ON A CONJECTURE RELATED TO THE SUSPENSION OF HOMOTOPY 3-SPHERES AND FAKE CUBES

Leslie C. Glaser

1. INTRODUCTION

One of the major outstanding problems in 3-dimensional topology is the Poincaré conjecture: If H^3 is a homotopy 3-sphere, then H^3 is topologically equivalent to the 3-sphere S^3 . In [8], it was shown that if H^3 is a homotopy 3-sphere bounding a contractible combinatorial 4-manifold, then the double suspension Σ^2 H^3 is topologically equivalent to S^5 . Here we state a conjecture equivalent to the conjecture that if F^3 is a fake cube, then int $F^3 \times (0, 1) = E^4$. Of course, one would like to obtain the result that $F^3 \times [0, 1] = I^4$. If we let $2F^3$ denote the double of F^3 , it would then follow from [3] (since $2F^3 = \partial(F^3 \times [0, 1])$ and $\partial F^3 = S^2$) that $F^3 = I^3$, and this would give the Poincaré conjecture.

The following problem was suggested to the author by E. H. Connell as a possible means of showing that the suspension of a homotopy 3-sphere is S^4 .

CONJECTURE. If H^3 is a homotopy 3-sphere and B_1 and B_2 are two disjoint, piecewise linear 3-cells in H^3 under some combinatorial triangulation of H^3 , then some homeomorphism h taking $\mathrm{H}^3 \times \mathrm{E}^1$ onto itself has the property that

$$H^3 \times E^1 = h(\text{int } B_1 \times E^1) \cup (\text{int } B_2 \times E^1).$$

We prove here that this conjecture is equivalent to the statement that the suspension of a homotopy 3-sphere is S^4 . Also, we show that such a solution leads to a number of additional results, and we obtain a partial solution to the conjecture. More specifically, the following results are obtained. (In what follows, H^3 will always denote a homotopy 3-sphere, and F^3 a fake cube. If M is a manifold with nonempty boundary, 2M will denote the double of M. If X is a topological space, ΣX will denote the suspension of X.) Assuming the conjecture, we show that

$$int(\mathbf{F}^3 \times \mathbf{I}) = \mathbf{E}^4 = (\mathbf{H}^3 - \{pt.\}) \times \mathbf{E}^1, \quad 2(\mathbf{F}^3 \times \mathbf{I}) = \mathbf{S}^4, \quad \mathbf{F}^3 \times \mathbf{I}^2 = \mathbf{I}^5, \quad \Sigma(2\mathbf{F}^3) = \mathbf{S}^4,$$

and that the 3-dimensional Poincaré conjecture is equivalent to the conjecture that every triangulation of S^4 is combinatorial. Conversely, if we assume that int $(F^3 \times I) = E^4$, $(H^3 - \{pt.\}) \times E^1 = E^4$, or $\Sigma(2F^3) = S^4$, then the conjecture is true. Making use of a theorem of [10], we strengthen two of the above results by showing that the conjecture implies that $\Sigma F^3 = I^4$ and $\Sigma H^3 = S^4$. Finally, by using the engulfing theorem of [14] and the product structure on $H^3 \times E^1$, we prove a weak form of our conjecture (see Theorem 5). Since this conjecture is equivalent to the statement that $\Sigma H^3 = S^4$, we shall call this conjecture the ΣH -Conjecture.

Received September 18, 1967.

Work supported by the National Science Foundation under NSF Grant GP-6776.

2. DEFINITIONS AND PRELIMINARIES

We shall use the terminology of [7] and [15]. For example, if the complex T collapses simplically to the subcomplex L, this will be denoted by $T \setminus L$. We shall use T' and L' to denote the *first barycentric subdivision* of the complexes T and L, respectively. Also, we shall use the concept of regular neighborhoods. The regular neighborhoods used here can always be considered to be the canonical regular neighborhoods. That is, if K is a combinatorial n-manifold, L is a finite subcomplex of K, and U is an open set in K containing L, then by a regular neighborhood of L in U we shall mean the simplicial neighborhood of L in some n^{th} barycentric subdivision of K mod L $(n \ge 2)$, say N(L, (K mod L)ⁿ), such that

$$N(L, (K \text{ mod } L)^n) \subset U.$$

Here we obtain $(K \mod L)'$ (or $(K \mod L)^1$) by starring the simplexes of K - L (using barycenters) in order of decreasing dimension, and $(K \mod L)^n$ is inductively defined by the formula $(K \mod L)^n = ((K \mod L)^{n-1} \mod L)'$.

 I^n , E^n , and S^n will denote spaces homeomorphic to the unit n-cube, Euclidean n-space, and the n-sphere, respectively. The symbol = indicates topological equivalence. A homotopy 3-sphere H^3 is a closed, connected, simply connected 3-manifold. A homotopy 4-sphere H^4 is a closed, connected 4-manifold such that $\pi_i(H^4) = 0$ for i = 1, 2, 3. A fake cube F^3 is a compact, contractible 3-manifold with nonempty boundary such that $\partial F^3 = S^2$. By [1], whenever we are considering an H^3 or F^3 , we may assume that these 3-manifolds also have combinatorial triangulations.

If X is a topological space, then ΣX and CX will denote the *suspension* of X and the *cone* over X, respectively. That is,

$$CX = (X \times I)/\{X \times 1\}$$
 and $\Sigma X = (X \times [-1, 1])/(\{X \times -1\}, \{X \times 1\}).$

If M^m is an m-manifold and N^n is an n-manifold without boundary, then $M^m \subset N^n$ ($m \le n$) is *locally flat* if for each point $p \in M^m$ there exists a neighborhood U of p in N^n such that

$$(U, U \cap M^m) = (E^n, E^m)$$
 as pairs,

and if for each point q $\varepsilon \ \partial M^{\mathbf{m}}$ there exists a neighborhood V of q in $N^{\mathbf{n}}$ such that

$$(V, V \cap M^m) = (E^n, E_+^m)$$
 as pairs.

Finally, if X is a subset of E^n (or S^n), then X is said to be *cellular* if there exists a sequence $\left\{B_i^n\right\}_{i=1}^{\infty}$ of n-cells such that

$$B_{i+1}^n \subset \text{int } B_i^n \quad \text{and} \quad X = \bigcap_{i=1}^{\infty} B_i^n.$$

If $X \subset E^n$ (or $X \subset S^n$) is cellular, then clearly $E^n/\{X\} = E^n$ (or $S^n/\{X\} = S^n$).

3. MAIN RESULTS

THEOREM 1. Suppose that the Σ H-Conjecture is true, that H^3 is a homotopy 3-sphere, that $F^3 = H^3$ - int \triangle^3 , where \triangle^3 is a 3-simplex of H^3 , and that p is a point of int \triangle^3 . Then

$$(H^3 - \{p\}) \times E^1 = E^4 = \text{int } F^3 \times E^1$$
.

Proof. Since H^3 - $\{p\}$ is homeomorphic to int F^3 , it suffices to show that int $F^3 \times E^1 = E^4$. We first apply the ΣH -Conjecture. Let $B_2 = \Delta^3$, and let B_1 be a combinatorial 3-cell contained in int F^3 . By the ΣH -Conjecture, there exists a homeomorphism h carrying $H^3 \times E^1$ onto itself such that

h(int
$$B_1 \times E^1$$
) \cup (int $\triangle^3 \times E^1$) = $H^3 \times E^1$.

Hence h(int $\mathbf{B}_1 \times \mathbf{E}^1)$ contains $\mathbf{F}^3 \times \mathbf{E}^1$.

Let ΣH^3 denote the 2-point compactification of $H^3 \times E^1$; that is, let $\Sigma H^3 = H^3 \times E^1 \cup \{\omega\} \cup \{-\omega\}$ (we can think of ΣH^3 as the suspension of H^3 with suspension points ω and $-\omega$). Let

$$\mathbf{C} = \mathbf{h}(\mathbf{B}_1 \times \mathbf{E}^1) \cup \{\omega\} \cup \{-\omega\} \subset \Sigma \mathbf{H}^3 \quad \text{ and } \quad \Sigma \mathbf{F}^3 = \mathbf{F}^3 \times \mathbf{E}^1 \cup \{\omega\} \cup \{-\omega\} \subset \Sigma \mathbf{H}^3$$

(we can also think of ΣF^3 as the suspension of F^3 with suspension points ω and $-\omega$). Since C is homeomorphic to $B_1 \times E^1 \cup \{\omega\} \cup \{-\omega\}$, it is a 4-cell containing ΣF^3 . Let S^4 be the 4-sphere 2C, where 2C denotes the double of C. Now $\Sigma F^3 \subset S^4$ and $\Sigma \partial F^3$ is an embedded 3-sphere that is locally flat except perhaps at the two points ω and $-\omega$. Let A be the flat arc in $\Sigma \partial F^3$ obtained as the suspension of some point $q \in \partial F^3$. Since A is locally flat in S^4 except perhaps at the two suspension points ω and $-\omega$, it is flat [6]. Therefore, by shrinking A to a point we obtain a 3-sphere $\Sigma \partial F^3/A$ embedded in the 4-sphere S^4/A in such a way that it is locally flat except perhaps for the point $\{A\}$. It follows by [4] and [5] that $\Sigma \partial F^3/A$ is flat in S^4/A ; hence, int $(\Sigma F^3/A) = E^4$. Since int $(\Sigma F^3/A)$ is homeomorphic to int (ΣF^3) and the latter expression is homeomorphic to int $F^3 \times E^1$, we see that int $F^3 \times E^1$ is homeomorphic to E^4 .

Remark 1. The F^3 above is clearly a fake cube. It follows easily that if F^3 is any fake cube or p is any point of H^3 , then the ΣH -Conjecture implies that

$$int(F^3 \times I) = int F^3 \times E^1 = E^4 = (H^3 - \{p\}) \times E^1$$
.

COROLLARY 1. If the Σ H-Conjecture holds and F^3 is a fake cube, then $2(F^3 \times I) = S^4$ and $F^3 \times I^2 = I^5$.

Proof. $2(F^3 \times I) = S^4$, since int $(F^3 \times I) = E^4$. That is, since $\partial(F^3 \times I)$ has an open collar U in $F^3 \times I$, $(F^3 \times I) \cup U = E^4$, where the U is the collar in the other copy of $F^3 \times I$ in $2(F^3 \times I)$. Hence, $2(F^3 \times I)$ is the union of two open subsets, each of which is homeomorphic to E^4 , and it follows directly from [3] that $2(F^3 \times I) = S^4$. $F^3 \times I^2 = I^5$, since $\partial(F^3 \times I^2) = S^4$ and int $(F^3 \times I^2) = E^5$. That is,

$$\partial(\mathbf{F}^3 \times \mathbf{I}^2) = \partial([\mathbf{F}^3 \times \mathbf{I}] \times \mathbf{I}) = 2(\mathbf{F}^3 \times \mathbf{I}) = \mathbf{S}^4.$$

Since int $(F^3 \times I^2) = E^5$, it follows by the above argument that $2(F^3 \times I^2) = S^5$. Since $\partial(F^3 \times I^2) = S^4$, another application of [3] gives the result $F^3 \times I^2 = I^5$.

THEOREM 2. Suppose that the Σ H-Conjecture holds, that F^3 is a fake cube, that $2F^3$ is the double of F^3 , and that $\Sigma(2F^3)$ is the suspension of $2F^3$. Then $\Sigma(2F^3) = S^4$.

Proof. By Corollary 1, $2(F^3 \times I) = S^4$. Since there is a 2-complex \widetilde{K}^2 in int F^3 such that F^3 collapses to \widetilde{K}^2 , there is a 2-complex K^2 in $int(F^3 \times I)$ such that $F^3 \times I \setminus K^2$ (namely, $\widetilde{K}^2 \times \frac{1}{2}$). Since $int(F^3 \times I) = E^4$, K^2 is cellular in $int(F^3 \times I)$. That is, corresponding to each open set $U \subset int(F^3 \times I)$ containing K^2 , there is a regular neighborhood N of K^2 lying in U. Since N and $F^3 \times I$ are regular neighborhoods of K^2 , N is homeomorphic to $F^3 \times I$, by [7] or [15]. Thus $K^2 \subset int \ N = E^4$, and hence some 4-ball in $int \ N \subset N \subset U$ contains K^2 in its interior.

Now, since K^2 is cellular in $F^3 \times I$, $(F^3 \times I)/K^2$ is homeomorphic to $F^3 \times I$ (where $(F^3 \times I)/K^2$ denotes the space obtained by shrinking K^2 to a point). Since $F^3 \times I$ is a regular neighborhood of K^2 , $(F^3 \times I) - K^2$ is combinatorially equivalent to $\partial(F^3 \times I) \times [0, 1)$ [7]. Since $\partial(F^3 \times I) = 2F^3$, it follows that

$$(F^3 \times I)/K^2 = 2F^3 \times [0, 1) \cup \{K^2\}$$

is the cone over $2F^3$ from the point $\{K^2\}$. Thus, shrinking the copy of K^2 in each half of $2(F^3 \times I) = S^4$, we see that

$$S^4 = (F^3 \times I) \cup (F^3 \times I) = (F^3 \times I)/K^2 \cup (F^3 \times I)/K^2$$

= $\{K^2\} \cup 2F^3 \times (-1, 1) \cup \{K^2\} = \Sigma(2F^3).$

COROLLARY 2. The 3-dimensional Poincaré conjecture is equivalent to the conjecture that every triangulation of S^4 is combinatorial.

Proof. The 3-dimensional Poincaré conjecture implies that every homotopy 3-sphere H^3 is combinatorially equivalent to S^3 . Now suppose K is a complex that triangulates S^4 and v is a vertex of K. Then the link of v in K, lk(v, K), is a simply connected combinatorial 3-manifold [2]; hence lk(v, K) is a homotopy 3-sphere. Therefore, assuming the Poincaré conjecture, we can conclude that lk(v, K) is combinatorially equivalent to S^3 , and hence that K is a combinatorial triangulation of S^4 .

Now suppose every triangulation of S^4 is combinatorial, and let H^3 be a homotopy 3-sphere. Let $F^3 = H^3$ - int Δ^3 . By Theorem 2, $\Sigma(2F^3) = S^4$ and the triangulation of F^3 gives us a triangulation of $S^4 = \Sigma(2F^3)$. If v is the vertex corresponding to one of the suspension points, then $lk(v, \Sigma(2F^3)) = 2F^3$. Since every triangulation of S^4 is combinatorial, this implies that $2F^3 = S^3$. Since $\partial F^3 = S^2$, it follows by [3] that $F^3 = I^3$. Hence, $H^3 = F^3 \cup \Delta^3 = I^3 \cup \Delta^3 = S^3$.

COROLLARY 3. If for some $n \ge 4$ every triangulation of S^n is combinatorial, then the 3-dimensional Poincaré conjecture is true.

Proof. If every triangulation of S^n is combinatorial, then every triangulation of a k-manifold $(k \le n)$ without boundary is combinatorial (since the suspension of a "bad" sphere is again a "bad" sphere and the suspension of a link of a vertex in a k-manifold is a triangulated k-sphere). Since $n \ge 4$, this implies that every triangulation of S^4 is combinatorial. Hence, by Corollary 2, the 3-dimensional Poincaré conjecture is true.

The following corollary was suggested to the author by M. L. Curtis.

COROLLARY 4. If H^4 is a combinatorial homotopy 4-sphere having a 2-spine K^2 such that K^2 can be embedded piecewise linearly in some combinatorial 3-manifold, then $H^4 = S^4$.

Proof. The assumption that K^2 is a 2-spine of H^4 means that there is some combinatorial 4-cell $B^4 \subset H^4$ such that if $F^4 = H^4$ - int B^4 , then there exists a $K^2 \subset \text{int } F^4$ such that $F^4 \setminus K^2$. Now suppose K^2 can be embedded piecewise linearly in some combinatorial 3-manifold M³ (with or without boundary). If N³ is a regular neighborhood of K² in M³, then, since K² is contractible, N³ is a fake cube. By Corollary 1, $N^3 \times I^2 = I^5$. We note that $N^3 \times I^2$ is a combinatorial manifold with boundary, and we are only assuming that it is topologically equivalent to I^5 . Since any contractible, combinatorial 5-manifold with boundary can be piecewise linearly embedded in E^5 , we may suppose that both $N^3 \times I^2$ and $F^4 \times I$ are piecewise linearly embedded in E^5 . That is, if W^5 is any contractible combinatorial 5manifold with boundary, then 2W⁵ is a combinatorial 5-manifold topologically equivalent to S^5 . By [13], $2W^5 - \{pt.\}$ is combinatorially equivalent to E^5 . Hence, W can be piecewise linearly embedded in E^5 . Since $N^3 \times I^2$ and $F^4 \times I$ are regular neighborhoods of the given embeddings of the corresponding copies of K^2 , it follows by [11] and [15] or by [7] that $F^4 \times I$ is combinatorially equivalent to $N^3 \times I^2 = I^5$. The result from [7] or [11] that we use is that any two piecewise linear embeddings of a contractible 2-complex in E⁵ are equivalent under a piecewise linear homeomorphism and that hence their regular neighborhoods are piecewise linearly homeomorphic. Since $S^4 = \partial(F^4 \times I) = 2F^4$, it follows by the generalized Schoenflies theorem that $F^4 = I^4$ and hence $H^4 = S^4$.

Recall that if X is a topological space, then CX denotes the cone over X. That is, $CX = (X \times I)/\{X \times 1\}$.

COROLLARY 5. If \mathbf{F}^3 is a fake cube, then $C[\partial(\mathbf{F}^3 \times \mathbf{I})] \cup \mathbf{F}^3 \times \mathbf{I} = S^4$ and $C(\mathbf{F}^3 \times \mathbf{I}) = \mathbf{I}^5$.

Proof.

$$C[\partial(F^3 \times I \times 0)] \cup (F^3 \times I \times 0) = \partial[C(F^3 \times I)]$$

(where $\partial [C(F^3 \times I)]$ denotes the mod 2 boundary of $C(F^3 \times I)$) and

$$C[\partial(\mathbf{F}^3 \times \mathbf{I} \times \mathbf{0})] \cap (\mathbf{F}^3 \times \mathbf{I} \times \mathbf{0}) = \partial(\mathbf{F}^3 \times \mathbf{I} \times \mathbf{0}) = 2\mathbf{F}^3$$
.

From the proof of Theorem 2, it follows that $F^3 \times I = C(2F^3) = C[\partial(F^3 \times I \times 0)]$. Hence $\partial[C(F^3 \times I)] = 2(F^3 \times I) = S^4$. Also,

$$int(C(F^3 \times I)) = (int F^3) \times (0, 1) \times (0, 1) = int(F^3 \times I^2) = E^5$$

(by Corollary 1 or by [13]).

We would now like to consider $2[C(F^3 \times I)]$. We know that

$$S^4 = \partial [C(F^3 \times I)] \subset 2[C(F^3 \times I)]$$

and that each of the two complementary domains of $\partial [C(F^3 \times I)]$ in $2[C(F^3 \times I)]$ is homeomorphic to E^5 . We would like to know that $2[C(F^3 \times I)] = S^5$. For then,

$$S^4 = \partial [C(F^3 \times I)] \subset 2[C(F^3 \times I)] = S^5$$

and S^4 is locally flat in S^5 modulo the common vertex (= $\{F^3 \times I \times 1\}$) of the two cones making up S^5 . Hence, by [4] and [5], $\partial [C(F^3 \times I)]$ is flat in $2[C(F^3 \times I)]$, and therefore $C(F^3 \times I) = I^5$. However, it is not immediately clear that $2[C(F^3 \times I)] = S^5$. To obtain this conclusion, we must consider $2[C(F^3 \times I)]$ in a different manner.

Consider $2(F^3 \times I^2)$, which by Corollary 1 is homeomorphic to S^5 . As in the proof of Theorem 2, there exists a 2-complex $\widetilde{K}^2 \subset \text{int } F^3$ such that $F^3 \setminus \widetilde{K}^2$. Let

$$K^2 = \widetilde{K}^2 \times \frac{1}{2} \times 1 \subset 2(F^3 \times I^2).$$

Let N be a regular neighborhood of $F^3 \times I \times 1$ in $2(F^3 \times I^2)$. Then N and $F^3 \times I$ are also regular neighborhoods of K^2 . Hence $N = (F^3 \times I^2) = I^5$, and it follows that $F^3 \times I \times 1$ is cellular in $2(F^3 \times I^2)$. Thus

$$S^5 = 2(F^3 \times I^2) = 2(F^3 \times I^2) / \{F^3 \times I \times 1\} = 2[C(F^3 \times I)],$$

and the proof of Corollary 5 is now complete.

THEOREM 3. Let H^3 be a homotopy 3-sphere, and suppose F^3 is a fake cube in H^3 obtained by removing the interior of a piecewise linear 3-cell. If int $(F^3 \times I) = E^4$, $(H^3 - \{pt.\}) \times E^1 = E^4$, or $\Sigma(2F^3) = S^4$, then the ΣH -Conjecture is true.

Proof. We have already noted that if int $(F^3 \times I) = E^4$, then

$$(H^3 - \{pt.\}) \times E^1 = E^4$$

(Theorem 1) and $\Sigma(2F^3) = S^4$ (Theorem 2). Clearly, $(H^3 - \{pt.\}) \times E^1 = E^4$ implies that int $(F^3 \times I) = E^4$. Also, if $\Sigma(2F^3) = S^4$, it follows as in the proof of Theorem 1 (since $\Sigma \partial F^3$ is a 3-sphere in the 4-sphere $\Sigma(2F^3)$ that is locally flat except perhaps for the two suspension points) that each complementary domain of $\Sigma \partial F^3$ in $\Sigma(2F^3)$ is homeomorphic to E^4 . Therefore, $\Sigma(2F^3) = S^4$ implies that int $(F^3 \times I) = E^4$. Hence it suffices to show that if int $(F^3 \times I) = E^4$, then the ΣH -Conjecture is true.

Let H^3 be a homotopy 3-sphere, and let B_1 and B_2 be two disjoint, piecewise linear 3-cells in H^3 . Let \hat{B}_2 be a piecewise linear 3-cell in int B_2 , and let F^3 be the fake cube H^3 - int \hat{B}_2 . We now consider the inclusion

$$B_1 \times \left(-\frac{1}{2}, \frac{1}{2}\right) \subset \text{int } F^3 \times \left(-\frac{1}{2}, \frac{1}{2}\right).$$

Since the 4-cell $B_1 \times \left[-\frac{1}{4}, \frac{1}{4} \right]$ and the compact set $(H^3 - int B_2) \times 0$ each lie in int $F^3 \times \left(-\frac{1}{2}, \frac{1}{2} \right) = E^4$, there exist a 4-cell C and a homeomorphism f_1 taking int $F^3 \times \left(-\frac{1}{2}, \frac{1}{2} \right)$ onto itself such that

$$(1) \quad \left(B_1 \times \left[-\frac{1}{4}, \frac{1}{4}\right]\right) \cup \left((H^3 - \text{int } B_2) \times 0\right) \subset \text{int } C \subset C \subset \text{int } F^3 \times \left(-\frac{1}{2}, \frac{1}{2}\right),$$

(2)
$$f_1\left(\text{ int } B_1\times\left(-\frac{1}{4},\frac{1}{4}\right)\right)\supset (H^3-\text{ int } B_2)\times 0$$
, and

(3) f_1 is the identity map outside C.

Since f_1 is the identity outside C, f_1 extends by the identity to all of $H^3 \times [-1, 1]$. We denote the extended homeomorphism by g_1 .

Thus g_1 is a homeomorphism taking $H^3 \times [-1, 1]$ onto itself and satisfying the two conditions

(1)
$$g_1(\text{int } B_1 \times [-1, 1]) \supset (H^3 - \text{int } B_2) \times 0$$
,

(2)
$$g_1 = identity on \hat{B}_2 \times [-1, 1] \cup H^3 \times \left[-1, -\frac{1}{2} \right] \cup H^3 \times \left[\frac{1}{2}, 1 \right].$$

Unfortunately, $g_1(\text{int } B_1 \times [-1, 1])$ may fail to contain int $B_1 \times [-1, 1]$. We now consider the region $H^3 \times (-1, 1)$. Since

$$g_1(\text{int } B_1 \times (-1, 1)) \supset (H^3 - \text{int } B_2) \times 0$$
,

there exists a piecewise linear 3-cell $\hat{B}_1 \subset \text{int } B_1$ such that

$$g_1(\text{int } \hat{B}_1 \times (-1, 1)) \supset (H^3 - \text{int } B_2) \times 0$$
.

Let p be a point of int \hat{B}_l , and consider the 1-dimensional subpolyhedron of $H^3 \times (-1,\,1)$ given by p × (-1, 1). Since g_l is the identity on

$$H^3 \times \left[-1, -\frac{1}{2} \right] \cup H^3 \times \left[\frac{1}{2}, 1 \right],$$

the set $[p \times (-1, 1)]$ - $g_1(\text{int } B_1 \times (-1, 1))$ is compact. The set $g_1(\mathbf{\hat{B}}_1 \times (-1, 1))$ is closed in $\mathbf{H}^3 \times (-1, 1)$ and lies in $g_1(\text{int } B_1 \times (-1, 1))$. Also, the pair

$$([H^3 \times (-1, 1)] - [g_1(\hat{B}_1 \times (-1, 1))], [g_1(int B_1 \times (-1, 1))] - [g_1(\hat{B}_1 \times (-1, 1))])$$

is 1-connected. Hence we can apply the engulfing theorem of [13]. That is, there exist a compact set $E \subset [H^3 \times (-1, 1)] - [g_1(\hat{B}_1 \times (-1, 1))]$ and a piecewise linear homeomorphism G_1 taking $H^3 \times (-1, 1)$ onto itself such that

$$G_1(g_1(\text{int }B_1\times (-1,\,1)))\supset p\times (-1,\,1)$$

and G_1 = identity outside of E. Since E is compact and G_1 is the identity outside of E, it follows that G_1 can be extended by the identity to all of $H^3 \times [-1, 1]$ (we again denote the extended homeomorphism by G_1) and

$$G_1(g_1(\text{int } B_1 \times [-1, 1])) \supset (p \times [-1, 1]) \cup (H^3 - \text{int } B_2) \times 0$$
.

By the last relation, there exist piecewise linear 3-cells $\mathbf{\widetilde{B}}_1$ and \mathbf{B}_1^* such that

$$\tilde{B}_1 \subset \text{int } B_1 \subset B_1 \subset \text{int } B_1^* \subset B_1^* \subset \text{int } (H^3 - \text{int } B_2)$$

and $G_1(g_1(\text{int }B_1\times[-1,1]))\supset \widetilde{B}_1\times[-1,1]$. Let \hat{k} be a homeomorphism taking H^3 onto itself and B_1^* onto itself in such a way that $\hat{k}(\widetilde{B}_1)=B_1$ and $\hat{k}=\text{identity}$ on $\{p\}\cup (H^3-\text{int }B_1^*)$. Let k_1 be the homeomorphism of $H^3\times[-1,1]$ onto itself defined by $k_1(x,t)=(\hat{k}(x),t)$, where $x\in H^3$ and $t\in [-1,1]$. Then

$$k_1 \, \circ \, G_1 \, \circ g_1 (\mathrm{int} \,\, B_1 \times [\text{-1, 1}]) \supset \, (B_1 \times [\text{-1, 1}]) \cup \, (H^3 \, \text{- int} \,\, B_2) \times 0 \, .$$

Also, since G_1 and g_1 are the identity on $(H^3 \times -1) \cup (H^3 \times 1)$, it follows that

$$k_1 \circ G_1 \circ g_1(x, -1) = (\hat{k}(x), -1)$$
 and $k_1 \circ G_1 \circ g_1(x, 1) = (\hat{k}(x), 1)$.

Hence, if π denotes the projection of $H^3 \times [-1, 1]$ onto $H^3 \times 0$, then

$$\pi \circ k_1 \circ G_1 \circ g_1(x, -1) = \pi \circ k_1 \circ G_1 \circ g_1(x, 1).$$

The homeomorphism $\phi_1 = k_1 \circ G_1 \circ g_1$ maps $H^3 \times [-1, 1]$ onto itself in such a way that

- (1) $\phi_1(\text{int }B_1\times[-1,\,1])\supset (B_1\times[-1,\,1])\cup (H^3-\text{int }B_2)\times 0$ and
- (2) ϕ_1 carries each of $H^3 \times -1$ and $H^3 \times 1$ onto itself so that

$$\pi \circ \phi_1(x, -1) = \pi \circ \phi_1(x, 1).$$

Similarly, there is a homeomorphism ϕ_2 taking $H^3 \times [-1, 1]$ onto itself such that

- (1) $\phi_2(\text{int } B_2 \times [-1, 1]) \supset (B_2 \times [-1, 1]) \cup (H^3 \text{int } B_1) \times 0$ and
- (2) ϕ_2 carries each of $H^3 \times -1$ and $H^3 \times 1$ onto itself so that

$$\pi \circ \phi_2(x, -1) = \pi \circ \phi_2(x, 1).$$

For $(x, t) \in H^3 \times [2i - 1, 2i + 1]$ $(i = 0, \pm 1, \pm 2, \cdots)$, let ϕ_{1i} be the homeomorphism taking $H^3 \times [2i - 1, 2i + 1]$ onto itself defined by

$$\phi_{1i}(x, t) = \tau_i \circ \phi_1(x, t - 2i),$$

where $\tau_i \colon H^3 \times [-1, 1] \to H^3 \times [2i - 1, 2i + 1]$ is the obvious map. For $(x, t) \in H^3 \times [2i, 2i + 2]$ $(i = 0, \pm 1, \pm 2, \cdots)$, let ϕ_{2i} be the homeomorphism taking $H^3 \times [2i, 2i + 2]$ onto itself defined by $\phi_{2i}(x, t) = \tau_i^! \circ \phi_2(x, t - (2i + 1))$, where $\tau_i^! \colon H^3 \times [-1, 1] \to H^3 \times [2i, 2i + 2]$ is also the obvious map. For

$$(x, t) \in H^3 \times [2i - 2 + j, 2i + j]$$
 $(j = 1, 2; i = 0, \pm 1, \pm 2, \cdots),$

let $F_j(x, t) = \phi_{ji}(x, t)$. Each of F_1 and F_2 is a well-defined homeomorphism of $H^3 \times E^1$ onto itself (because of property (2) of the homeomorphisms ϕ_1 and ϕ_2 , respectively). We note that for $i = 0, \pm 1, \pm 2, \cdots$,

- (1) $F_1(\text{int } B_1 \times E^1) \supset (B_1 \times E^1) \cup \left\{ \bigcup_i (H^3 \text{int } B_2) \times 2i \right\},$
- (2) F_1 carries each region of the form $H^3 \times [2i 1, 2i + 1]$ onto itself,
- (3) $F_2(\operatorname{int} B_2 \times E^1) \supset (B_2 \times E^1) \cup \left\{ \bigcup_i (H^3 \operatorname{int} B_1) \times (2i+1) \right\}$, and
- (4) F_2 carries each region of the form $H^3 \times [2i, 2i + 2]$ onto itself.

From the definition of F_1 and F_2 , it follows that there exist real numbers δ_1 and δ_2 (0 < δ_1 < 1/4, 0 < δ_2 < 1/4) such that

$$\text{(1)* } F_1(\text{int } B_1 \times E^1) \supset (B_1 \times E^1) \cup \left\{ \bigcup_i (H^3 - \text{int } B_2) \times [2i - \delta_1, \ 2i + \delta_1] \right\} \ \text{and}$$

(2)*
$$F_2(\text{int } B_2 \times E^1) \supset (B_2 \times E^1) \cup \left\{ \bigcup_i (H^3 - \text{int } B_1) \times [2i + 1 - \delta_2, 2i + 1 + \delta_2] \right\}.$$

We now consider the regions of the form $H^3 \times [2i-1, 2i+1]$. Let γ_i be the homeomorphism carrying the interval [2i-1, 2i+1] onto itself, by carrying the intervals

$$[2i - 1, 2i - \delta_1], [2i - \delta_1, 2i], [2i, 2i + \delta_1], [2i + \delta_1, 2i + 1]$$

linearly onto the intervals

$$[2i-1, 2i-1+\delta_2], [2i-1+\delta_2, 2i], [2i, 2i+1-\delta_2], [2i+1-\delta_2, 2i+1],$$

respectively. Let F_3 be the homeomorphism of $H^3 \times E^1$ onto itself defined by $F_3(x, t) = (x, \gamma_i(t))$ for $(x, t) \in H^3 \times [2i - 1, 2i + 1]$. Then

$$\begin{split} \mathbf{F}_{3}\left((\mathbf{B}_{1} \times \mathbf{E}^{1}) \cup \left\{ \bigcup_{i} (\mathbf{H}^{3} - \text{int } \mathbf{B}_{2}) \times [2\mathbf{i} - \delta_{1}, \, 2\mathbf{i} + \delta_{1} \,] \right\} \right) \\ &= (\mathbf{B}_{1} \times \mathbf{E}^{1}) \cup \left\{ \bigcup_{i} (\mathbf{H}^{3} - \text{int } \mathbf{B}_{2}) \times [2\mathbf{i} - 1 + \delta_{2}, \, 2\mathbf{i} + 1 - \delta_{2} \,] \right\}. \end{split}$$

Since

$$(B_1 \times E^1) \cup \left\{ \bigcup_{i} (H^3 - int B_2) \times [2i - 1 + \delta_2, 2i + 1 - \delta_2] \right\} \cup (B_2 \times E^1)$$

$$\cup \left\{ \bigcup_{i} (H^3 - int B_1) \times [2i + 1 - \delta_2, 2i + 1 + \delta_2] \right\} = H^3 \times E^1,$$

it follows by properties (1)* and (2)* that

$$\mathbf{F}_3 \circ \mathbf{F}_1(\text{int } \mathbf{B}_1 \times \mathbf{E}^1) \cup \mathbf{F}_2(\text{int } \mathbf{B}_2 \times \mathbf{E}^1) = \mathbf{H}^3 \times \mathbf{E}^1$$
.

Hence, defining h to be the homeomorphism $F_2^{-1} \circ F_3 \circ F_1$, we see that h(int $B_1 \times E^1$) \cup (int $B_2 \times E^1$) = $H^3 \times E^1$, and the proof of Theorem 3 is now complete.

In [10] it was shown that if S^{n-1} ($n \geq 4$) is embedded in S^n so as to be locally flat except perhaps for a subset C of a Cantor set such that C lies on a flat arc in S^{n-1} and a flat arc in S^n , then S^{n-1} is flat in S^n . That is, the closure of each complementary domain of S^{n-1} in S^n is a cell. In particular, if $S^{n-1} \subset S^n$ ($n \geq 4$) is locally flat modulo two points, then S^{n-1} is flat in S^n . By means of this difficult result, we can improve Theorem 1 rather easily and get a result from which Theorem 2 follows trivially.

THEOREM 4. Assume the Σ H-Conjecture; if H^3 is a homotopy 3-sphere and F^3 is a fake cube, then $\Sigma F^3 = I^4$ and $\Sigma H^3 = S^4$.

Proof. We may suppose that $F^3 \subset H^3$ and that there exists a piecewise linear 3-ball B_2 in H^3 such that H^3 - int $B_2 = F^3$. That is, given H^3 , let B_2 be some 3-simplex of H^3 , and let $F^3 = H^3$ - int B_2 . Given F^3 , let B_2 be an arbitrary 3-ball, and let $H^3 = F^3 \cup B_2$, where the boundary of B_2 is identified with the boundary of F^3 by some piecewise linear homeomorphism.

It is now necessary to recall some of the ideas from the proof of Theorem 2. Taking B_1 to be a piecewise linear 3-cell in int F^3 , we have (by the Σ H-Conjecture) a homeomorphism h of $H^3 \times E^1$ onto itself such that

h(int
$$B_1 \times E^1$$
) \cup (int $B_2 \times E^1$) = $H^3 \times E^1$.

As in the proof of Theorem 2, we let ΣH^3 be the two-point compactification of $H^3 \times E^1$. Then $\Sigma F^3 \subset \Sigma H^3$, $\Sigma B_2 \subset \Sigma H^3$, and

$$C = h(B_1 \times E^1) \cup \{\omega\} \cup \{-\omega\} \subset \Sigma H^3$$

so that $\Sigma F^3 \subset C$, $\Sigma F^3 - \{\omega\} - \{-\omega\} \subset \text{int } C$, and $\Sigma F^3 \cup \Sigma B_2 = \Sigma H^3$, where $\Sigma F^3 \cap \Sigma B_2 = \Sigma \partial F^3$ (= $\Sigma \partial B_2 = S^3$). Also, both C and ΣB_2 are 4-cells.

We now consider the 4-sphere 2C and one copy of ΣF^3 lying in 2C. The 3-sphere $\Sigma \partial F^3$ is embedded in the 4-sphere 2C so that it is locally flat except perhaps at the "suspension" points ω and $-\omega$. Hence, by the results of [10], it follows that $\Sigma \partial F^3$ is flat in 2C and that $\Sigma F^3 = I^4$. Since $\Sigma H^3 = \Sigma F^3 \cup \Sigma B_2$, it then follows that $\Sigma H^3 = S^4$.

4. A PARTIAL RESULT

Here we give a result that illustrates how some of the present techniques can be applied toward a solution of the Σ H-Conjecture. The result itself appears to lead to a dead end, but perhaps someone will be clever enough to obtain the desired proof by an appropriate modification or by a new approach. The result, already mentioned in the introduction, is as follows.

THEOREM 5. Let H^3 be a homotopy 3-sphere, and let B_1 and B_2 be two disjoint piecewise linear 3-cells in H^3 under some combinatorial triangulation of H^3 . If D_1 and D_2 are piecewise linear 3-cells in int B_1 and int B_2 , respectively, and if α , β , and ϵ are real numbers ($\alpha < \beta$, $\epsilon > 0$), then there exist homeomorphisms h_1 and h_2 , taking $H^3 \times E^1$ onto itself, such that

- (1) $h_1(\text{int } B_1 \times E^1) \cup h_2(\text{int } B_2 \times E^1) \supset H^3 \times [\alpha, \beta],$
- (2) $h_1 = identity \ on \ D_1 \times E^1 \cup H^3 \times (-\infty, \alpha \varepsilon] \cup H^3 \times [\beta + \varepsilon, \infty), \ and$
- (3) $h_2 = identity \ on \ D_2 \times E^1 \cup H^3 \times (-\infty, \alpha \varepsilon] \cup H^3 \times [\beta + \varepsilon, \infty)$.

Proof. Let \hat{B}_1 , \hat{B}_2 , \tilde{B}_1 , and \tilde{B}_2 be piecewise linear 3-cells such that

$$D_i \, \subset \, \text{int } \, \hat{B}_i \, \subset \, \hat{B}_i \, \subset \, \text{int } \, \widetilde{B}_i \, \subset \, \text{int } \, B_i \qquad (i = 1, \, 2) \, .$$

We suppose that H^3 is given a combinatorial triangulation K such that D_1 , D_2 , B_1 , B_2 , B_1 , B_2 , B_1 , and B_2 are contained in K as subcomplexes. Let $m=(\alpha+\beta)/2$, and suppose γ is a real number such that $0<\gamma<(\beta-\alpha)/2$. Let $\delta_1=m-\gamma$ and $\delta_2=m+\gamma$. Now $H^3\times[\delta_1$, $\delta_2]$ has a natural combinatorial triangulation (the "product" triangulation) induced from the triangulation K of H^3 such that

$$K\times m\,,\quad \widetilde{B}_1\times [\delta_1\,,\,\delta_2]\,,\quad \widetilde{B}_2\times [\delta_1\,,\,\delta_2]\,,\quad \hat{B}_1\times [\delta_1\,,\,\delta_2]\,,\quad \text{and } \hat{B}_2\times [\delta_1\,,\,\delta_2]$$

are contained as subcomplexes in the triangulation of $H^3 \times [\delta_1, \delta_2]$. Also, $M = H^3 \times (\delta_1, \delta_2)$ has a triangulation locally compatible with the triangulation of $H^3 \times [\delta_1, \delta_2]$, so that $K \times m$ is a subcomplex of the triangulation of M.

Let U and V be the open subsets of M, defined by

$$U = int B_1 \times (\delta_1, \delta_2)$$
 and $V = int B_2 \times (\delta_1, \delta_2)$.

Let C_1 and C_2 be the closed subsets of M defined by $C_1 = \widetilde{B}_1 \times (\delta_1, \delta_2)$ and $C_2 = \widetilde{B}_2 \times (\delta_1, \delta_2)$. Then $C_1 \subset U$, $C_2 \subset V$, and each of the pairs $(M - C_1, U - C_1)$ and $(M - C_2, V - C_2)$ is 1-connected. Let \widetilde{K} denote the 1-skeleton of K, and let L be the subcomplex of K' maximal with respect to missing \widetilde{K}' . Then both \widetilde{K}' and L are compact 1-dimensional subcomplexes of K'. Also, every simplex of K' is the join of a simplex of \widetilde{K}' and a simplex of L.

We now can apply the engulfing theorem of [14]. That is, there exist compact sets $Z_1 \subset M$ - C_1 and $Z_2 \subset M$ - C_2 and piecewise linear homeomorphisms f_1 and f_2 of M onto itself such that

$$f_1(U) \supset \widetilde{K}' \times m$$
, $f_2(V) \supset L \times m$,

 f_1 = identity outside of Z_1 , f_2 = identity outside of Z_2 .

It follows that f_1 is the identity on a neighborhood of $\tilde{B}_1 \times (\delta_1, \delta_2)$ and f_2 is the identity on a neighborhood of $\tilde{B}_2 \times (\delta_1, \delta_2)$.

Let $\tilde{\mathbb{U}}=f_1(\mathbb{U})\cap (K'\times m)$ and $\tilde{\mathbb{V}}=f_2(\mathbb{V})\cap (K'\times m)$. Then $\tilde{\mathbb{U}}$ and $\tilde{\mathbb{V}}$ are open subsets of $K'\times m$ such that $\tilde{K}'\times m\subset \tilde{\mathbb{U}}$ and $L\times m\subset \tilde{\mathbb{V}}$. Let $\hat{\mathbb{U}},\,\hat{\mathbb{V}},\,\tilde{K}',\,$ and L be the corresponding sets in K'. By Lemma 8.1 of [14], there exists a piecewise linear homeomorphism \hat{f}_3 of K' onto itself "pushing" $\hat{\mathbb{U}}$ towards L so that $\hat{f}_3(\hat{\mathbb{U}})\cup \hat{\mathbb{V}}=K'$. Also, \hat{f}_3 can be defined so that it is the identity on $\tilde{K}'\cup L$ and carries each simplex K' onto itself. Furthermore, \hat{f}_3 is isotopic to the identity by an isotopy \hat{F}_t such that for each t $(0\leq t\leq 1)$ \hat{F}_t carries each simplex K' onto itself, \hat{F}_1 = identity, and $\hat{F}_0=\hat{f}_3$.

We now want to modify the isotopy $\mathbf{\hat{F}}_t$ to obtain an isotopy \mathbf{F}_t such that for each t (0 $\leq t \leq$ 1)

$$\mathbf{F}_{t} = \text{identity on } \hat{\mathbf{B}}_{1}^{t}, \quad \mathbf{F}_{1} = \text{identity,} \quad \mathbf{F}_{0}(\hat{\mathbf{U}}) \cup \hat{\mathbf{V}} = \mathbf{K}^{t}.$$

We note that since f_1 = identity on $\widetilde{B}_1 \times (\delta_1, \delta_2)$ and f_2 = identity on $\widetilde{B}_2 \times (\delta_1, \delta_2)$, the subcomplexes \widetilde{B}_1^t and \widetilde{B}_2^t of K' lie in \widehat{U} and \widehat{V} , respectively. Also, since \widehat{F}_t carries each simplex of K' onto itself, for each t, it follows that \widehat{F}_t carries each of \widehat{B}_1^t , \widehat{B}_2^t , \widetilde{B}_1^t , and \widetilde{B}_2^t onto itself for each t, and $\widehat{F}_t(\widehat{U}) \supset \widetilde{B}_1^t$ for each t. In particular, \widehat{F}_t carries $\partial \widetilde{B}_1^t$ onto itself for each t.

Since $\hat{B}'_{1} \subset \text{int } \tilde{B}'_{1}$, we can suppose (by [9]) that we have a homeomorphism

k:
$$\partial \widetilde{B}_1' \times [0, 1] \rightarrow (\widetilde{B}_1' - int \widehat{B}_1')$$
,

where k(w, 0) = w for $w \in \partial \widetilde{B}_1'$ and $k(\partial \widetilde{B}_1' \times 1) = \partial \widehat{B}_1'$. Thus each point of $(\widetilde{B}_1' - int \ \widehat{B}_1')$ is of the form k(w, s), where $w \in \partial \widetilde{B}_1'$ and $s \in [0, 1]$. Let the isotopy F_t of K' onto itself be defined by the conditions

$$\mathbf{F}_{t} = \begin{cases} \text{identity} & \text{on } \hat{\mathbf{B}}_{1}', \\ \mathbf{\hat{F}}_{t} & \text{on } \mathbf{K}' - \text{int } \tilde{\mathbf{B}}_{1}', \\ \mathbf{k}(\mathbf{\hat{F}}_{(1-s)t+s}(\mathbf{w}), \mathbf{s}) & \text{on } \mathbf{k}(\mathbf{w}, \mathbf{s}) \in \tilde{\mathbf{B}}_{1}' - \text{int } \mathbf{\hat{B}}_{1}'. \end{cases}$$

As we noted above, $\hat{\mathbf{F}}_t$ carries $\partial \tilde{\mathbf{B}}_1'$ onto itself for all t. Hence, for each $s \in [0, 1]$, F_t carries $k(\partial \widetilde{B}_1' \times s)$ onto itself. In particular, since k(w, 0) = w for $w \in \partial \widetilde{B}_1'$, it follows for s = 0 that

$$F_t(w) = F_t(k(w, 0)) = k(\hat{F}_t(w), 0) = \hat{F}_t(w).$$

Also, since $\hat{\mathbf{F}}_1$ = identity and $k(\partial \tilde{\mathbf{B}}_1' \times 1) = \partial \hat{\mathbf{B}}_1'$, it follows for the special case s = 1 that $F_t(k(w, 1)) = k(\hat{\mathbf{F}}_1(w), 1) = k(w, 1)$. Therefore, the various isotopies match up correctly, and Ft is well-defined.

Since \hat{F}_1 = identity, $F_1(k(w,s)) = k(\hat{F}_1(w),s) = k(w,s)$ and hence F_1 = identity. Clearly, F_t = identity on \hat{B}_1^i for all t. Finally, since F_t carries each of \tilde{B}_1^i and K' - int \tilde{B}_1^i onto itself for each t, since $\tilde{B}_1^i \subset \hat{U}$ and F_t = \hat{F}_t on K' - int \tilde{B}_1^i , and since $\hat{F}_0(\hat{U}) \cup \hat{V} = K'$, it follows that $F_0(\hat{U}) \cup \hat{V} = K'$ also.

Let δ_3 be a real number $(0 < \delta_3 < \gamma)$. Then $\delta_1 = m - \gamma < m - \delta_3 < m + \gamma = \delta_2$. Let the homeomorphism f_3 of $H^3 \times (\delta_1, \delta_2)$ onto itself be defined by the rule

$$f_{3} = \begin{cases} \text{identity} & \text{on } H^{3} \times (\delta_{1}, m - \delta_{3}] \cup H^{3} \times [m + \delta_{3}, \delta_{2}), \\ (F_{t}(x), (1 - t)m + t(m + \delta_{3})) & \text{on } (x, (1 - t)m + t(m + \delta_{3})) \in H^{3} \times [m, m + \delta_{3}], \\ (F_{t}(x), (1 - t)m + t(m - \delta_{3})) & \text{on } (x, (1 - t)m + t(m - \delta_{3})) \in H^{3} \times [m - \delta_{3}, m]. \end{cases}$$
Since $f(H) \supseteq \widetilde{K}' \times m$ of $(Y) \supseteq I \times m$ and $F(\widehat{H}) \sqcup \widehat{Y} = H^{3}$ it follows that

Since $f_1(U) \supset \tilde{K}' \times m$, $f_2(V) \supset L \times m$, and $F_0(\hat{U}) \cup \hat{V} = H^3$, it follows that

$$f_3 \circ f_1(\text{int } B_1 \times (\delta_1, \delta_2)) \cup f_2(\text{int } B_2 \times (\delta_1, \delta_2)) \supset H^3 \times m$$
.

Since f_1 is the identity on $\tilde{B}_1 \times (\delta_1, \delta_2)$ and F_t is the identity on \hat{B}_1 for all t, it follows that $f_3 \circ f_1 =$ identity on $\hat{B}_1 \times (\delta_1, \delta_2)$. Since $f_1 =$ identity outside Z_1 , $f_2 =$ identity outside Z_2 , and $f_3 =$ identity outside $H^3 \times [m - \delta_3, m + \delta_3]$, each can be extended by the identity to all of $H^3 \times E^1$. Let us denote the homeomorphism extending $f_3 \circ f_1$ by g_1 , and the homeomorphism extending f_2 by g_2 .

We now have homeomorphisms g_1 , g_2 of $H^3 \times E^1$ onto itself such that

- (1) $g_1(\text{int } B_1 \times E^1) \cup g_2(\text{int } B_2 \times E^1) \supset H^3 \times m$,
- (2) $g_1 = identity$ on $\hat{B}_1 \times E^1 \cup H^3 \times (-\infty, \delta_1] \cup H^3 \times [\delta_2, \infty)$,
- (3) $g_2 = identity$ on $\hat{B}_2 \times E^1 \cup H^3 \times (-\infty, \delta_1] \cup H^3 \times [\delta_2, \infty)$.

We are now ready to construct the homeomorphisms $\,h_1\,$, $\,h_2\,$ promised in Theorem 5. Since $g_1(\text{int } B_1 \times E^1) \cup g_2(\text{int } B_2 \times E^1) \supset H^3 \times m$, there is a real number δ_4 $(0 < \delta_4 < \gamma)$ such that

$$g_1(\text{int } B_1 \times E^1) \cup g_2(\text{int } B_2 \times E^1) \supset H^3 \times [m - \delta_4, m + \delta_4].$$

We first consider the interval $[\alpha - \varepsilon, \beta + \varepsilon]$. Let ϕ be the homeomorphism that takes $[\alpha - \varepsilon, \beta + \varepsilon]$ onto itself by sending the intervals

$$[\alpha - \varepsilon, m - \delta_4], [m - \delta_4, m], [m, m + \delta_4], [m + \delta_4, \alpha + \varepsilon]$$

linearly onto the intervals $[\alpha - \varepsilon, \alpha]$, $[\alpha, m]$, $[m, \beta]$, and $[\beta, \beta + \varepsilon]$, respectively.

We consider the sets \hat{B}_1 - int D_1 and \hat{B}_2 - int D_2 . By [9], we can suppose that for i = 1, 2, we have a homeomorphism

$$k_i: \partial \hat{B}_i \times [0, 1] \rightarrow \hat{B}_i - int D_i$$

such that $k_i(w, 0) = w$ for $w \in \partial \hat{B}_i$ and $k_i(\partial \hat{B}_i \times 1) = \partial D_i$. For i = 1, 2, let G_i be the homeomorphism of $H^3 \times E^1$ onto itself defined as follows.

$$G_i = \begin{cases} \text{identity} & \text{on } H^3 \times (-\infty, \, \alpha - \epsilon] \, \cup \, H^3 \times [\beta + \epsilon, \, \infty), \\ \text{identity} & \text{on } D_i \times E^1, \\ (x, \, \phi(t)) & \text{on } (x, \, t) \, \epsilon \, (H^3 - \text{int } \hat{B}_i) \times [\alpha - \epsilon, \, \beta + \epsilon], \\ (k_i(w, \, s), \, (1 - s)\phi(t) + st) & \text{on } (k_i(w, \, s), \, t) \, \epsilon \, (\hat{B}_i - \text{int } D_i) \times [\alpha - \epsilon, \, \beta + \epsilon]. \end{cases}$$

Since

$$\begin{split} & g_1(\text{int } B_1 \times E^1) \cup g_2(\text{int } B_2 \times E^1) \supset H^3 \times [m - \delta_4, m + \delta_4], \\ & g_1 = \text{identity} & \text{on } (\hat{B}_1 \times E^1) \cup (H^3 \times (-\infty, \delta_1]) \cup (H^3 \times [\delta_2, \infty)), \\ & g_2 = \text{identity} & \text{on } (\hat{B}_2 \times E^1) \cup (H^3 \times (-\infty, \delta_1]) \cup (H^3 \times [\delta_2, \infty)), \\ & \phi([m - \delta_4, m + \delta_4]) = [\alpha, \beta], \end{split}$$

it follows that

$$\begin{split} &G_1 \circ g_1(\text{int } B_1 \times E^1) \cup G_2 \circ g_2(\text{int } B_2 \times E^1) \supset H^3 \times [\alpha, \beta], \\ &G_1 \circ g_1 = \text{identity} & \text{on } (D_1 \times E^1) \cup (H^3 \times (-\infty, \alpha - \epsilon]) \cup (H^3 \times [\beta + \epsilon, \infty)), \\ &G_2 \circ g_2 = \text{identity} & \text{on } (D_2 \times E^1) \cup (H^3 \times (-\infty, \alpha - \epsilon]) \cup (H^3 \times [\beta + \epsilon, \infty)). \end{split}$$

Therefore, if we define $h_1 = G_1 \circ g_1$ and $h_2 = G_2 \circ g_2$, the proof of Theorem 5 is complete.

REFERENCES

- 1. R. H. Bing, An alternative proof that 3-manifolds can be triangulated. Ann. of Math. (2) 69 (1959), 37-65.
- 2. ——, Some aspects of the topology of 3-manifolds related to the Poincaré conjecture. Lectures on Modern Mathematics, Vol. II, 93-128; John Wiley and Sons, Inc., New York, 1964.
- 3. M. Brown, A proof of the generalized Schoenflies theorem. Bull. Amer. Math. Soc. 66 (1960), 74-76.
- 4. J. C. Cantrell, Separation of the n-sphere by an (n 1)-sphere. Trans. Amer. Math. Soc. 108 (1963), 185-194.
- 5. ——, Non-flat embeddings of Sⁿ⁻¹ in Sⁿ. Michigan Math. J. 10 (1963), 359-362.
- 6. J. C. Cantrell and C. H. Edwards, Jr., Almost locally polyhedral curves in Euclidean n-space. Trans. Amer. Math. Soc. 107 (1963), 451-457.

- 7. L. C. Glaser, Geometrical combinatorial topology. Lecture notes, Rice University (revised 1967), 300 pages.
- 8. ——, On the double suspension of certain homotopy 3-spheres. Ann. of Math. (2) 85 (1967), 494-507.
- 9. J. F. P. Hudson and E. C. Zeeman, On regular neighborhoods. Proc. London Math. Soc. (3) 14 (1964), 719-745.
- 10. R. C. Kirby, On the set of non-locally flat points of a submanifold of codimension one. Ann. of Math. (to appear).
- 11. T. M. Price, Equivalence of embeddings of k-complexes in E^n for $n \le 2k + 1$. Michigan Math. J. 13 (1966), 65-69.
- 12. J. R. Stallings, *Polyhedral homotopy-spheres*. Bull. Amer. Math. Soc. 66 (1960), 485-488.
- 13. ——, The piecewise-linear structure of Euclidean space. Proc. Cambridge Philos. Soc. 58 (1962), 481-488.
- 14. ——, On topologically unknotted spheres. Ann. of Math. (2) 77 (1963), 490-503.
- 15. J. H. C. Whitehead, Simplicial spaces, nuclei and m-groups. Proc. London Math. Soc. (2) 45 (1939), 243-327.

Rice University Houston, Texas 77001