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INTRODUCTION

A group G is said to have a property P residually, or to be “residually P” if
and only if for each x € G there is a normal subgroup V in G such that x ¢ V and
G/V has the property P. This holds if and only if the intersection J(P) of the
family .#(P) of all such subgroups V is trivial. Algebraists have developed certain
methods for proving that J(P) = E 1} for certain properties P; a good example is the
theorem of Baumslag [5, p. 414], where P is the property of being finite. However,
when G arises as the fundamental group of a path-connected topological space X
(say a surface), it is of interest to look at the family of associated covering spaces
XA (A € (P)), which form an inverse system with inverse limit X4 - Comparing
this with X 7 (where J = J(P)), we obtain our main result (Theorem 1 below), on the
assumption that .4 has a linearly ordered cofinal subset relative to its ordering by
inclusion; this theorem states that f{zeve is a natural monomorphism
H, (X5) - H; (X,) of Cech homology groups with compact carrievs and arbitrary co-
efficients.

Since X, is an inverse limit, it is often fairly easy to compute H;(X_); and if X
(and hence Xj) is (say) locally contractible, then H;(X3) is isomorphic to the singu-
lar homology group H; S(Xj). The latter group, with coefficients in the group Z of
integers, is the abelianizer of J; therefore

the abelianizer of J is isomovrphic to a subgrvoup of Hl(X,'< , g) .

Thus, for example, if G is known not to possess perfect subgroups, then J is trivial
if H (X, , Z) is zero. Some applications are given in the last section (6) of this
paper; for example, we show that the fundamental group of a surface is residually
finite. The only previously known proof of this depends on the theory of Fuchsian
groups (as a deduction from the theorem of Baumslag, quoted above). In Section 5,
we prove our main theorem, using the somewhat technical Lemma 3 from Section 3.
The remaining sections establish notation and gather standard requisite ideas about
covering spaces, inverse limits, and Cech homology.

1. COVERING SPACES

We shall be interested in groups of the form G = 7,;(X, o), where X denotes a
path-connected, Lcl , locally compact metric space with base-point o. Let & de-
note the lattice of all subgroups of G. Then with each A, B € & suchthat ACB
there are associated based covering spaces and projection maps

(1.1) PaAR: (XA’ OA) e (XB, OB);
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we collect here some general relevant facts concerning them (see [4, Chapter 6]).
For each map pap, the induced homomorphism

(1.2) TAB: ﬂl(XA’ OA) — ’ITI(XB, OB)

is a monomorphism. Moreover, if B = G, then 7 is an isomorphism of

m1(Xa, 0a) onto A c G. It is convenient to think of X5 as the quotient space E/R ,
of the space E of all o-based paths x: (I, 0) — (X, o) determined by an equivalence
relation R, which we now describe. We write AR 4 1, whenever A(1) = (1) and the
loop formed by the composition A*pu -1 represents an element of A in 71(X, 0); in
particular, AR g if A is homotopic to p with fixed end-points. Thus, if X, is
taken to be E/R,, the map p,p is the inclusion map [A] , — [A]g of cosets (since
ARp 1 implies ARppu); hence it is a surjection. Further, if AC BC C in £, then

(1.3) PBc ° PAB = Pac-

Each X has base-point op =[0]a, the class of the constant map X — {o}. Hence-
forth, we identify X5 with X, using the bijection [A]g — A(1) under which o iden-
tifies with o; we then identify the map p, with the end-point map [A] A — A(1).

The topology of X, is the “canonical-neighbourhood” topology, described as fol-
lows. Each x € X has arbitrarily small “canonical neighbourhoods” U which are
path-connected with compact closure, and such that every loop in U is contractible
in X to a point. A basis of neighbourhoods of [A]p € X, is the family {U'}, where
each U' corresponds to a canonical neighbourhood U of A(1) in X, and where

(1.4) U' = {[axel, ]},

as ¢ runs through all paths in U starting at A(1). It follows that pyg | U' is a ho-
meomorphism onto U and that the components of pAIG(U) are all of the form U,

one for each point in p3L.(A(1)). Each such U' is called “canonical” in X ,, and by
AG A

(1.4), pag | U' is a homeomorphism onto the canonical set p,g(U') in Xi. Observe
that U in X has these properties simultaneously for all A € £, again by (1.4).

Next suppose that A is normal in B. Then the cosets bA of the group B/A act
as homeomorphisms of X 5 by the rule

(1.5) DA -[A]y = [B*A] 4,

where the dot denotes the action of bA, and B is any loop representing b € 7; (X, o).
The coset bA, regarded as a homeomorphism X 5 — X ,, is without fixed-points
(unless it is the identity) and it is a covering transformation, in the sense that

(1.6) PAR ©bA = pap,

because [B*A]g =[A]g (by (1.5) and the definition of Rp). Indeed, for each x € Xp,
pAlB(x) is the orbit B/A-y of any y € pAlB(x), and it is a discrete set. More gener-
ally, if AC BC C and A and B are normal in C, then for each ¢ € C we have the
commutative diagram

cA
Xp—> Xy

Pan l lpAB
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It is useful to introduce an invariant metric in X, as follows. We assumed
above that X has a metric, say p. Thus E also has the usual sup metric d, whence
X p has metric d, given by

(1.8) da([\]a, [£]4) = inf {d0, 17| 2" € Ala, u' € [u]a}.

(If 1", p' are sufficiently close in E, with the same end-points, then they are ho-
motopic since X is LC!; thus da([A]a, [£]a) =0 if and only if [A] 5 =[p]A.) Ob-
serve that since [x], < [A]g, '

da([X]a, [1]a) > de([r]g, []lB) > p(A(1), (1)),

while if A, 1 lie in a subset of X of diameter h, then the left-hand member is at
most 2h. From this it follows that dg is equivalent to p on X, and that the
canonical-neighbourhood topology on X is the da-topology. And from (1.5) and
(1.8) we see at once that

da(bA-[A]a, bA-[n]a) = da([A]a, [1]a),

whence bA acts as an isomefry: dp is invaviant under the action of B/A.

2. OPEN COVERINGS

We now need some technical lemmas about open coverings in X, ; they will be
used later in connection with the Cech homology theory of X, .

Let K be a compact subset of X5, and let Cov K denote the family of all finite
coverings of K, of the form @ = {U;, -, U, }, where each U; is open in X, and
meets K. We now assume that A is normal in G = 7;(Xg, 0og), so that I' = G/A
acts on Xp as in (1.5). Let T'# A K denote the family of all sets g-U;, where
g eI, Uj e %, and g-U; meets K. Since K is compact and g is a homeomorphism
with discrete orbits, there are only finitely many g € I" such that K is met by the
I'-iterates g - U; of a fixed Uj . Thus T AN K € Cov K. We call T'% A K the I'-
itevate of .

LEMMA 1. Every a € Cov K is refined by the T'-itevate of some ¥ € Cov K.

Proof. In the dp-metric, % has a Lebesgue number u > 0, whence % is re-
fined by some ¥ € Cov K such that each V € 7 has diameter less than u. But
then, by invariance of the metric, each member of I'¥ A K also has diameter less
than u, whence it refines %, as required.

LEMMA 2. If % € Cov K is sufficiently fine, and U, V ave two members of %,
then U does not meet g-V for move than one g € T'.

Proof. Each point x € K has a neighbourhood W, such that W, N gW, =@ for
all g #1 in I'. Let 27 be a finite covering of K by such sets Wy, and let
%¢ € Cov K be so fine that each member of % has diameter less than half the
Lebesgue number of /. Hnow U, Ve and UNYV # @, then V C St U C W,, say
for some W, € 9/. Hence, for each g e T (g # 1),

g-VCg-W, and W_Ng - W_ =@,
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Thus UNg-VCStUNg.VCW,Ng-V=¢@. Therefore % is the “sufficiently
fine” member of Cov K we require.

In connection with the Cech theory, let us denote by NF the nerve of a finite
family F of sets; then (see [7, Chapter V]) NF is a simplicial complex whose ver-
tices are the elements of F, and whose k-simplices are those subsets of F which
consist of k + 1 elements whose intersection meets K. For any subset P of X,,
write

|r-p| = U g-P;
gel’

if F is a family of subsets of X 5, write
(2.1) |- F| ={|1"-P|IPE F}.

Now let K be a compact subset of X, and let 97 € Cov K be a I'-iterate as in
Lemma 1, so fine that it behaves like % in Lemma 2.

LEMMA 3. Let f: N9 — N | I'- 9¢| denote the simplicial map induced by the
Junction W +— II‘WI (W € 9¢). Suppose that z is a 1-cycle on N9 such that
fz ~ 0 on N|T-9¢|. Then z ~ 0 on No.

Proof. By hypothesis, fz = d¢, where c is a 2-chain of N |I'-9/|. We shall use
induction on the number n of 2-simplexes of ¢, by showing that z ~ z, on N%,
where fz, bounds a 2-chain c, of NII‘-@%I having n - 1 2-simplexes. Thus, if
z =k-e+2', where e is an edge of z, with multiplicity k and with vertices
U, V € 9 (so that e does not appear in the 1-chain z'), then e must be an edge of
a 2-simplex uvw of N II‘- 4 l . Here, we may choose the notation so that

u=|r-ul, v=|r.v], w=]|r-W|

for some W € 9. Since UV and uvw are simplices, it follows from the definition
of N that

i) UNnvVvnNK = ¢, ii)unvNnwnkK # @;

therefore, by (ii), there exist elements a, b € I" suchthat UNna-VNb-WNK #=@.
But then U Na-V N K # @&; together with (i) and the choice of 9, Lemma 2 implies
that a=1€ I'. Now We % and ¢c-W NK # @, while 97 is a I'-iterate; therefore
c-We 9. Hence U, V, and c W are the vertices of a 2-simplex s of N%, so that

z ~ 2z, =z+xk-0s on N9/,

where that sign is chosen (depending on the orientation of s) which eliminates e
from z,. We then obtain the relation

fz ~ fz; +k-9(uvw) on Nll"-@fl.

Similarly, by eliminating any other edges ¢' in z for which fe' = {fe = uv, we obtain

a 1l-cycle z, on N2 such that z ~ z, on N2 while fz ~ fz, + o (Ekiti) , where
the k; are integers and the t; are distinct 2-simplices of N |I'- 0}//| having some

fe' as an edge. Hence fz,=3dc, on NII‘-O)H, where c, is ¢ minus the tj, so that
c, has fewer 2-simplexes than c. We can therefore apply induction on n, provided
we can settle the case n = 1. In this case, however, it is easily seen that z has the
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form Eki 0s;, where the k; are integers, while each s; is a 2-simplex of N2
with f(s;) =uvw (like s above) and is also an iterate g;-s, of s, (g; € I'). Thus
z ~ 0 on N% in every case, and Lemma 3 is proved.

3. INVERSE LIMITS

The lattice & of subgroups of G = 7{(X, o) is ordered by inclusion. Hence, for
any subset .# C £ (not necessarily cofinal), the system {(Xj, 0,), Paop}.« Of
spaces and maps (1.1) with A, B € .« , forms an inverse system. Ignoring the
topology for the moment, we note that the system has an inverse limit

(3.1) (Xoo, Ooo)J[ = Inv Lim {(XA, OA), pAB}J{

with projection functions forming a commutative triangle

da (XA’ OA)
(3.2) (Xeo 5 0c0) PAB
4B Xy, op) .

The elements of X, are “threads” <XA>AEJ{; that is to say, <XA> = <XA>Ae M
is a point in the Cartesian product Il {x A| A € #} such that pap(xa) = xg for all
pairs A ¢ B in .#. Therefore g A((x A )) = Xa . We shall normally omit the letter
4, since it is fixed throughout most of the discussion.

Suppose now that every A € .# is normal in G = 71(Xg, 0og). We are especially
interested in the subgroup

(3.3) J = J(H) = ﬂ{A| Aeu},

which does not necessarily lie in .# but is normal in G. We use (1.7) to define an
action of the group G/J on X, by the rule

(3.4) gT-(xa) = (gA-xp);

standard checks show that this action is independent of the various choices and that
the right-hand member lies in X, , while gJ: X, — X, is one-to-one and has no
fixed points (since each gA acts on X, without fixed points). Now G/J also acts on
the covering space Xy, and there is a function

(3.5) o: XJ — X

given by ¢(x) = <p J A(x)) . Then for each gJ € G/J (regarded as a transformation)
the following equations are implied by (1.7):

gJ(¢(x)) = { gA-pyaox)) = {pyp 0 8I(x)) = ¢(gI(x)).
Hence ¢ commutes with the action of G/J in the sense that

(3.6) glod=¢dogd.
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LEMMA 4. ¢ is one-to-one.

Proof. I ¢x = ¢y, then y € pjk(x) for each A € .#; therefore aJ-y = x for
some a € A, Butif A C B in .#, then A/J c B/J C G/J; therefore the transforma-
tions aJ and bJ in G/J agree at y. Hence aJ = bJ, since G/J acts without fixed
points; hence b € AD J, for all A C B; thus b € J and y = x. This proves that ¢
is one-to-one, as required.

The group G/J can be identified with a subgroup of

where jap: G/A — G/B is the natural homomorphism when A C B in .#; we iden-
tify gJ with the thread { gA ) . Then the action of G/J extends to an action of G,
on X, by the rule

(gah) (xa) = (BaA"Xa),
and it is easily verified that G_, acts without fixed points.
Let u € X and let qg: X, — Xg play the role of qa in (3.2). Then for each

u € X and each x € qél (u), we have pAlG(u) = IG/A -xAI (see (1.6)). Hence we may
assert

(3.8) a5 (W) = |Gy x| .

4. TWO TOPOLOGIES

We intend to put two topologies on X, one the inverse limit topology, and the
other a topology with more open sets. Our aim, as explained in the Introduction, is
to show that ¢ induces a monomorphism of the 1-dimensional singular homology of
X7 in a Cech group of the inverse limit. Recall from (1.4) that each X has the
“canonical-neighbourhood” topology, where, if U is a canonical neighbourhood in
Xg with q as in (3.2), then

(4.1) agl(U) = Inv Lim {p'5(U), pop} s

here (and often below) p ap denotes the appropriate restriction of the map pap of
(1.1). We can verify this equation by using the fact that if A ¢ B in ., then by (1.3)

prlx) = pRspRLX)).

Thus the set of components of p;l(:r(U) is the union of the sets p;\lB(Ua)
(o € pEh(x).
In the case where each A € .# is normal in G,

(4.2) pAc(U) = |G/A-U,|

for each component U, of pAlG(U). Thus p, | U A is a homeomorphism onto U,
and IG/A . UAI is the orbit of U p—a disjoint union of G/A-iterates of Up. For

each A € .# and each x = <x A> € X, there is a unique U, containing x4 ; hence,
if x5 € U, we form the “special” set
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(4.3) U, = Inv Lim{U,, papt. s S X .
By (3.4), (3.8), and (4.1), it has the property

(4.4) a (W) = |G_-u

x|‘

To define the two topologies for X, mentioned above, we choose certain subsets
of the sets q al(U) as bases of open sets, where U varies in X. Consider first the

usual inverse limit topology on X_,, and let the resulting topological space be de-
noted by X, . The topology is that induced by the inclusion of X, in the Cartesian

product II {xX AI A € .« }; hence a basis of neighbourhoods of <x A> € X, is the
family of sets W such that

(4.5) W = Inv Lim {W,, papt s,

where W is—for a finite number of A € .#—one component of pzk(U), while
Wa=p Ak(U) for the remaining A € .#. Since X G is a Hausdorff space, X, has the
same property, and the maps q , in (3.2) are continuous. Also X, is connected,
since each X, is connected. If for example each A € .« has finite index in G, then
X, will be locally compact, because in this case each W, in (4.2) has compact clos-
ure in X 4 (and an inverse limit of compact Hausdor{f spaces is compact).

We shall now describe the relation between the sets W in (4.5) and u, in (4.3).
We shall assume that A is linearvly ovdeved; then there is a smallest D € .« such
that W 5 in (4.5) is a single component of p:A}G(U) if A D D, while W 5 is not con-
nected if D D A. Choose some set 1, of the form (4.3) such that Up=W,p if
A D D. The fact that .« is linearly ordered also implies that pgl-(U) = Wy if
B ¢ D. Hence by (4.2),

(4.6) W= |D_ -1

where D = ker (G — D).

The second topology we assign to X is that in which a basis of neighbourhoods
at x € X, is the family of all the special sets 1l as U runs through all canonical
neighbourhoods of x5 in Xg. Let the resulting topological space be denoted by S.
Since 1 in (4.6) is contained in W, the function

(4.7) 0: 8 - X,

induced by the identity on X, is confinuous, while the functions q,: 8 — X, ob-
tained from diagram (3.2) are local homeomorphisms, because qa | Uy is a homeo-
morphism onto H,. We now recall from (3.5) the function ¢: Xy — X, and we con-
tinue to denote by ¢ the induced function Xj — S.

LEMMA 5. ¢: Xy — S is continuous.

Proof. If y € Xy, then ¢ is continuous at y; for if U, is a neighbourhood of
x = ¢(y), then u_ = ¢(V), where V is the component of pjé(U) containing x, by
definition of ¢ in (3.5) and of 1 in (4.3). This establishes the lemma.

Since ¢(oy) = 0, and Xy is path-connected, ¢ maps Xy into the component T

of S containing o.,,. The component T is open and path-connected, because each

1, is connected. We now write ¢: Xy — T.
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LEMMA 6. ¢: Xy — T is a homeomorphism.

Proof. ¥ x € T, there is a path A in T from o, to x. Hence (see (3.2)),
dg © A is a path in X5 from og to qg(x) which lifts uniquely to a path o in Xj3
from oj to some y € p j(lz(qG(x():S. Since paths in each X 4 lift uniquely from X,
while g © ¢ = pj,, it follows that ¢ © u = A, whence x = ¢(y) and ¢ is onto. The

continuity of ¢! follows from the fact that pjs and q¢ are local homeomorphisms
(observed after (4.7)) while q& © ¢ = pyg. This completes the proof.

LEMMA 7. G/J leaves T invariant (that is, the orbit of x € T lies entirely in
T).

Proof. For some y € Xy, x = ¢(y); therefore gJ-x = ¢(gJ-y) € T, by (3.6).
Recalling (3.8), we easily obtain the following result.
LEMMA 8. Ifxe T, then |Gy x| N T=|G/T-x| and

(ac] T 'xg = adxg) N T.

5. HOMOLOGY GROUPS

We use Cech homology with compact carriers; that is to say, if ® denotes the
family of all compact subsets of a space Y, directed by inclusion, then we use the
Direct Limit to define

(5.1) H,(Y) = Dir Lim {H(F), igp:Jg,

where F and F! run through &, ipgy: is induced by the inclusion F C F', and H(F)
is the ordinary Cech group [7, Chapter V]. It is well known that if Y is LC! (for
example), the singular homology group H;S(Y) is naturally isomorphic to H;(Y).
The following is a consequence of Lemma 6.

LEMMA 9. The map ¢: Xy — T induces an isomovphism ¢,: Hy(Xy5) — H(T).

Our next result concerns the map 6: T — X, obtained by restricting 6: S — X
in (4.7) to the component T of S containing o .

LEMMA 10. The vestrviction 0: T — X, induces a monomorphism
9*: HI(T) - HI(X*).

Proof. By definition of Direct Limit, it suffices to show that if z is a Cech 1-
cycle on a compact F C T such that 6,z bounds on a compact K € X, , then z
bounds also on K (for 6 is induced by the identity on X_). We may obviously sup-
pose K C T. Consider first the definition of 6, . Let Covy K (respectively, Cov,K)
denote the families of finite coverings of K in T (respectively, X,) in the sense of
(2.1). Then z is a Cech cycle {z(#)}, where each z(#) is a 1-cycle on the nerve
N% (@ € Covy K); also, 0,z is a Cech cycle w = w( ), where ¥ runs through
Cov, K and w(¥)=1z(6"1 7). Since 6: T — X, is induced by the inclusion of T in
X, , we see that 6-17 = {vn T| Ve ¥ }. Now, by (4.6), each V € ¥ can be writ-
ten in the form DY, * 8, for some DV € .# and some special set 8 = 1_ in T;
hence, by Lemma 8,

Ggvnt=|DY/J-3].

In particular, then, if 2 € Covy K-consists entirely of special sets 1, then
¥ = |Gy, - 2| lies in Cov K and

(i) 6-1v = |G/3- 2|.

X



A COVERING-SPACE APPROACH TO RESIDUAL PROPERTIES 343

To prove that z ~ 0 on K, we must show that if # € CovTK, then z(#) ~ 0 on
N%. Let 2 € CovyK refine % and satisfy the conditions on % in (2.4) relative to
the group T = G/J; we may suppose also that each Q € 2 is of the form U, in T.
Then, by (ii), w(z') =2z(6"1%) = z(]G/J -2 I) is a coordinate of w = 0 z; therefore
w(?) ~ 0 on N(7') —that is, on N(|G/J- QI) by (i), since K € T. Now
w(7') = £(z(2)), where f is defined as in Lemma 3; whence, by that lemma, z(2') ~ 0
on N2. Since £ refines %, we may project z(2) onto N(4) by a projection 7, to
obtain 7z(2) ~ 0. But z(#) ~ 71z(2), because z is a Cech cycle. This proves that
z ~ 0 on K, as required, and it completes the proof.

Combining Lemmas 9 and 10, we obtain the main result as stated in the Introduc-
tion.

THEOREM 1. If . is linearly ovdeved and J = n (M| M € ), then the map
6 o ¢: X3 — X, induces a monomorphism H)(Xz) — H(X,).

6. SOME APPLICATIONS

To indicate briefly three applications of the main theorem, we consider the re-
sidual properties of finiteness, solvability, and nilpotency. In each case, we may (by
cofinality) take .# to be a sequence

(6.1) G=Gg2 G2 "2 Gy2 Gpy1 2y

where G, isnormalin G (n=0, 1, 2, -*-); we now denote the associated covering
maps by p,: Xp+1 — X, with o, as base-point of X, .

(A) Residual Finiteness. For simplicity, we shall assume in this section that X
is a compact LC! space. Then, by [2, Lemma 3.15], G = 7,(X) is finitely generated;
but more can be said, as we see in Lemma 11 below. For example, every finitely
presented group is of the form wl(X), where X is a finite complex. We shall impose
two further, “algebraic” conditions on G, and Theorem 2 below shows that then G is
residually finite. We then prove Theorem 3 by verifying these conditions for the
fundamental group of a compact surface. They might well be stated in a weaker
form, but the choice made here has the virtue of directness.

Thus, we first suppose that G contains a sequence .« of the form (6.1) such that
(6.2) for each G, € M, the index of Gpy1 in Gy is finite and greater than 1.
Denote by H? the abelianizer of any group H, and let PH denote the periodic
subgroup of H. Define FH to be H2/PH; then for each n we have a short exact
sequence
0 - PG, > G2 - FG, — 0.
Taking inverse limits, we obtain an exact sequence

(6.3) 0 — Inv Lim PG,, — Inv Lim G2 — Inv Lim FG,,

where the homomorphisms induced by the inclusions G, ,; € G,, are omitted from
the Inv Lim notation.

LEMMA 11. Inv Lim G2 ~ H(X,).
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Proof. By (6.2), the covering space X, of X, associated with G, is compact
and LC1 because X has those properties. Hence there is a natural 1somorph1sm
H,;S(X,) = H;(X,) between the singular and Cech groups with integer coefficients.
Also there is a natural isomorphism G =~ H;S(X,). We may therefore take Inverse
Limits; now X, = Inv Lim (X, p,) and the Cech functor H, is continuous (see [1,
Chapter X1), Whence

as required.

Next we suppose that G satisfies the following curious condition, which we shall
discuss, together with an example (see (6.6)).

(6.4) If A C C are finitely genevated subgroups of G, A is normal in C, and
C/A = Z, (for some prime number p), then the induced homomorphism FA — FC is

not onto.
A stronger statement can now be made when G satisfies (6.4).

LEMMA 12, Let A and C be as in (6.4), but suppose that C/A is finite and non-
trivial. Then the homomorphism FA — FC is still not onto.

Proof. By the Sylow Theorems, there is a subgroup U of C/A which is isomor-
phic to Z for some prime p. Hence there exists a subgroup B of C such that

ACBC C and U = B/A. These inclusions induce homomorphisms FA 2 FB ﬁ FC,

and the inclusion of A in C induces B8 © «. Suppose, to get a contradiction, that
B o a is onto; then B is onto. Now the groups FA, FB, FC are finitely generated,
because the same is true of C; and the index of FB in FC is finite, not exceeding
that of A in C. Moreover, FB and FC are free abelian. Hence a consideration of
bases for FB and Im(a) shows that FB = Im(a), since the (false) hypothesis above
implies that 8 maps both groups onto FC. Thus @ would be onto, contrary to (6.4),
when B/A replaces C/A. Hence B o a is not onto, and the Lemma is proved.

The following theorem will now be proved; we remind the reader that G = 7 (X),
where X is compact LC!. It would be desirable to have an algebraic characteriza-
tion of all such G which satisfy the conditions of the theorem.

THEOREM 2. If G is finitely genevated and satisfies (6.4) while A = {G,}

satisfies (6.2), then Inv Lim FG, = 0. Movreover, the abelianizey J* of J = nnGn
is isomovphic to a subgroup of Inv Lim PG, .

Proof. By Theorem 1, J2 is isomorphic to a subgroup of H(X,) and hence to a
subgroup of Inv Lim Gi by Lemma 11. Therefore, by exactness in (6.3), Theorem 2
will follow if we can prove that Inv Lim FG, = 0.

As we observed above, G is finitely generated because X is compact and LC!l;
therefore, by (6.2), G, is finitely generated. Hence Gf.L1 and FG, are also finitely
generated. We have to show that if ( > € Inv Lim FG,, then x, =0 € FG,, for
each n. But for each n, if V_, denotes Im (FG ,, — FGy), then x, € m>n Vm -
Now -

Vn 2 Vn+l =2 = Vm 2 o in FGn’
and for each m the index |V,,:Vm+1]| is finite, by (6.3), since it does not exceed

IGm e Gm+1 I . Therefore, since FG, is a finitely generated free abelian group, the
intersection of the subgroups V,, will be zero, provided ]Vm : Vi +1l > 1 for all
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m. But this is ensured by (6.2) and Lemma 12 (with A and C taken to be G,,;; and
G,,, respectively). Hence x, = 0 for each n. Therefore Inv Lim FG, = 0, and the
proof is complete.

Denote by .# the family of all normal subgroups of finite index in G, and let 4
be ordered by inclusion. Let J(.#) denote the intersection of all the subgroups in
4. Then we have at once a corollary of Theorem 2,

COROLLARY. Suppose that .« is cofinal in N, and that Inv Lim PG, =0
(G, € A). Then J(N) lies in the pevfect subgroup J = IJ(AM) C G.

Consider now the case when G is finitely generated and of the form « 1(Y), where
Y is a (connected) surface. If Y has a boundary or is not compact, then G is free
(see [3, 3.2]); but otherwise G is not free.

THEOREM 3. If X is a surface and G = 171(Y) is finitely genevated, then G is
vesidually finite.

Proof. I Y is not orientable, then it has an orientable double covering Y, cor-
responding to a subgroup G, of index 2 in G. Thus G is residually finite if and
only if the same holds for Gg; it therefore suffices to consider the case when Y is
orientable, and Y # S2 (since w7 ,(S2) is trivial). Then G = 7;(Y) is infinite, and
finitely generated; therefore, by][2, Corollary 3.4}, Y contains a compact subsurface
X such that X is a deformation retract of Y, and H(X) =~ H(Y). Hence G is of the
form 7 (X), where X is compact (metric) and LC1.

If U is a subgroup of G, the corresponding covering space Xy; is also an orient-
able surface with a free abelian group

(6.5) H,(X{y) ~ FU ~ U2,

We now show that G satisfies condition (6.4). Since C/A is abelian, the commu-
tator subgroups satisfy the condition [A, A] € [C, C] C A; therefore the homomorph-
ism f: FA — FC factors as

FA — A/[C, c] & Fc,

because FA =~ A/[A, A], by (6.5). An isomorphism holds similarly for FC, whence
FC/Im(g) ~ C/A # {1}. Therefore g, and hence f, is not onto. This verifies condi-
tion (6.4).

Next we find a sequence .« which is cofinal in .# and satisfies condition (6.2).
Recall that G is finitely generated; then we may use the well-known result that, for
each integer r > 0, there is only a finite number of subgroups of G of index r.
Hence the intersection G, of these is normal and of finite index in G. It also fol-
lows from (6.5) that the normal subgroup of G, generated by all squares in G, is of
finite index greater than 1 in G,.. Therefore the sequence {G,} contains a subse-
quence ./ that satisfies (6.2) and is cofinal in .#, by construction.

The subgroup U in (6.5) cannot be perfect unless U = {1}; moreover, PU is al-
ways trivial. Hence, by the last corollary, J(#) C J(.«) = {1}. Therefore G is
residually finite, and Theorem 3 is proved.

More generally, suppose that G is a finitely generated Fuchsian group. It is
well known that G contains a normal subgroup U, of finite index and without ele-
ments of finite order (U is then the group of a surface). Hence G is residually
finite, since U is residually finite by Theorem 3. A direct proof can be given on the
lines of that of Theorem 3, by representing G in the form ﬂl(X), where X is a 2-
dimensional cell-complex.
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On the other hand, the 1l-relator group with presentation
(6.6) Q = {a, b:ab%a-l = p3)

is known to be non-Hopfian, and it is therefore not residually finite (see [5, pp. 260
and 413]). Hence one of the two conditions (6.2) and (6.4) does not hold in Q. These
conditions are related, but we are as yet unable to clarify the situation.

(B) Residual Solvability. We now take the sequence .# = {G_} to be the derived
series of G ; that is, G, is the commutator subgroup [G,,, G:] of Gy.

THEOREM 4. If the sequence {Gn} of derived groups of G does not terminate,
then the abelianizer of theiv intevsection is zevo.

Proof. We prove that H 1(X,,c) is zero, where X, denotes the inverse limit of the
system {Xn, pn} defined after (6.1). The family ¥ of compact subsets F of Xy
each of the form

(1) F = Inv Lim {9, F, Py tn>m=0,1,2,--- »

is cofinal in the family of @ll compact subsets of X (directed by inclusion). There-
fore, in the notation of (5.1),

(ii) H)(X,) ~ Dir Lim{H,(F), ipp: gy -

But, using the “continuity” property of the Cech functor [1, Chapter X] we see by the
definition of F in (i) that

H,(F) ~ Inv Lim {H,(q_ F), r__ |,

where r_ is induced by p,,.: 4, F — q,, F in (i). Also, by the diagram (3.2),
pnm(qn 1%‘1) =4q,, F. We shall show that for each F there exists a compact D C X
such that F € D and H;(F) — H;(D) is zero; this will prove that H;(X,) = 0.

We may suppose that F is path-connected, and we may choose E, € X, as a
compact connected neighbourhood of F . Then, by lifting canonical neighbourhoods,
let E;, € X,, be a compact connected neighbourhood of F such that p (E_ ,;)=E/
(n=0, 1, ---). Choose a base-point <yn> € F; then y, € F,, and since each X is
metric and LC! | the image 7 1(F, | E_) of the homomorphism

7Tl(Fn’ yn) - ﬂl(En, yn)

is finitely generated, by [2, Lemma 3.15]. Hence, for each n > 0, there exists a
compact connected neighbourhood D, _; of E,_; such that for each of the finitely
many generating loops g of 7;(F, | E,), p,(g) is homotopic on D, to a product of
commutator loops; for G, =[G,_1, G,_1], while loops and their homotopies have
compact carriers. Therefore the same holds when g is replaced by any y, -based
loop A in F,,. Now, every singular l-cycle z on F, is homologous on F, toa yj,-
based loop A; thus p,(z) is homologous on F,_; to p,(A), which in turn is homolo-
gous to zero on D, _;. It follows that H;S(F_ ) — H;S(D, _,) is the trivial homo-
morphism of singular homology groups; hence the analogous homomorphism with
Cech homology is also trivial. As with the E’s, we may assume that p,(D,,;+;) S D,
(n=0,1, 2, ++), and then form D = Inv Lim {D,, p,} € X, . Thus D is compact as
an inverse limit of compact sets, and F € D. By construction (since the sequence
{G,} does not terminate), the homomorphism H;(F) — H,;(D) is trivial, and
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therefore, by the remark above, H,(X,) = 0. Hence, by Theorem 1, the abelianizer
of J is trivial, and Theorem 4 is established.

Thus, Fuchsian groups (in particular, free groups and surface groups) are resid-
ually solvable, since they possess no perfect nontrivial subgroups.

(C) Residual Nilpotency. Let the sequence A = {Gn} be the lower central
series of Gj; that is to say, let G = G, Gp+1 = [Gn, Gl. In general, it is difficult to
calculate the homomorphisms H;(X,) — H;(X,,) induced by the covering maps pp,-
In this section, we merely indicate a proof of the known result:

(6.7) when G is free, the intevsection J of all the Gy, is trivial.

If J is not trivial, there exists an essential o-based loop g in X, representing
an element of J; to obtain a contradiction, it suffices by Theorem 1 to show that the
image of g in each H;(X,,) is zero. We claim, for each n > 0, that if g lifts into
X, as an o,-based loop g', then there are o,_j-based loops g; in X,_; such that
under the map Pnn-1° Xn—Xno1s
(i) Pnn-1(8) ~ 27 (T;ig; - &)

1

for suitable covering transformations T; € G/G,_; .

To see this, we observe that the projection p,;: X, — X; =X maps g' onto the
o-based loop g; and since J C G, g is homotopic relative to o in X to a product of
commutator loops of the form c¢ = [k, f], where k and f are loops representing ele-
ments of G,_; and G, respectively. If we lift ¢ into X,,_;, we obtain a loop of the
form c'=j-le(T¢j)e-1, where j and e are paths covering k and f in X, _;, and
where T; is the covering transformation of X, _; induced in G/G,_.; by f. Now k
represents an element of G, _1, and therefore j is a loop; thus

Pnn-1(8) ~ 2c' ~ 22 (Tgj-j§)  on Xy,

the sum over all the factors ¢ composing the product g. This establishes (i).

In the case when G is free, we may suppose X to be a one~dimensional complex.
Let 2(g') denote the number of edges of X, appearing with nonzero weight in the 1-
chain g' (integer coefficients). Then, by (i),

(ii) 2o, 1(8)) < 22720(g) < 2(g",

since the edges in the “tails” e mentioned above are deleted unless e is zero, in
which case c¢' ~ 0 anyway. Now, if ¢(x) = 0, then x represents a commutator and
X ~ 0; thus, if n = m- 2", then by (ii) p,,,(g') ~ 0 in X,,,, so that the image of g in
H,(X,,) is zero. This establishes (6.7).

This particular proof of (6.7) can not be generalised in any obvious way. One
must keep in mind that for knot-groups G, we have G, = G3 = --- (see [6, p. 59]),
and that the trefoil knot-group is a 1l-relator group.
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