TWO THEOREMS ABOUT PERIODIC TRANSFORMATIONS OF THE 3-SPHERE

Ralph H. Fox

To R. L. Wilder on his seventieth birthday.

Let T denote a transformation of period $\nu > 1$ of the 3-sphere Σ , and let Λ denote the set of fixed points of T. It is generally believed that if Λ is a tame simple closed curve it must be unknotted, but this conjecture of P. A. Smith has not yet been proved. In his thesis [4], C.H. Giffen proved that Λ can not be a torus knot. In this note I shall give a new and elementary proof of Giffen's theorem (Giffen's proof makes heavy use of fiber space theory), and then establish a condition that must be satisfied by the group Γ of Λ .

Suppose that Λ is a tame simple closed curve, and denote the orbit space Σ/T by S. Denote the collapsing map $\Sigma \to S$ by e and the image of Λ under e by L. It is known [10] that S is a closed 3-manifold, that L is a tame simple closed curve in S, and that e: $(\Sigma, \Lambda) \to (S, L)$ is a ν -fold cyclic covering, branched over L.

Since $e \mid \Sigma - \Lambda \colon \Sigma - \Lambda \to S - L$ is an unbranched ν -fold cyclic covering, the group $\Gamma = \pi(\Sigma - \Lambda)$ must be a normal subgroup of index ν of the group $G = \pi(S - L)$. It is known [6] that the 3-manifold S must be simply connected. Since this last statement has appeared in several places [2], [3], [4], [7], [8] without reference, I digress to give a brief proof of it.

Let m be a meridian of L—that is, an element of G represented by a meridian curve on the boundary of a tubular neighborhood of L. Since Λ is the branch curve of the ν -fold cyclic covering e, the element $\mu = m^{\nu}$ of Γ is a meridian of Λ . Since filling in the knot Λ maps Γ onto $\pi(\Sigma) = 1$, the consequence $\langle \mu \rangle$ of the element μ must be all of Γ , and hence $\langle m \rangle$, the consequence in G of m, must contain Γ . Since the elements 1, m, …, $m^{\nu-1}$ represent the ν cosets of Γ in G, it follows that $\langle m \rangle$ must be all of G. Now, filling in the knot L maps G onto $\pi(S)$. Since m is thereby mapped into 1, we see that $\pi(S) \approx G/\langle m \rangle = 1$.

Let $\mathscr{A}(\Gamma)$ and $\mathscr{I}(\Gamma)$ denote the group of automorphisms and the group of inner automorphisms, respectively, and denote by $\mathscr{B}(\Gamma)$ the group of those automorphisms of Γ that induce the identity automorphism of Γ/Γ' . Thus an automorphism B of Γ belongs to $\mathscr{B}(\Gamma)$ if and only if each element γ of Γ has the same linking number with Λ as does its image $B(\gamma)$. Of course, $\mathscr{I}(\Gamma) \subset \mathscr{B}(\Gamma) \subset \mathscr{A}(\Gamma)$. The inner automorphism D_m : $g \to mgm^{-1}$ of G maps the normal subgroup Γ onto itself, and so it induces an automorphism Δ_m of Γ (which may or may not be an inner automorphism). Since the inner automorphism D_m^{ν} of G induces the inner automorphism Δ_{μ} : $\gamma \to \mu \gamma \mu^{-1}$, we see that $\Delta_m^{\nu} = \Delta_{\mu} \in \mathscr{I}(\Gamma)$. Since a loop in Σ - Λ has linking number 0 with Λ if and only if the loop in S - L into which it is projected by Γ 0 has linking number Γ 1 with Γ 2 we see that Γ 3 induces the identity automorphism of Γ 4. Thus Γ 5 in Γ 6 induces the identity automorphism of Γ 7 in Γ 6. Thus Γ 6 belongs to the group Γ 7 of homologically faithful automorphisms.

Received November 7, 1966.

THEOREM 1. A can not be a torus knot. (Proved in [3] for the special case $(\nu, ab) = 1$, and in [4] in complete generality.)

Suppose that Λ is a torus knot of type a, b, where, of course, a and b are relatively prime integers and |ab|>1. Then Γ has [9] a presentation $(\phi,\psi;\phi^a=\psi^b)$. Schreier has shown [9] that the group of outer automorphisms is cyclic of order two, the generator being $\phi\to\phi^{-1}$, $\psi\to\psi^{-1}$. Since the automorphism of Γ/Γ' that this outer automorphism induces is not the identity, $\mathscr{I}(\Gamma)$ must be all of $\mathscr{B}(\Gamma)$. Thus \triangle_m must be an inner automorphism, say $\gamma\to\omega\gamma\omega^{-1}$, where ω is some element of Γ . Since G is an extension of Γ by $G/\Gamma=|m:m^\nu=1|$, G has a presentation

$$(\phi, \psi, m: \phi^{a} = \psi^{b}, \triangle_{m}(\phi) = m\phi m^{-1}, \triangle_{m}(\psi) = m\psi m^{-1}, m^{\nu} = \mu)$$
.

Clearly the element $M=\omega^{-1}$ m commutes with both ϕ and ψ and hence with ω ; consequently ω and m commute. Thus

$$G = |\phi, \psi, M: \phi^a = \psi^b, [M, \phi] = [M, \psi] = 1, M^{\nu} = z|$$

where z is the element $(\omega^{-1} \, \mathrm{m})^{\nu} = \omega^{-\nu} \, \mathrm{m}^{\nu} = \omega^{-\nu} \, \mu$ of Γ . Since M belongs to the center of G, the element z of Γ must belong to the center of Γ . Schreier has shown [9] that the center of Γ is the cyclic group generated by the element $\phi^a = \psi^b$. Thus $z = \phi^{ac} = \psi^{bc}$ for some integer c.

Now it is known [5] that $\mu = \psi^{\alpha} \phi^{-\beta}$, where α and β are positive integers that satisfy the condition $\alpha a - \beta b = 1$. Since Γ/Γ' is the infinite cyclic group generated by μ , and $\mu^b \equiv \phi$, $\mu^a \equiv \psi$ (mod Γ'), it follows from the relation $\omega^{-\nu}\mu = z$ between the elements ω , μ , and z of Γ that abc must be relatively prime to ν . Thus there must be integers σ_1 , τ_1 , σ_2 , τ_2 such that

$$\sigma_1 \operatorname{ac} + \tau_1 \nu = 1$$
 and $\sigma_2 \operatorname{bc} + \tau_2 \nu = 1$.

Define $f = M^{\sigma_1} \phi^{\tau_1}$ and $g = M^{\sigma_2} \psi^{\tau_2}$. Then

$$f^{\nu} = \phi$$
, $f^{ac} = M$, $g^{\nu} = \psi$, $g^{bc} = M$.

Thus $G = |f, g: f^{ac} = g^{bc}$, $f^{a\nu} = g^{b\nu}|$. Since c and ν are relatively prime, it follows that

$$G = |f, g: f^a = g^b|$$
.

Consider the group $F = |f: f^a = 1| * |g: g^b = 1|$. We have the consistent diagram

$$G \longrightarrow G/G'$$

$$\downarrow \qquad \qquad \downarrow$$

$$F \longrightarrow F/F'$$

where the horizontal arrows denote abelianization, and the homomorphisms indicated by the vertical arrows are induced by adjoining the relations $f^a=1$ and $g^b=1$. Of course, G/G' is the infinite cyclic group |t:|, where the abelianization $G\to G/G'$ maps f into t^b and g into t^a . Thus $F/F'=|t:t^{ab}=1|$, and m is mapped into the element t of F/F'.

In the group F, each element can be written [8] in the unique normal form $f^{\delta_1}g^{\epsilon_1}\cdots f^{\delta_\ell}g^{\epsilon_\ell}$, where $0\leq \delta_1 < a,\ 0<\epsilon_1 < b,\ 0<\delta_2 < a,\ \cdots,\ 0<\delta_\ell < a,\ 0\leq \epsilon_\ell < b.$ The *length* of this normal form is

$$2\ell \ \ \text{if} \ \ \delta_1 \ \epsilon_\ell \neq 0 \ ,$$

$$2\ell - 1 \ \ \text{if} \ \ \delta_1 \ = 0 \ \ \text{and} \ \ \epsilon_\ell \neq 0 \ \ \text{or} \ \ \delta_1 \ \neq 0 \ \ \text{and} \ \ \epsilon_\ell = 0 \ ,$$

$$2\ell - 2 \ \ \text{if} \ \ \delta_1 \ = \epsilon_\ell \ = 0 \ .$$

Replacing m by a suitable conjugate if necessary, we may assume that the normal form of m is one of the following:

$$f^{\delta}\,{}_{1}\,g^{\epsilon}\,{}_{1}\cdots f^{\delta}\ell\,g^{\epsilon}\ell$$
 , where $0<\delta_{i}< a,\ 0<\epsilon_{i}< b$ for i = 1, 2, ..., ℓ and $\ell\geq 1$,
$$f^{\delta}\,, \text{ where } 0\leq \delta < a\,,$$

$$g^{\epsilon}\,, \text{ where } 0\leq \epsilon < b\,,$$

In the first case, m^{ν} has normal form of length $2\ell\nu$, and this cannot be shortened by conjugation. But m^{ν} is conjugate to μ , and as was noted above, $\mu = \psi^{\alpha} \phi^{-\beta}$. Hence m^{ν} is conjugate to $\psi^{\alpha} \phi^{-\beta} = g^{\alpha} \nu_{f}^{-\beta} \nu_{f}^{\nu}$, where the exponents are supposed to be reduced mod a and mod b, respectively. Since $g^{\alpha} \nu_{f}^{-\beta} \nu_{f}^{\nu}$ is a normal form of length 2, it follows from the fact that $\nu > 1$ that this case can not occur. Hence m must be represented either by f^{δ} , with $0 < \delta < a$, or by g^{ϵ} , with $0 < \epsilon < b$. Hence in F/F' either $t = t^{\delta b}$ or $t = t^{\epsilon a}$. Consequently either $\delta b \equiv 1 \pmod{ab}$ or $\epsilon a \equiv 1 \pmod{ab}$. But neither of these congruences is possible, because |ab| > 1.

THEOREM 2. The group $\mathcal{B}(\Gamma)/\mathcal{I}(\Gamma)$ of homologically faithful outer automorphisms must contain an element of order ν . (This sharpens an observation made by Neuwirth [8, p. 68].)

We shall show that the outer automorphism determined by Δ_m has the required property. We know that $\Delta_m \in \mathcal{B}(\Gamma)$; let d be the smallest positive integer for which $\Delta_m^d \in \mathcal{S}(\Gamma)$. Of course d divides ν , say ν = dh. Let $(\lambda_1, \dots, \lambda_n; \rho_1, \dots, \rho_{n-1})$ be a presentation of Γ . Then, since G is an extension of Γ by $G/\Gamma = |m; m^{\nu} = 1|$, a presentation of G is

$$(\lambda_1,\,\cdots,\,\lambda_n,\,\mathrm{m}\colon\rho_1,\,\cdots,\,\rho_{n-1},\,\triangle_{\mathrm{m}}(\lambda_1)\,=\,\mathrm{m}\lambda_1\mathrm{m}^{-1}\,,\,\cdots,\,\triangle_{\mathrm{m}}(\lambda_n)\,=\,\mathrm{m}\lambda_n\mathrm{m}^{-1}\,,\,\mathrm{m}^{\nu}=\mu).$$

Since $\triangle_m^d \in \mathscr{I}(\Gamma)$, there is an element ξ of Γ such that $\triangle_m^d(\gamma) = \xi \gamma \xi^{-1}$. Thus the element $Q = \xi^{-1}$ m^d of G commutes with each λ_j and hence also with ξ . Since $\mu = m^{dh} = (\xi Q)^h = \xi^h Q^h$, we see that Q^h must belong to Γ . Since Q^h commutes with each λ_j , it must belong to the center of Γ . By Theorem 1 we know that Λ is not a torus knot. Hence [1] the center of Γ is trivial, and therefore $Q^h = 1$. Since G/G' is infinite cyclic, we see that Q must belong to G'. But, as shown above, $G' = \Gamma'$, hence Q belongs to Γ . Since ξ is an element of Γ , it follows from the equation $Q = \xi^{-1}$ m^d that m^d must belong to Γ . Consequently Γ 0 must be equal to Γ 1.

REFERENCES

- 1. G. Burde and H. Zieschang, Eine Kennzeichnung der Torusknoten, Math. Ann. 167 (1966), 169-176.
- 2. R. H. Fox, On knots whose points are fixed under a periodic transformation of the 3-sphere, Osaka J. Math. 10 (1958), 31-35.
- 3. ——, Knots and periodic transformations, Topology of 3-Manifolds and Related Topics, Prentice Hall (1961), 177-182.
- 4. C. H. Giffen, Fibred knots and periodic transformations, Princeton Ph.D. Thesis (1964). See also On transformations of the 3-sphere fixing a knot (to appear).
- 5. J. Hempel, A simply connected 3-manifold is S³ if it is the sum of a solid torus and the complement of a torus knot, Proc. Amer. Math. Soc. 15 (1964), 154-158.
- 6. S. Kinoshita, Notes on knots and periodic transformations, Proc. Japan Acad. 33 (1957), 358-362.
- 7. ——, On knots and periodic transformations, Osaka J. Math. 10 (1958), 43-52.
- 8. L. P. Neuwirth, *Knot groups*, Annals of Mathematics Studies, No. 56, Princeton University Press, Princeton, N.J., 1965.
- 9. O. Schreier, $\ddot{U}ber\ die\ Gruppen\ A^a\ B^b=1$, Abh. Math. Sem. Univ. Hamburg 3 (1924), 167-169.
- 10. P. A. Smith, *Periodic transformations of 3-manifolds*, Illinois J. Math. 9 (1965), 343-348.

Kobe University and Princeton University