WILD CELLS AND SPHERES IN HIGHER DIMENSIONS

Morton Brown

Dedicated to R. L. Wilder on his seventieth birthday.

1. INTRODUCTION

The purpose of this paper is to apply a theorem of Andrews and Curtis [1] to get
a rapid formula for constructing wild k-cells and k-spheres in S?. In Section 4 we
construct an arc in S™ (n > 3) that pierces no locally flat (n - 1)-sphere. (The
somewhat lengthy interval between discovery and publication has led to the prior ap-
pearance of applications of and reference to this technique in the literature [9], [11].)
Our starting point is the following obvious modification of the results of [1]:

THEOREM (Andrews and Curtis). Lef @ be an arc in S . Then the suspension
o (S%/a) of the quotient space S*/a is homeomorphic to S*T1. (If X is compact, we
use o(X) to denote the quotient space of X X [0, 1] obtained by pinching X X 0 and
X X 1 to points.)

’ 2. THE CONSTRUCTION a*

Let o be an arc in S™, and 7 the projection map 7: S® — S"/«. This induces
the natural suspensions o(7w): o(S?) — o(S®/«a), where the image and domain spaces
are both S . Let a* = o(n(a)) € 0(S*/a) be the suspension of the point a> of
S™/a. Then a* is an arc and o(7w) | o (S™) - o(a) is a homeomorphism onto
o(S"/a) - a*, On the other hand, o(S®) - o(a) is homeomorphic to (S - a) X R,
since o(®) contains the suspension points. Hence

(2.1) o(S™/a) - a* is homeomovphic to (S™ - a) X R'
b

(2.2) for every arc a C S™ theve is an avc o* C S™1 such that S® - o and
sotl _ a* hgue the same homotopy type,

(2.3) for each n > 3 there exists an arc in S™ whose complement is not simply
connected.

We get (2.3) by repeated applications of (2.2) to the arc (1.1) of [8].

(2.4) For each pair (n, k) with n> 3 and 1 <k < n, theve exists a k-cell in S™
whose complement is not simply connected.

Proof. Let P(n, k) denote the statement of (2.4) for a fixed admissible pair
(n, k), and P(n, *) the statement for n fixed and all admissible k. P(3, *) is proved
in [8]. Inductively, suppose P(n, *) is true. From (2.3) we have (n+ 1, 1). But if
k > 1, then P(n+ 1, k) follows from P(n, k - 1). For if ak-1 isa (k - 1)-cell in
Sn and 7y (S™ - ak-1) is nontrivial, then ak = o(ak-1) is a k-cell in Sntl = ¢(Sn),
Since o(ak-1) contains the suspension points, S?! - @k is homeomorphic to
(Sn _ Cik_l) X R'.
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3. SOME PRELIMINARY LEMMAS

Let BC A C X, where X is a topological space. Then X - A is k-connected at
B if for each neighborhood U of B there exists a neighborhood V of B such that
V c U and 74V - A) is trivial for 0 <i <k. The set X - A is projectively k-con-
nected at B if each neighborhood U of B contains a neighborhood V of B such that
the induced maps i: 73(V - A) — 7;(U - A) are trivial for 0 <i <k.

(3.1) LEMMA. (X/A)XR'- <A> X R' is projectively k-connected at ( A) x%

if and only if X - A is projectively k-connected at A. (<A> denotes the point de-
termined by A in the quotient space X/A.)

Proof. Suppose X - A is projectively k-connected at A. Let U be a neighbor-
hood of <A> X% in (X/A) X R'. Then there is a neighborhood W of A and an ¢ > 0
such that

(W/A)X(%—g,%+g) cu.

Let V be a neighborhood of A suchthat VCW and i (V- A) = 7;(W - A) is

trivial for 0 <i <k. Then (V/A) X (—;— - €, %+ 8) is the required neighborhood of

<A> X%. Conversely, suppose (X/A)XR' - <A> X R' is projectively k-connected
at {(A) x3. Let U be a neighborhood of A. Then (U/A) X R' is a neighborhdod of

< A> X-%. Hence there exists a neighborhood W of <A> X% such that
W c (U/A) X R' and

i 7m(W- (A) xR') = 7;(U/A)xR' - (A) XxR') is trivial (0 <i<Kk).

Let V be a neighborhood of A, and choose € small enough so that
1 1 1
(A> X5 C (V/A) X (E - s,-2-+s) C W.

Then V is the required neighborhood of A.

(3.2) LEMMA. Let X be compact and A C X. If o(X/A) - o({A)) is projec-
tively k-connected at 0(<A> ), then X - A is k-connected. (For the definition of o,
see the end of Section 1.)

Proof. Clearly it suffices to prove that (X/A) X—;— - <A> x% is k-connected.

But ((X/A) x% - <A> X -;-) X R' is homeomorphic to ¢(X/A) - 0(<A>), so it will
suffice to prove that ¢(X/A) - 0({A)) is k-connected. Let

f: St - o(X/A) - o({A)).

Since Si is compact, £(S1) c (X/A) X [g, 1 - €] for some & > 0. By hypothesis, there
exists a neighborhood V of 0(<A>) such that
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i 75V - 0({A))) = 7(0(X/A) - o ({A)))

is trivial. - Since X/A is compact, there is a t3 < 1 such that (X/A) Xt C V when-
ever to<t< 1, Let H be a homotopy of o(X/A) - 0(<A )) into itself that slides
(X/A) x & “vertically” up into (X/A) X ty. This homotopy carries f(S) into

vV - c(<A>). Hence £(S!) bounds in o(X/A) - 0(<A>).

(3.3) LEMMA. Let X be compact, let A C X, and let a be a point of A. If

0(X) - 0(A) is projectively k-connected al a X%, then X - A is projectively k-

connected at a.
Proof. Let U be a neighborhood of a in X. By hypothesis, there exists a neigh-

borhood W of axé such that W C U X (%’743' and

igs my(W - o(A)) — ’iTi(U X (%, %) - O’(A))

is trivial (0 < i < k). Without loss of generality, we may assume that

W=VX (é -0, %-[— 6) for some neighborhood V of a and some 6 > 0. It is easy

to see that i : 7;(V - A) — 7;(U - A) is trivial (0 <i<Kk).

4, SOME SPECIAL CONSTRUCTIONS

(4.1) For n> 3, there exists an avc o in S® such that
(1) o, is wild at each point,

(2) a, is not cellular,

(3) every proper subavc of oy is cellular (and wild).

(Recall that an arc is wild at a point if it is not locally flat at the point, and that a
subset A of an n-manifold is cellular if for each neighborhood U of A there exists

an n-cell Q" such that A C Q* C Q™ C U.)

Proof. Let a3 be the arc (1.1) of [8]. Then S3 - @3 is not 1-connected, and
S3 - @ 3 is not projectively 1-connected at a3. Therefore a4 = oz’g (see Section 2)
is an arc in S% such that S% - @4 is not 1-connected (by 2.1) and not projectively
1-connected at @4 (by 3.2). Similarly, as = ¢’ inherits these two properties, and so
forth. For n> 3, a,=ak_;. Since S™-! - @, _; is not projectively 1-connected at
Q@n.1, it follows from (3.1) that S™ - «@,, is not projectively 1-connected at any inter-
ior point of o,. Hence o, is everywhere wild. Since S™ - o, is not 1-connected,
«, is not cellular. The fact that every proper subarc of o, (n> 3) is cellular is a
consequence of the following observation.

(4.2) If @ is any arc in S®, then every proper subarc of a* is cellular.

This is a special case of a collection of theorems about spaces whose cones are
euclidean at the cone point. For a proof of a theorem implying (4.2), see Rosen [10].

(4.3) For n > 4, there exist a 1-spheve Erll and a point P, € Zrll such that
st - ZIII is not projectively 1-connected at P, (hence E]}l is wild).
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Proof. For n> 3, let a,_; be an arc in s?-1 gsuch that s*-! - 0p.1 is not pro-
jectively 1-connected at @, _;. Let q,_; be a point of S?~!/a,_; other than
(an_y . Then zl = 0({@n-1) Udn-1) is a 1-sphere in S™ = o(8*1/a, 1), and
1

by (3.1), S, - Erll is not projectively 1-connected at Plri = <ozn_1 X35

(4.4) Let n>3, 1 <k <n, n-k #2. Then there exist a k-sphere Zn in S" and
a point P € Ek such that S™ - Ek is not projectively 1-connected at P, (and since
n-k#2 Z}k is wild).

Proof. For n= 3, we have k = 2, and the appropriate example is described in

[8]. Suppose we have constructed a Zﬁ, Pﬁ for all admissible (n, k) with n <ng.

Then by (4.3) we may assume k > 1. But then let ZEO =0 (Zk'l ) , and let

ng-1 _ Ek l

Pﬁ = Pkol1 ><l in the space o(S™) =871 Since S _1 is not projectively

2
1-connected at Pl‘;oh , it follows from (3.3) that S'© - Zﬁ o 18 not projectively 1-

connected at Pﬁo . This completes the proof.

The only case not covered by (4.3) and (4.4) is that in which n - k = 2. But here
we may choose, in S3, the simple closed curve (2.1) of [8] whose complement has a
nonabelian fundamental group. Various suspensions of the 3-sphere and the wild
simple closed curve produce all the required examples for co-dimension 2.

(4.5) An arc in S™ (for n > 3) that pievces no locally flat (n - 1)-sphere.

An arc @ in S" pierces a sphere Z"~ lata point P if for some subarc B of «,
B n =2-1 = P and the endpoints of B are in different components of S™ - =71, The
arcs of (4.1) satisfy (4.5). In fact, we shall prove the following.

(4.6) THEOREM. If ¢ C S™ (n > 3) is a noncellular arc such that every propevr
subarc of a is cellular, then a pievces no locally flat (n - 1)-sphere.

For n = 2 the theorem is vacuous, and for n = 3 it is false. In order to prove
(4.6), we shall need the following lemmas. Since the proofs of the first two lemmas
are similar to those in [4], we shall only outline them. The third lemma is an appli-
cation of a theorem of Cantrell,

LEMMA 1. Suppose B™ is an n-cell, A c B®, and A N B™ is a single point a.
Suppose also that BR/A is homeomorphic to B™. Then therve exists a map
f: B® — B™ such that A =1£-1(a) is the only nondegenevate inverse of a point under f
and f | B*=1,

Proof. Let m: B® — B®”/A be the projection map, and let h: B"/A — B™ be a ho-
meomorphism. Then hm maps B into itself, and the only nondegenerate inverse of
a point under hr is A = (hw)~- 1(b) It is not d1ff1cu1t to show that b € B™ and that
h7 | B® is a homeomorphism of B™ onto itself. Let H be a homeomorphism of B"
such that H| B? = hz | B®. Then f=H 'hr is the required map.

LEMMA 2. Suppose, in addition to the hypotheses of Lemma 1, we are given a
neighbovhood U of A. Then there exists a map g of B™ onto B™ such that
A = g-l(a) is the only nondegenevate inverse of a point under g and
g|B U @B*-U)=1.

Proof. Let f be the map provided by Lemma 1. Then f(U) is a neighborhood of
the point a. Let I' be a homeomorphism of B™ into f(U) such that T’ | V =1, where
V is a (small) neighborhood of a. Then
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f1Tf on B™-A,
h={
1

on A

is a well-defined homeomorphism of B™ into U. Let Q® =h(B™). Then ACQ"CU
and Qn/A is homeomorphic to Q®. This last assertion follows from the fact that
hfh-! maps Q® onto 1tse1f and A = (hfh-1)-1(a) is the only nondegenerate inverse
of a point under hfh-1. Now apph{ Lemma 1 (with Q™ replacing B™), and get a map
g of Q" onto Q™ such that A = g~"(a) is the only nondegenerate inverse of a point
under g, and such that g | Q* = 1. Extend g by the identity map on B™ - Q™. Note

that B® N Q™ = @ (by invariance of domain); so that g | B = 1.

LEMMA 3. Let A C B™ C 8", wheve A is cellular in S®, B" is a ball whose
boundary is locally flat in S®, and A N B is a point. Then B"/A is homeomorphic
to B™ if n # 3.

Prgof. Since A is cellular in S®, S®/A is homeomorphic to S®, by [4]. In
S™/A, B"is locally flat except poss1b1y at the point <A> Hence, by [7], B"® is lo-
cally flat in S?/A, and by [5], B®/A is homeomorphic to B™.

Proof of4.6. Let a € S™ (n # 3) be noncellular wh11e each proper subarc of o
is cellular. Suppose « pierces a locally flat sphere zo-l gt a point P. Let D be a
fixed complementary domain of =®~1. (D is an n-cell by [4], [5].) Let a;, a be
the two subarcs of o determined by P and suppose «] is the arc that is locally in-
side D, near P. (See Figure 1.) Usmg the collar [5] of Z2-! in D, construct a ball
Cn W%th locally flat boundary C™ in S™, so that C® N a, = P. Let Bn be the n-ball
St - C?, Then by Lemma 3, B"/a, is homeomorphic to B®. Let U be a neighbor-
hood of @ in B" such that U N a; = @#. (Note that the points of a, near P are not
in B".,) Then by Lemma 2 there exists a map g of B™ onto B such that
g |B*U (B®- U)=1 and @, = g~1(P) is the only nondegenerate inverse of a point
under g. Extend g by the 1dentity to S - B®, to get a map g of S™ onto S™ such

Figure 1.
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that a2 = g~1(P) is the only nondegenerate inverse of a point under g and g | a); =1

(that g | @) =1 is the crucial fact that makes use of the piercing hypothesis). But by
hypothesis, @] = g(a) is cellular in S™, and hence by [4] there exists a map f of S™

onto S" such that o, is the only nondegenerate inverse of a point under f. Hence

fg maps S™ onto S™, and the only nondegenerate inverse of a point under fg is

g l(a;) =a. By[4], @ is cellular in S™, and this is a contradiction.

(4.7) A wild simple closed curve in S® (n> 3) that has a cartesian-product
neighborhood.

This example is due to K. Kwun. Let @ be a noncellular arc in the interior of a
ball I™ (n> 3). By [1], (I?/a) X R' is homeomorphic to I* X R'. Following [2] (or
directly from [6]), one can prove that (I%/a) X S' is homeomorphic to I X §'. Now
form an (n + 1)-sphere by attaching (I*/a) X S' to sn-l 12, The required simple
closed curve is J = <oz X S'. It has a trivial “normal bundle” in S whose fibre is
I"/a. J of course is wild, but in a completely homogeneous fashion.

(4.8) A tame (and locally flat) 2-cell 124 and an avc a in S% such that

o [o]

aNi2=ani?=1% =1 point

and such that every two-cell sufficiently close to 12 intersects a.

The example is due to Zeeman [11, Chapter 6], and we mention it as an applica-
tion of the construction a*.
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