ON A CONJECTURE RELATED TO THE SUSPENSION
OF HOMOTOPY 3-SPHERES AND FAKE CUBES

Leslie C. Glaser

1. INTRODUCTION

One of the major outstanding problems in 3- d1mensiona1 topology is the Poincaré
conjecture: If H3 is a homotopy 3- -sphere, then H3 is topologically equivalent to the
3-sphere §3. In [8], it was shown that if H3 is a homotopy 3-sphere bounding a
contractible combinatorial 4-manifold, then the double suspension =2 H3 is topologi-
cally equivalent to S°. Here we state a conjecture equivalent to the conjecture that
if F3 is a fake cube, then int ¥3 x (0, 1) = E%. Of course, one would like to obtain
the result that F3 x [0, 1] = 1%, If we let 2F3 denote the double of F3, it would then
follow from [3] (since 2F3 =3(F3 x [0, 1]) and 8 F3 = 82) that F3 =13, and this
would give the Poincaré conjecture.

The following problem was suggested to the author by E. H. Connell as a possible
means of showing that the suspension of a homotopy 3-sphere is S4.

CONJECTURE. If H3 is a homotopy 3-sphere and B, and B, are two disjoint,
piecewise linear 3-cells in H3 under some combinatorial triangulation of H3 , then
some homeomorphism h taking H3 X El onto itself has the property that

H3 xE! = h(int By X E!) U (int B, X E1).

We prove here that this conjecture is equivalent to the statement that the sus-
pension of a homotopy 3-~sphere is S4. Also, we show that such a solution leads to a
number of additional results, and we obtain a partial solution to the conjecture.

More specifically, the followmg results are obtained. (In what follows, H3 will al-
ways denote a homotopy 3-sphere, and F3 a fake cube. If M is a mamfold with non-
empty boundary, 2M will denote the double of M. If X is a topological space, ZX
will denote the suspension of X.) Assuming the conjecture, we show that

int(F3x1)=g%=@3- {pt.})xE!, 23xn=8% w3 x1%=1°, =@F’)=s*

and that the 3-dimensional Poincaré conjecture is equivalent to the conjecture that
every triangulation of S% is combmatorlal Conversely, if we assume that

int (F3 x1) = E4 #H3 - {pt.})xEl = E4 or =(2F3) =g* , then the conjecture is true.
Making use of a theorem of [10], we strengthen two of the above results by showing
that the conjecture implies that ZF3 =14 and zH3 = 54, Finally, by using the en-
gulfing theorem of [14] and the product structure on H3 x E! | we prove a weak form
of our conjecture (see Theorem 5). Since this conjecture is equivalent to the state-~
ment that ZH3 = S, we shall call this conjecture the ZH-Conjecture.
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2. DEFINITIONS AND PRELIMINARIES

We shall use the terminology of [7] and [15]. For example, if the complex T
collapses simplically to the subcomplex L, this will be denoted by T \ L. We shall
use T' and L' to denote the first barycentvic subdivision of the complexes T and
L, respectively. Also, we shall use the concept of regular neighborhoods. The regu-
lar neighborhoods used here can always be considered to be the canonical regular
neighborhoods. That is, if K is a combinatorial n-manifold, L. is a finite subcom-
plex of K, and U is an open set in K containing L, then by a regular neighbovhood of
L in U we shall mean the simplicial neighborhood of L in some nth barycentric
subdivision of K mod L. (n > 2), say N(L, (K mod L)"), such that

N(L, (K mod L)?) C U.

Here we obtain (K mod L)' (or (K mod L)1) by starring the simplexes of K - L
(using barycenters) in order of decreasing d1mens1on and (K mod L)? is inductively
defined by the formula (K mod L)® = ((K mod L)*~1 mod L)".

I?, E®, and S™ will denote spaces homeomorphic to the unit n-cube, Euclidean
n-space, and the n-sphere, respectively. The symbol = indicates topological equi-
valence. A homotopy 3-sphere H3 is a closed, connected, simply connected 3-
manifold. A homotopy 4-sphere H% is a cIosed connected 4-manifold such that
171(H4) =0 for i=1, 2, 3. A fake cube F3isa compact contractible 3-manifold
with nonempty boundary such that 9F3 = 82, By [1], whenever we are considering an
H3 or F3, we may assume that these 3-manifolds also have combinatorial triangu-
lations.

If X is a topological space, then ZX and CX will denote the suspension of X and
the cone over X, respectively. That is,

= XxD)/{Xx1} and =X =&Xx[-1,1])/({xx-1}, {xx1}).
If M™ is an m-manifold and N is an n-manifold without boundary, then

M™ C N2 (m < n) is locally flat if for each point p € int M™ there exists a neigh-

borhood U of p in N™ such that
(U, uNM™) = (E*, E™) as pairs,

and if for each point q € 9M™ there exists a neighborhood V of q in N™ such that
(V, voM™) = (E", E]") as pairs.

Finally, if X is a subset of E” (or S™), then X is said to be cellular if there exists

a sequence {BI'}:., of n-cells such that

B

o
P, CintB} and X-= O'Bn

If XC E® (or X C S is cellular, then clearly EY{x} = E? (or S/ {X} =8P
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3. MAIN RESULTS

THEOREM 1. Suppose that the ZH-Conjecture z’s'tme, that H3 is a homotopy
3-spheve, that F3 = H3 - int A3, wheve A3 is a 3-simplex of H3, and that p is a
point of int A3. Then

@3 - {p})xE! = E* = int F3 x E!.

Proof. Since H3 - {p} is homeomorphic to int F3, it suffices to show that
int F3x El = E4., We first apply the ZH-Conjecture. Let B, = A3, and let B; bea
combinatorial 3-cell contained in int F3. By the ZH-Conjecture, there exists a ho-
meomorphism h carrying H3 X El onto itself such that

h(int B; X E!) U (int A3x El) = H3 X EL.

Hence h(int B; X E!) contains F3 x EL.

Let ZH3 denote the 2-point compactification of H3 x E! ; that is, let
TH3=H3xE! U {w} U {-w} (we can think of ZH3 as the suspension of H3 with
suspension points w and -w). Let

C=hB; xE)U{w}U {-w} czH® and =P =FxE!U {0} u{-w}c=H3

(we can also think of ZF3 as the suspension of F3 with suspension points w and
-w). Since C is homeomorphic to By X El U {w} u {—w}, it is a 4-cell containing
ZF3. Let S* be the 4-sphere 2C, where 2C denotes the double of C. Now

ZF3c s%*and Z3F3 is an embedded 3-sphere that is locally flat except perhaps at
the two points w and -w. Let A be the flat arc in ZoF3 obtained as the suspension
of some point q € 3F3. Since A is locally flat in S¢ except perhaps at the two sus-
pension points w and -w, it is flat [6]. Therefore, by shrinking A to a point we ob-
tain a 3-sphere Z9F3/A embedded in the 4-sphere S%/A in such a way that it is lo-
cally flat except perhaps for the point {A}. It follows by [4] and [5] that ZaF3/A is
flat in S%/A; hence, int (ZF3/A) = E4. Since int (SF3/A) is homeomorphic to

int (ZF3) and the latter expression is homeomorphic to int F3 X El | we see that

int F3x E! is homeomorphic to E4,

Remark 1. The F3 above is clearly a fake cube. It follows easily that if F3 is
any fake cube or p is any point of H3, then the ZH-Conjecture implies that

int(F3 XI) = int F3xE! = E4= (H3 - {p})xE!.

COROLLARY 1. Ifthe ZH-Conjecture holds and F3 isa fake cube, then
2(F3 x1)=5% and F3 x12=1°,

Proof. 2(F3 x1I)=S%, since int(F3 xI) = E4, That is, since a(F3 X I) has an
open collar U in F3 X1, (F3 XI) U U = E4, where the U is the collar in the other
copy of F3 X1 in 2(F3 xI). Hence, 2(F3 X I) is the union of two open subsets, each
of which is homeomorphic to E4, and it follows directly from [3] that 2(F3 X I) = S4.
F3 x12 =15, since 3(F3 x12) = S% and int(F3 X I2) = E5. That is,

(F3x12) = a([F3 xI]xI) = 2(F3 x1) = s4.

Since int (F3 X I2) = E5, it follows by the above argument that 2(F3 x I2) = S5, Since
8(F3 x I2) = 8%, another application of [3] gives the result F3 x12 =15,
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THEOREM 2. Suppose that the TH-Conjecture holds, that F3 is a fake cube,
that 2F3 is the double of F3, and that Z(2F3) is the suspension of 2F3. Then
Z(2F3) = 8¢,

Proof. By Corollary 1, 2(F3 xI) = S%. Since there is a 2-complex &2 in int F3
such that F3 collapses to KZ, there is a 2-complex K2 in int(F3 X I) such that

F3 xI\ K2 (namely, K2 x%) Since int (F3 xI)= E4, K2 is cellular in

int (F3 X I). That is, corresponding to each open set U C int (F3 X I) containing K2,
there is a regular neighborhood N of K2 lying in U. Since N and F3 X I are regu-
lar neighborhoods of K2, N is homeomorphic to F3 X I, by [7] or [15]. Thus

K2 C int N = E4, and hence some 4-ball in int N C N C U contains K2 in its in-
terior.

Now, since K2 is cellular in F3 x1I, (F3 X I)/K? is homeomorphic to F3 X1
(where (F3 X I)/K2 denotes the space obtained by shrinking K2 to a point). Since
F3 X I is a regular neighborhood of K2, (F3 x I) - K2 is combinatorially equivalent
to 9(F3 x 1) x [0, 1) [7]. Since 3(F3 xI) = 2F3, it follows that

(F3 xI)/K2 = 2F3 x [0, 1) U {K?}

is the cone over 2F3 from the point {K2}. Thus, shrinking the copy of K2 in each
half of 2(F3 x I) =S4, we see that

St = (F3xDU (F3x1) = (F3 x1)/K? U (F3 x 1)/K?

]

{K?2} u2F3 x (-1, 1) U {K?} = Z(2F3).

COROLLARY 2. The 3-dimensional Poincaré conjecture is equivalent to the
conjecture that every triangulation of S* is combinatorial.

Proof. The 3-dimensional Poincaré conjecture implies that every homotopy 3-
sphere H3 is combinatorially equivalent to S3. Now suppose K is a complex that
triangulates S4 and v is a vertex of K. Then the link of v in K, lkk(v, K), isa
simply connected combinatorial 3-manifold [2]; hence 1k (v, K) is a homotopy 3-
sphere. Therefore, assuming the Poincaré conjecture, we can conclude that 1k (v, K)
is combiliatorially equivalent to 83 , and hence that K is a combinatorial triangula-
tion of S*=,

Now suppose every triangulation of S4 is combinatorial, and let H3 be a ho-
motopy 3-sphere., Let F3 = H3 - int A3, By Theorem 2, Z(2F3) = S4 and the tri-
angulation of F3 gives us a triangulation of S4 = Z(2F3). If v is the vertex corre-
sponding to one of the suspension points, then lk(v, Z(2F3)) = 2F3, Since every tri-
angulation of S4 is combinatorial, this implies that 2F3 = 83, Since aF3 =82 it
follows by [3] that F3 =13, Hence, H3=F3 U A3 =13 y A3 =83,

COROLLARY 3. If for some n> 4 every triangulation of S® is combinatorial,
then the 3-dimensional Poincaré conjecture is true.

Proof, If every triangulation of S™ is combinatorial, then every triangulation of
a k-manifold (k < n) without boundary is combinatorial (since the suspension of a
“bad” sphere is again a “bad” sphere and the suspension of a link of a vertex in a
k-manifold is a triangulated k-sphere). Since n > 4, this implies that every triangu-
lation of S is combinatorial. Hence, by Corollary 2, the 3-dimensional Poincaré
conjecture is true.

The following corollary was suggested to the author by M. L. Curtis.
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COROLLARY 4. If H* is a combinatovial homotopy 4-sphere having a 2-spine
K2 such that K% can be embedded piecewise linearly in some combinatorial 3-
manifold, then H% = S84, :

Proof, The assumption that K2 is a 2-spine of H4 means that there is some
combinatorial 4-cell B4 ¢ H% such that if F%4 = H? - int B%, then there exists a
K2 C int F* such that F¥#N K2, Now suppose K? can be embedded piecewise
linearly in some combinatorial 3-manifold M3 (with or without boundary). I N3 is
a regular neighborhood of K2 in M3, then, since K2 is contractible, N3 is a fake
cube. By Corollary 1, N3 X 12 =15, We note that N3 X IZ is a combinatorial mani-
fold with boundary, and we are only assuming that it is topologically equivalent to I°.
Since any contractible, combinatorial 5-manifold with boundary can be piecewise
linearly embedded in E53, we may suppose that both N3 x IZ and F% x I are piece-
wise linearly embedded in E5. That is, if W53 is any contractible combinatorial 5-
manifold with boundary, then 2W> is a combinatorial 5-manifold topologically equi-
valent to S°. By [13], 2W5 - {pt.} is combinatorially equivalent to E°. Hence, W
can be piecewise linearly embedded in E5. Since N3 X I2 and F% X I are regular
neighborhoods of the given embeddings of the corresponding copies of K2, it follows
by [11] and [15] or by ['7] that ¥4 X I is combinatorially equivalent to N3 x 12 =15,
The result from [7] or [11] that we use is that any two piecewise linear embeddings
of a contractible 2-complex in E> are equivalent under a piecewise linear homeo-
morphism and that hence their regular neighborhoods are piecewise linearly home-
omorphic. Since 8% =23(F4 X I)=2F%, it follows by the generalized Schoenflies theo-
rem that F4 =14 and hence H* = S%,

Recall that if X is a topological space, then CX denotes the cone over X. That
is, CX = (X xI)/{X x 1}.

COROLLARY 5. If F3 is a fake cube, then C[3(F3x1)]Ju F3 x1 =54 and
C(F3x1)=15.

Proof.
Ca(F3xIx0)]U(F3xIx0)=2[C(F3x1)]

(where 9 [C(F3 X I)] denotes the mod 2 boundary of C(F3 x1I)) and
Cla(F3 xIx0)]N (F3XIx0) = a(F3XIx0) = 2F3,

From the proof of Theorem 2, it follows that F3 XI = C(2F3) = C[a(F3 x I x 0)].
Hence 3 [C(F3 xI)] = 2(F3 xI) = §%. Also,

int (C(F3 X 1)) = (int F3) x (0, 1) X (0, 1) = int (F3 x12) = E>

(oy Corollary 1 or by [13]).
We would now like to consider 2[C(F3 x1I)]. We know that

S% = a[c(F3x1)] c 2[C(F3 x1)]

and that each of the two complementary domains of 9 [C(F3 xI)] in 2[C(F3 x 1)] is
homeomorphic to E>. We would like to know that 2[C(F3 x I)] = S5. For then,

st =a[c(F3x1)] c 2[Cc(F3xT1)] = 8>,
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and S% is locally flat in S5 modulo the common vertex (= {F3XIx 1}) of the two
cones making up S5. Hence, by [4] and [5], 8 [C(F3 X I)] is flat in 2[C(F3 x I)], and
therefore C(F3 xI)=1°%. However, it is not immediately clear that

2[C(F3 xI)] = 85. To obtain this conclusion, we must consider 2[C(F3 x1)] in a
different manner. ‘

Consider 2(F3 x I2), which by Corollary 1 is homeomorphic to S®. As in the
proof of Theorem 2, there exists a 2-complex &2 c int F3 such that F3 VK2, Let

K2 =1"<’:2><-;-><1 c 2AF3x12).

Let N be a regular neighborhood of F3 XIx 1 in 2(F3 x12), Then N and F3xI
are also regular neighborhoods of K2. Hence N = (F3 X 12)=1%, and it follows that
F3x1Ix1 is cellular in 2(F3 X I12). Thus '

S5 = 2(F3x1%) = 2(F3x13/{F3x1x1} = 2[c(F3x1)],

and the proof of Corollary 5 is now complete.

THEOREM 3. Let H3 be a homotopy 3-sphere, and suppose F3 is a fake cube
in H3 obtained by remouving the intevior of a piecewise linear 3-cell, If
int(F3x1I)=E4 (H3- {pt.})x El = B4, or Z(2F3) = 8%, then the SH- Conjecture
is true.

Proof. We have already noted that if int (F3 X I) = E4, then

@3 - {pt.})xE! = E*

(Theorem 1) and Z(2F3) = §4 (Theorem 2). Clearly, (13 - {pt.}) x El=g4 implies
that int (F3 xI)= E4. Also, if Z(2F3) = S4, it follows as in the proof of Theorem 1
(since ZaF3 is a 3-sphere in the 4-sphere =(2F3) that is locally flat except perhaps
for the two suspension points) that each complementary domain of Z3F3 in Z(2F3)
is homeomorphic to E4. Therefore, Z(2F3) = S4 implies that int (F3 x1I)= E4,
Hence it suffices to show that if int (F3 X I) = E4, then the ZH-Conjecture is true.

Let H3 be a homotopy 3-sphere, and let By and B2 be two disjoint, piecewise
linear 3-cells in H3. Let B, be a piecewise linear 3-cell in int By, and let F3 pe
the fake cube H3 - int B, . We now consider the inclusion

11 int F3 (-l _1_)
BIX(—Z,z)ClntFX 5135 )

Since the 4-cell B; ><|: —%, —Z—:l and the compact set (H3 - int B) X 0 each lie in
int F3 X (-%—, —;— = E4, there exist a 4-cell C and a homeomorphism f; taking

int F3 x (——;—,%) onto itself such that
11 3 . . . 3 11
(1) B, X "4’ 1 U ((H? -int B2) X0) C intC € C C int F° X -513 )

(2) fl(int B; X (-%,i—)) > (H3 - int B2) X 0, and

(8) f, is the identity map outside C.
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Since f; is the identity outside C, f; extends by the identity to all of H3 x [-1, 1].
We denote the extended homeomorphism by g; .

Thus g; is a homeomorphism taking H3 x [-1, 1] onto itself and satisfying the
two conditions

(1) g (int B; x[-1, 1]) o (H3 - int B,) X 0,

(2) g = identity on B, x[-1, 1] U H3 x[ -1, -%]ulﬁ x[% 1].

Unfortunately, g (int By X [-1, 1]) may fail to contain int Bj x[-1, 1]. We now
consider the region H3 x (-1, 1). Since

g, (int B; x (-1, 1)) D (H? - int B,) X 0,
there exists a piecewise linear 3-cell ]§1 C int By such that
g, (int B; x (-1, 1)) D (H? - int B,) X 0.

Let p be a point of int B1 , and consider the 1-dimensional subpolyhedron of
H3 x (-1, 1) given by p X (-1, 1). Since g; is the identity on

3 1 3.0 1
H ><|:-1,—2:]UH x[2,1:|,

the set [p x (-1, 1)] - g;(int By x (-1, 1)) is compact. The set g;(B; X (-1, 1)) is
closed in H3 ><( 1, 1) and lies in gl(mt B; X (-1, 1)). Also, the pair

([H? % (-1, D] - [g1(By % (-1, 1))], [g1(int By x (-1, 1))] - [g; (B, x (-1, 1))])

is 1-connected. Hence we can apply the engulfing theorem of [13]. That is, there
exist a compact set E C [H x (-1, 1)] -

[g1(B;] x (-1, 1))] and a piecewise linear ho-
meomorphism G; taking H3 x (- 1 1) onto itself such that

Gl(gl(lnt Bl X (-1, 1))) 2pX (-1, 1)

and G; = identity outside of E. Since E is compact and Gj is the identity outside
b

of E, it follows that G; can be extended by the identity to all of H3 x [-1, 1] (we
again denote the extended homeomorphism by G;) and

G, (g, (int By x[-1, 1])) D (p x[-1, 1]) U (H3 - int By) X 0
By the last relation, there exist piecewise linear 3-cells B 1 and B} such that
B, C int B, C B; C int B¥ ¢ B¥ c int(H? - int B,)
and G;(g;(int B, ><[ 1, 1])) > By x[-1, 1]. Let k be a homeomorphism taking H3

onto itself and B} onto itself in such a way that k(Bl) = B; and k= identity on

{p} U (B3 - int B}), Let k; be the homeomorphism of H3 x [-1, 1] onto itself de-
fined by k;(x, t) = (k(x) t), where x € H3 and t € [-1, 1]. Then

ky© Gy o g(int By x[-1, 1]) D (B) x[-1, 1]) u (H3 - int By) X 0

Also, since G; and g; are the identity on (H3 X -1) U (H3 x 1), it follows that
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k1 °Gyogylx, -1) = (k(x), -1) and k; oG, ogilx, 1) = (k(x), 1).
Hence, if 7 denotes the projection of H3 x [-1, 1] onto H3 x 0, then
Tok;oGyog(x, -1) =7 okj oG, og(x, 1).

The homeomorphism $;=k;o0 G;o g; maps H3 x [-1, 1] onto itself in such a way
that

(1) ¢1(int By x [-1, 1]) > (By x[-1, 1]) u (H3 - int B;) X 0 and
(2) ¢; carries each of H3 x -1 and H3 x 1 onto itself so that

TOog¢(x,-1) =70 ¢1(x, 1).

Similarly, there is a homeomorphism ¢, taking H3 x [-1, 1] onto itself such that
(1) ¢2(int By x [-1, 1]) D (B, x [-1, 1]) U (H3 - int B1) x 0 and.
(2) ¢2 carries each of H3 x -1 and H3 x 1 onto itself so that

To ¢pa(x, -1) = 7 o $a(x, 1),

For (x,t) e H3 x[2i -1, 2i + 1] (i=0,+1,+2, ), let ¢1; be the homeomorph-
ism taking H3 X [2i - 1, 2i + 1] onto itself defined by

$13(x, t) = 75 0 ¢y (x, t - 2i),

where 7,: H3 x [-1, 1] - H3 x[2i - 1, 2i + 1] is the obvious map. For

(x,t) € H3 x[2i, 2i + 2] (i = 0, £1, +£2, ---), let ¢»; be the homeomorphism taking
H3 x [2i, 2i + 2] onto itself defined by ¢,;(x, t) = 7} o $2(x, t - (2i + 1)), where
‘Tt H3x[-1, 1] — H3 x [2i, 2i + 2] is also the obvious map. For

(%, t) € H3 X [2i - 2+, 2i +j] (1=1,2i=0, +1, +2, --.),

let Fy(x, t) = $;i(x, t). Each of F; and F2 is a well-defined homeomorphism of
H> x E! onto itself (because of property (2) of the homeomorphisms ¢; and ¢, re-
spectively). We note that for i = 0, +1, £2, ...,

(1) Fiint B, xEY) > B, xE)u{ U@ - int B )X 2 ¢,
1 1 1 . 2
1
(2) F) carries each region of the form H3 x [2i - 1, 2i + 1] onto itself,
(8) Fplint B, x E) > B, x EY U { U @3 - 1nt By) x (21 + 1)}, ana
i

(4) F, carries each region of the form H3 x [2i, 2i + 2] onto itself.

From the definition of F} and F;, it follows that there exist real numbers §;
and 6, (0<6;<1/4, 0< 6, < 1/4) such that

(1* Fi(int B; X E!) o (B, x El) U U(H3—intB)><[2i—6,Zi+6] and
1 1 1 - 2 1 1
1
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(2)* F,(int B, X E!) D (B, X El)u{ U(H3- int By) X [2i+1-6;, Zi+1+62]}.

1

We now consider the regions of the form H3 X [2i - 1, 2i + 1]. Let y; be the ho-
meomorphism carrying the interval [2i - 1, 2i + 1] onto itself, by carrying the
intervals

[2i-1,2i-6;], [2i-06,,2i], [2i2+6;] [20+6,2+1]
linearly onto the intervals
[2i-1,2i-1+6,], [2i-1+4+06,,2i], [2i2i+1-06,], [2i+1-06;, 2i+1],

respectively. Let F3; be the homeomorphism of H3 x E! onto itself defined by
Fi(x, t) = (x, ;(t)) for (x,t) € H3 x[2i - 1, 2i + 1]. Then

F3((BlXEl)u{U(H3-inth)x[21- 61,21+51]})

= (leEl)u{U(H3—intBZ)><[2i-1+62,2i+1-62]}.
i

Since

(leEl)u{U(H-”—intBZ)x[Zi-1+52,2i+1- 62]}u(BZ><E1)

1

U{U(H3—intB1)><[2i+1—62,2.i+1+62]} = H3 x El,

1
it follows by properties (1)* and (2)* that
F; o Fy(int B; x El) U Fy(int B, x E!) = H3> x E!.

Hence, defining h to be the homeomorphism F3 1o F; o F,, we see that

h(int B; X ED) U (int B, X EH=H3xE! , and the proof of Theorem 3 is now com-
plete.

In [10] it was shown that if S*~! (n>4) is embedded in S™ so as to be locally
flat except perhaps for a subset C of a Cantor set such that C lies on a flat arc in
s™-1 and a flat arc in S, then S®"! is flat in S®. That is, the closure of each
complementary domain of S*-! in S™ is a cell. In particular, if 8?1 ¢ 8* (n > 4)
is locally flat modulo two points, then S®-! is flat in S®. By means of this difficult
result, we can improve Theorem 1 rather easily and get a result from which Theo-
rem 2 follows trivially.

THEOREM 4. Assume the ZH-Conjecture; if H3 isa homotopy 3-sphere and
F3 is a fake cube, then TF3 =1* and oH3 = 8%,

Proof. We may suppose that F3 C H3 and that there exists a piecewise linear
3-ball B, in H3 such that H3 - int B = F3. That is, given H3, let B2 be some
3-simplex of H3, and let F3 = H3 - int B, . Given Fé’ , let B2 be an arbitrary 3-
ball, and let H3 = F3 U B, , where the boundary of B, is identified with the boundary
of F3 by some piecewise linear homeomorphism.
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It is now necessary to recall some of the ideas from the proof of Theorem 2.
Taking B; to be a piecewise linear 3-cell in int F3, we have (by the ZH-Conjec-
ture) a homeomorphism h of H3 X El onto itself such that

h(int B; X E}) U (int B, x E!) = H3 x E!,

As in the proof of Theorem 2, we let ZH3 be the two-point compactification of
H3 xE!. Then ZF3 c zH3, B, c ZH3, and

C = h(B; xEYU {0} U {-w} c zH?,

so that ZF3 c C, ZF3 - {w} - {-w} cint C, and TF3 U =B, = SH3, where
ZF3N 2B, = ZaF3 (= Z3B, = 83). Also, both C and ZB, are 4-cells.

We now consider the 4-sphere 2C and one copy of ZF3 lying in 2C. The 3-
sphere ZoF3 is embedded in the 4-sphere 2C so that it is locally flat except per-
haps at the “suspension” points w and -w. Hence, by the results of [10], it follows
that Z9F3 is flat in 2C and that ZF3 = 1%, Since ZH> = ZF3 U IB,, it then follows
that TH3 = 84,

4. A PARTIAL RESULT

Here we give a result that illustrates how some of the present techniques can be
applied toward a solution of the ZH-Conjecture. The result itself appears to lead to
a dead end, but perhaps someone will be clever enough to obtain the desired proof by
an appropriate modification or by a new approach. The result, already mentioned in
the introduction, is as follows.

THEOREM 5. Let H3 be a homotopy 3-spherve, and let By and By be two dis-
joint piecewise linear 3-cells in H3 under some combinatovial triangulation of H3 .
If Dy and Dy are piecewise linear 3-cells in int B) and int B;, vespectively, and
if a,B,and € are real numbers (a < B, € > 0), then there exist homeomorphisms
hy and h,, taking H3 X E! onto itself, such that

(1) hy(int B; X E!) Uh,(int B, x E!) o H3 x[e, 8],

(2) h; = identity on D} X El U H3 X (-0, @ - eJ U H3 X [B + ¢, =), and
(3) hy = identity on Dy X E! U H3 X (-0, @ - g] UH3 X [B +¢, »).
Proof. Let By, B,, B;, and B, be piecewise linear 3-cells such that

D; CintB; € B; cintB; ¢ B; cintB; (i=1,2).

We suppose that H3 is given a combinatorial triangulation K such that D,, D,, By,
B>, B;, B,, By, and B, are contained in K as subcomplexes. Let m = (@ + B)/2,
and suppose y is a real number such that 0 <y < (8 - @)/2. Let 6; = m - ¥ and

6, =m+vy. Now H3 x[8;, 6] has a natural combinatorial triangulation (the “prod-
uct” triangulation) induced from the triangulation K of H3 such that

Kxm, Byx[b;,0,], Byxloy, 6], Byx[61,82], and Bpx[61, 0]
are contained as subcomplexes in the triangulation of H3 X [6;, 62]. Also,

M = H3 X (6, 6,) has a triangulation locally compatible with the triangulation of
H3x[6;, 6, ], so that K X m is a subcomplex of the triangulation of M.
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Let U and V be the open subsets of M, defined by
U=intB1><(61,62) and V=intB2><(61,52).

Let C; and C2 be the closed subsets of M defined by C; = B, x (61, 6,) and

C, =B, x(8;, 63). Then C; C U, C, C V, and each of the pairs (M - C;, U - C;)
and M -C,,V-C,) is 1- connected. Let K denote the 1- -skeleton of K, and let L
be the subcomplex of K' maximal with respect to missing K'. Then both K' and L
are compact 1-dimensional subcomplexes of K'. Also, every simplex of K' is the
join of a simplex of K' and a simplex of L.

We now can apply the engulfing theorem of [14]. That is, there exist compact
sets Z; CM-C; and Z, C M - C, and piecewise linear homeomorphisms f; and
f, of M onto itself such that

£1(U) 2 K'xm, £,(V) D Lxm,
f, = identity outside of Z;, {, = identity outside of Z,.

It follows that f; is the identity on a neighborhood of B) x (8y, 6,) and £, is the
identity on a neighborhood of B, X (6;, §,).

Let U =£,(U) N (K' % m) and V = (V)N (K' x m). Then U and V are open sub-
sets of K' Xxm suchthat K'Xm c U and L Xxm C V. Let U V K' and L be the
corresponding sets in K'. By Lemma 8.1 of [14], there exists a piecewise linear ho-
meomorphism f3 of K' onto itself “pushing” U towards L so that f3(0)uvV=K"
Also, f 3 can be defined so that it is the identity on K'U L and carries each simplex
K' onto itself. Furthermore, f 3 is isotopic to the identity by an isotopy Ft such that
foreach t (0 <t < 1) Ft carries each simplex K' onto itself, F1 = identity, and
Fo=13.

We now want to modify the isotopy f‘t to obtain an isotopy F: such that for each
t(0<t<1)
F, = identity on B}, F;=identity, Fo@)uV=K".

We note that since f; = identity on B, x (61, 52) and f2 = identity on Bz X (83, 62)
the subcomplexes B} and B) of K' lie in U and V, respectively. Also, since P,
carries each simplex of K' onto itself, for each t, 1t follows that P, carries each of
By, BZ, By, and Bz onto itself for each t, and Ft(U) D B} for each t. In particu-
lar, ¥, carries 3B onto itself for each t.

Since B! C int B}, we can suppose (by [9]) that we have a homeomorphism
k: 9B} x[0, 1] — (”Bi - int BY),
where k(w, 0)=w for w € 3B} and k(aBl X-1) = aBl Thus each point of
(Bl - int B}) is of the form k(w, s), where w € 3B] and s € [0, 1]. Let the isotopy
F, of K' onto itself be defined by the conditions
identity on B 1s

k(f‘(l -s)t—l-s(w)’ s) on k(w, s) € E'l - int ﬁi.
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As we noted above, Ft carries aB1 onto itself for all t. Hence, for each
s € [Oz 1], F; carries k(3 Bl X s) onto itself. In particular, since k(W 0) =w for
w € 9B], it follows for s =0 that

Fuw) = Fk(w, 0)) = k(F(w), 0) = F(w).

Also, since F 1 = identity and k(@B] x 1) = aBl , it follows for the special case s =1
that Ft(k(w 1)) = k(F (w), 1) =k(w, 1). Therefore, the various isotopies match up
correctly, and F; is well defined.

Since Fl = identity, Fj(k(w, s)) = k(F(w), s) = k(w, s) and hence Fj = 1dent1ty
Clearly, Ft identity on Bl for all t. Fmally since F¢ carries each of Bl and
K' - int BL onto itself for each t, since B1 - U and F;= Fy on K' - int B} , and
since FO(U) U V =K', it follows that Fo(G) UV =K' also.

Let 63 be a real number (0 < 63<vy). Then 6;=m-y<m-063<m+y=20dy.
Let the homeomorphism f3 of H3 X (6; , 62) onto itself be defined by the rule
identity on H3x (6;, m - 63] UH3 x[m + 63, 6;),
f3 = ¢ (Fe(x), 1 - t)m +t(m + 63)) on (x, (1 - t)m + t(m + 63)) € H3 X [m, m + 63},
(F(x), (1 -thm+t(m - 63)) on (x,(1-tm+t(m - 63)) € H3 % [m - 63, m).
Since £,(U) D K'xm, £,(V)D L x m, and Fo(3) UV = H3, it follows that
3 o fy(int By X (81, 63)) U fy(int By X (8;, 62)) D H> xm.

Since f; is the identity on Bl X (61 , 02) and F; is the identity on B 1 for all t, it
follows that fz o f; = identity on Bj X (6}, 6,). Since fj = identity outside Zl,

f, = identity outside Z,, and f3 = identity outside H3 X [m - 63, m + 83], each can
be extended by the identity to all of H3 X E!. Let us denote the homeomorphism ex-
tending f30 f; by g;, and the homeomorphism extending f; by g,.

We now have homeomorphisms g;, gz of H3 X E! onto itself such that
(1) g, (int B, x E!) U g(int B x E!) o H3 xm),

(2) g; = identity on B, xE! UH3 X (-, 6;] U 03 x (55, «),

(3) g, = identity on ﬁz X E! UH3 % (-, 6;] UH3 x[6,, »

We are now ready to construct the homeomorphisms h;, h, promised in Theo-
rem 5. Since g,(int B; x El) U g,(int B, X E!) D H3 X m, there is a real number 0,
(0<84<y) such that

g, (int B, x E}) U g,(int B, x E') D H> x[m - 64, m + 64].

We first consider the interval [@ - €, B+ e]. Let ¢ be the homeomorphism that
takes [@ - €, B+ ¢] onto itself by sendmg the intervals

[a—s,m-64], [m-64,m], [m,m+64], [m+64,a+5]

linearly onto the intervals [@ - €, @], [@, m], [m, B], and [B, B + €], respectively.

We consider the sets ]§1 - int D; and ﬁz - int D,. By [9], we can suppose that
for i =1, 2, we have a homeomorphism



THE SUSPENSION OF HOMOTOPY 3-SPHERES AND FAKE CUBES 337
k;: 9B; x [0, 1] » B; - int D,

such that ky(w, 0) = w for w € 3B; and k;(dB; X 1) =9D;. For i=1, 2, let G; be
the homeomorphism of H3 X E! onto itself defined as follows.

identity on H> X (-0, & -] UH3 x [B+5, =),
identity on D; X El,
o= (%, #(t)) on (x,t) € (H3 - int ﬁi) X[a-¢, B+¢e],
(k;(w, ), (1 - s)¢(t) +st)  on (k;(w, s),t) € (B; - int D) x [@ - &, B+¢].
Since

g,(int B; X E') U g,(int B, X E!) D H? X [m - 64, m + 64],
g, = identity on (B} x E1) U (H3 X (-, 8;]) U (H3 %[5, «)),
g, = identity on (B, X E!) U (H3 X (-, 6,]) U (H3 X [6;, =),
¢o([m - 64, m+84]) = [0, B],
it follows that
G, o g,(int B; X E') U G, o g,(int B, x E!) > B3 x[e, 8],
G; o g1 =identity on (D; X El) U(H3 X (-w, ¢ - g]) U (H3 X [B8 + &, »)),
G, © g, = identity on (D, X E1) U (H3 X (-, @ - £]) U (H3 X [B + ¢, «)).
Therefore, if we define hy = G; o g; and h; = G, o g,, the proof of Theorem 5 is
complete.
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