].

2.7. Definition. A continuous function f on V is holomovphic at p in V if { 1s,
holomorphic on the manifold of nonsingular points of each irreducible branch of V,
given by facts 2.6.1 and 2.6.2. The function f is kolomovphic on V if { is holo- 4
morphic at each point of V. ‘

2.8. Facts about holomovphic funcitions on analytic subvarieties.
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2.8.1. Let V be irreducible at p, and let Vp, 7, Uk, Vo be as given by 2.6.2
and 2.6.3. Let h be a bounded holomorphic function on V. For each point a in
Uk - 7(V,), there exists a neighborhood U, such that W‘IFUa) NVp=U; U -V Ug,
where 7 maps U; homeomorphically onto U, . Let -

, hi = (h|UDoer! (1<i<s).

Then h% is holomorphic on U,. If S(Xj, -+, X5) is a symmetric polynomial in
X, *--, Xg, then S(h}, -+, hS) = 8, is holomorphic in U,. The function S defined
by S(a) = Sa(a) is a well-defined bounded holomorphic function on UX - m(Vg), and it
extends uniquely to a bounded holomorphic function on Uk [4, p. 99].

2.8.2. Let D be open in €", and let g;, g2, **, g, be halomorphic functions in
D. Let V be the variety of common zeros of g;, g2, ***, 8 in D. I p is an iso-
lated point of V and Q is a compact subset of D containing p, then there exists a
function g, holomorphic on an open neighborhood of Q, such that g(p) =1 while g
vanishes on Q N (V - p) [5].

3. CONNECTED ANALYTIC VARIETIES

3.1. Notation. Let M be a complex analytic manifold or an analytic subvariety
in an open set U in G". Let Q be a compact set in ¢". Let BH(M) be the algebra
of bounded holomorphic functions on M, H(Q) the algebra of functions holomorphic
in a neighborhood of Q, and A(Q) the completion of H(Q) in the sup-norm on Q.

To obtain the main tool mentioned in the introduction, we need a well-known and
easily established lemma about connected analytic manifolds. We omit the proof -

(see [8]). '

3.2. LEMMA. If M is a connected, complex analytic manifold and BH{M) sepa-
vates points on M, then p ~ q with vespect to BH(M), for all p, q € M.

3.3. THEOREM. Let V be a connected analytic subvariety in a relatively com-
pact open set U in 6T, Then V is imbedded in Mgri(v), and all points of V lie in
the same part of BH(V).

Proof. That V is imbedded in Mpyyv) follows immediately from the fact that .
BH(U) separates points of U and BH(U) | V € BH(V). For the main part of the theo-
rem, it suffices to look at V locally and to consider only the irreducible case. In
other words, we claim that if for each point p in V and each irreducible component
V; of VN U, in some neighborhood Uy, of p in C" the theorem is true for Vi, Up,
and BH(V;), then the theorem holds as stated.

To establish the claim, we note that if q;, q2 € V; and q; ~ q, with respect to
BH(V;), then certainly q; ~ q » with respect to BH(V). Also, if q; € V; and
qz2 € V;, where V; ard V; are distinct irreducible components of V N Uy, then the
relations

q; ~ p with respect to BH(V;) and q, ~ p with respect to BH(VJ-)

imply that q; ~ q, with respect to BH(V). Hence, each point p of V has a neigh-
borhood that lies in the same part as p with respect to BH(V). Since V is con-
nected, this means that V lies in a single part. Henceforth, we assume that V is
irreducible at p. We assume that coordinates in €™ have been chosen according to
2.6.3, and we work locally with the set of singular points V, the connected manifold
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V -Vy of nonsmgular points, and the s-sheeted covering map m: 6" — ek of
V - Vo onto UX - 7(Vg) given by 2.6.2 and 2.6.3. Since V - V is a connected com- |
plex analytic manifold, Lemma 3.2 implies that all points of V - V lie in the same |
part with respect to BH(V - Vo), hence with respect to BH(V). It thus suffices to |
show that if p € V, then p is equivalent to some point in V - V. (If q is any
other point in Vg, then localization at q and repetition of the argument at q shows
that q is equivalent to some point in V - Vj also.) Suppose p is not in the same
part as V - Vy. Then no point of V-V,is equ1va1ent to p. For each b in .
uk - ﬂ'(VO) let W‘l(b) ={b;, =+, bg}. Fix a e Uk - 7(Vgy). Then E
a;,az, **,ag € V-Vg,,and none of the a; is equivalent to p. Hence there exist |
functions {f } in BH(V) such that ||f, ”V <1 for all m, f_(p)— 1, and |
f (a)—+0(1-12 , 8). Let

W=

S |

g (b) == 27 £ (b;) for be UK - a(Vy). !
i=1 |
|

Then, by 2.8.1, each g,, extends uniquely to a function in BH(UX). Also,
1y "
leml gx = leml i vy £ 5 2 lmllv < 1.

But

] S
Em@@) = lim g () =12 lm f,b) =12 1,0) = 1,0).
b—7(p) i=1l bj—p i=1

Thus

g.mP) - 1 and g(a) = % >t (a) — 0.

!
Therefore a is not equivalent to w(p) with respect to BH(UX), contrary to Lemma ‘i
3.2. We conclude that p lies in the same part as V - Vg, and the theorem is estab-
lished. ‘

3.4. COROLLARY. Let Q be a compact set in 6" . Let p be an isolated point %
of a part of A(Q). If W is an open set in C™ and V is an analytic subvaviety in W
with p € V C Q, then p is an isolated point of V. [

Proof. Choose an open relatively compact neighborhood R of p in C" such that!
R N V is connected. Then RN V is a connected, analytic subvariety in RN W.
Hence, the theorem implies that if q € R N V, then q ~ p with respect to [
BH(R ﬂ V). By hypothesis, there exists an open neighborhood S of p in ¢™ such |
that if p#q and q € SN Q, then q is not equivalent to p with respect to A(Q). Letl
T=RNS. Then TNV = {p} forif e TNV and q #p, then ¢ € RN V and
q ~ p with respect to BH(RN V). Since q € SNV and q #p, q is not equivalent to
p with respect to A(Q). Now V C Q implies R N V C Q, so that )

AQ|R NV CBHRN V).

Thus we also conclude that p is not equivalent to q with respect to BH(R N V), a 1\
contradiction. Hence TN V = {p}, and p is an isolated point of V. |
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4. ANALYTIC POLYHEDRA

We shall now apply the results of Section 3 to analytic polyhedra. Let Q be an
analytic polyhedron in ¢, that is, let Q be a compact set in C", of the form

Q=1{zeD: ()] <1,1=1,2, -, k},

where D is open in C™ and f;, f,, --+, f, are holomorphic in D. Consider the
algebra A(Q).

4.1. THEOREM. If G is a part of AQ), then G is an analytic subvariety in a
relatively compact open set in C™.

Proof. Since the maximal ideal space of A(Q) coincides with Q, we need only
examine the part containing an arbifrary point p in Q. First suppose that
|£:(p)] <1 (i=1,2, -, k). Then U=1z € D: |f;(z)| <1, i=1,2, - k} isan
open set in ", and it contains the part containing p, by the remarks following
Definition 2.2. Now, since U C Q, Gleason-equivalence of points in U with respect
to BH(U) implies equivalence with respect to A(Q). According to Theorem 3.3, each
component of U lies in a part of A(Q). Thus G must be a component of U or a
union of components of U — hence an analytic subvariety (in U).

If |f;(p)] =1 for some i, assume without loss of generality that |fj(p)| =1
(i=1,2, -, r)and |f;(p)] <1 Gi=r+1, -, k). Let

U=1{zeD: |fiz)] <1, i=r+1, =, Kk} (if r =k, take U =D),

\

{Z € U: fi(z):'fi(p)’ i=1’ 2, ) I'}.

Then V C Q and no point of Q not in V lies in the same part as p; for if q is not in
U, then q lies in the set of points of maximum modulus of some f; o (ig>r). If q is

in U but not in V, then q does not lie in the set of points of maximum modulus of
one of the functions g, -*+, g,., where g; =1+1f;(p)f; (i=1, 2, -=-, r). Applying the
argument in the previous case to V, we again conclude that G is either a component
of V or a union of components of V — in any case, an analytic subvariety (in U).

To establish our claims about isolated points of parts, we use Hoffman’s charac-
terization of the points in the minimal boundary of A(Q); it states that a point p in
Q is in the minimal boundary if and only if no local analytic variety through p lies
in Q and has positive dimension at p. The specific theorem that we wish to apply is
the following:

4.2, THEOREM (Hoffman). Let
Q = {z € D: lfj(z)l <1,j=1,2, - k}

be an analytic polyhedvon in G*. Let p be a point in Q, and suppose (venumbering,
if necessary) that ]fj(p)l =1(G=1,2, -, r). Suppose p is an isolated point of the
analytic subvariety

vV = {Z € D: fJ(Z)=fJ(p)s ] = 1’ 2’ Ty I‘}.

Then p is a peak point for the algebra AQ).

The theorem is a consequence of 2.8.2 and of a lemma of Bishop which, under
certain conditions on a set in 2, allows the construction of a peaking function.
For a proof of both Bishop’s lemma and the theorem, see [5].
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4.3. THEOREM. Let
Q={zeD: |fz)] <1,i=1,2, -, k}

be an analytic polyhedron in C™. If a point p of Q is an isolated point of a part of
A(Q), then p is a peak point of A(Q).

Proof. Since p is a “local point part” of A(Q), |fj(p)| =1 for some j; for
otherwise p would lie in an open relatively compact set Q° in G". Therefore p is
an isolated point of a part of BH(Q®). By Lemma 3.2, p is an isolated point of Q°,
which is impossible. Without loss of generality, we assume that Ifj(p) =1 for
i=1,2, ---, r. Let V be the variety in D described in Theorem 4.2; that is, let

V= {zeD:f(z)=1(p), i=1,2 -, r}.

Let U= {z € D; lfj(z)l <1,j=r+1,r+2, -+, k}. Then V N U is an analytic
subvariety in U with p € VN U C Q. By Corollary 3.4, p is an isolated point of
V N U; in other words, there exists an open neighborhood W of p in 6™ such that
WNVNU= {p} This clearly implies that p is an isolated point of V. There-
fore, by Theorem 4.2, p is a peak point of the algebra A(Q).

4.4, COROLLARY. For analytic polyhedra, an isolated point of a part is a part
in itself. (An alternate statement might say that a local point part is a global point
part.)

Proof. By a previous observation, a peak point is a trivial part. Apply the
theorem.

4.5. COROLLARY. If Q is an analytic polyhedron in G, then the set of trivial

parts and the set of peak points for A(Q) coincide.

This follows immediately from Theorem 4.3.

The next corollary provides a partial solution to a problem posed at a conference |

on commutative Banach algebras at Dartmouth in 1960 [9, Problem 8, p. 457]:

4.6. Problem. Let A be a function algebra on Mp. Let K be closed in My,
and let A i be the uniform closure on K of A I K. Suppose p is an interior point of
K and a peak point of Ag. Does it follow that p is a peak point of A?

We answer the problem for the case of analytic polyhedra:

4.7. COROLLARY. Let Q be an analytic polyhedron in C®. Let K be closed
in Q, and let Ak be the uniform closure on K of A(Q) | K. If p is an intevior point
of K and a peak point of Ak, then p is a peak point of A(Q).

Proof. Suppose that S is open in ™ and that S N Q = K®. We show that if W
is any open set in G™ and V is an analytic subvariety in W with p € V C Q, then p
is an isolated point of V. To this end, let S* be open in ¢"™, and suppose that

t

peS CS CS. Let W=Wn§S, V' =vnS,and Q =Q NS'. Then Q' is a com- |

pact set in €™, V' is an analytic subvariety in W', an open set in ¢™, and
peV'CcQ' Also, Q CK°. Since p is a peak point of Ak, it is a trivial part of
Ax. But A(Q")D A(K®) |Q'D> Ak|Q'. Thus no point q in the neighborhood K°N §'
of p in Q' different from p is equivalent to p with respect to A(Q'). These condi-
tions allow us to deduce, with the aid of Corollary 3.4, that p is an isolated point of
V', But then p is an isolated point of V. To obtain Corollary 4.7, we proceed as in
the proof of Theorem 4.3.
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