WILD CELLS AND SPHERES IN HIGHER DIMENSIONS

Morton Brown

Dedicated to R. L. Wilder on his seventieth birthday.

1. INTRODUCTION

The purpose of this paper is to apply a theorem of Andrews and Curtis [1] to get a rapid formula for constructing wild k-cells and k-spheres in S^n . In Section 4 we construct an arc in S^n (n > 3) that pierces no locally flat (n - 1)-sphere. (The somewhat lengthy interval between discovery and publication has led to the prior appearance of applications of and reference to this technique in the literature [9], [11].) Our starting point is the following obvious modification of the results of [1]:

THEOREM (Andrews and Curtis). Let α be an arc in S^n . Then the suspension $\sigma(S^n/\alpha)$ of the quotient space S^n/α is homeomorphic to S^{n+1} . (If X is compact, we use $\sigma(X)$ to denote the quotient space of $X \times [0, 1]$ obtained by pinching $X \times 0$ and $X \times 1$ to points.)

2. THE CONSTRUCTION α^*

Let α be an arc in S^n , and π the projection map $\pi\colon S^n\to S^n/\alpha$. This induces the natural suspensions $\sigma(\pi)\colon \sigma(S^n)\to \sigma(S^n/\alpha)$, where the image and domain spaces are both S^{n+1} . Let $\alpha^*=\sigma(\pi(\alpha))\subset\sigma(S^n/\alpha)$ be the suspension of the point $\langle\alpha\rangle$ of S^n/α . Then α^* is an arc and $\sigma(\pi)\mid\sigma(S^n)-\sigma(\alpha)$ is a homeomorphism onto $\sigma(S^n/\alpha)-\alpha^*$. On the other hand, $\sigma(S^n)-\sigma(\alpha)$ is homeomorphic to $\sigma(S^n-\alpha)\times R'$, since $\sigma(\alpha)$ contains the suspension points. Hence

- (2.1) $\sigma(S^n/\alpha) \alpha^*$ is homeomorphic to $(S^n \alpha) \times R'$.
- (2.2) for every arc $\alpha \subset S^n$ there is an arc $\alpha^* \subset S^{n+1}$ such that $S^n \alpha$ and $S^{n+1} \alpha^*$ have the same homotopy type,
- (2.3) for each $n \geq 3$ there exists an arc in S^n whose complement is not simply connected.
 - We get (2.3) by repeated applications of (2.2) to the arc (1.1) of [8].
- (2.4) For each pair (n, k) with $n \ge 3$ and $1 \le k \le n$, there exists a k-cell in S^n whose complement is not simply connected.

Proof. Let P(n, k) denote the statement of (2.4) for a fixed admissible pair (n, k), and P(n, *) the statement for n fixed and all admissible k. P(3, *) is proved in [8]. Inductively, suppose P(n, *) is true. From (2.3) we have (n + 1, 1). But if k > 1, then P(n + 1, k) follows from P(n, k - 1). For if α^{k-1} is a (k - 1)-cell in Sⁿ and $\pi_1(S^n - \alpha^{k-1})$ is nontrivial, then $\alpha^k = \sigma(\alpha^{k-1})$ is a k-cell in $S^{n+1} = \sigma(S^n)$. Since $\sigma(\alpha^{k-1})$ contains the suspension points, $S^{n+1} - \alpha^k$ is homeomorphic to $(S^n - \alpha^{k-1}) \times R^1$.

Received August 22, 1966.

This research was supported by the National Science Foundation.

3. SOME PRELIMINARY LEMMAS

Let $B \subset A \subset X$, where X is a topological space. Then X - A is k-connected at B if for each neighborhood U of B there exists a neighborhood V of B such that $V \subset U$ and $\pi_i(V - A)$ is trivial for $0 \le i \le k$. The set X - A is projectively k-connected at B if each neighborhood U of B contains a neighborhood V of B such that the induced maps $i: \pi_i(V - A) \to \pi_i(U - A)$ are trivial for $0 \le i \le k$.

(3.1) LEMMA. $(X/A) \times R' - \langle A \rangle \times R'$ is projectively k-connected at $\langle A \rangle \times \frac{1}{2}$ if and only if X - A is projectively k-connected at A. $(\langle A \rangle$ denotes the point determined by A in the quotient space X/A.)

Proof. Suppose X - A is projectively k-connected at A. Let U be a neighborhood of $\langle A \rangle \times \frac{1}{2}$ in $(X/A) \times R'$. Then there is a neighborhood W of A and an $\epsilon > 0$ such that

$$(W/A) \times \left(\frac{1}{2} - \varepsilon, \frac{1}{2} + \varepsilon\right) \subset U$$
.

Let V be a neighborhood of A such that $V \subset W$ and $i_* \colon \pi_i(V - A) \to \pi_i(W - A)$ is trivial for $0 \le i \le k$. Then $(V/A) \times \left(\frac{1}{2} - \epsilon, \frac{1}{2} + \epsilon\right)$ is the required neighborhood of $\left\langle A \right\rangle \times \frac{1}{2}$. Conversely, suppose $(X/A) \times R' - \left\langle A \right\rangle \times R'$ is projectively k-connected at $\left\langle A \right\rangle \times \frac{1}{2}$. Let U be a neighborhood of A. Then $(U/A) \times R'$ is a neighborhood of $\left\langle A \right\rangle \times \frac{1}{2}$. Hence there exists a neighborhood W of $\left\langle A \right\rangle \times \frac{1}{2}$ such that $W \subset (U/A) \times R'$ and

$$i_{\star}$$
: $\pi_{i}(W - \langle A \rangle \times R') \rightarrow \pi_{i}((U/A) \times R' - \langle A \rangle \times R')$ is trivial $(0 < i < k)$.

Let V be a neighborhood of A, and choose ε small enough so that

$$\langle A \rangle \times \frac{1}{2} \subset (V/A) \times \left(\frac{1}{2} - \epsilon, \frac{1}{2} + \epsilon\right) \subset W.$$

Then V is the required neighborhood of A.

(3.2) LEMMA. Let X be compact and $A \subseteq X$. If $\sigma(X/A) - \sigma(\langle A \rangle)$ is projectively k-connected at $\sigma(\langle A \rangle)$, then X - A is k-connected. (For the definition of σ , see the end of Section 1.)

Proof. Clearly it suffices to prove that $(X/A) \times \frac{1}{2} - \langle A \rangle \times \frac{1}{2}$ is k-connected.

But $\left((X/A) \times \frac{1}{2} - \left\langle A \right\rangle \times \frac{1}{2}\right) \times R'$ is homeomorphic to $\sigma(X/A) - \sigma(\left\langle A \right\rangle)$, so it will suffice to prove that $\sigma(X/A) - \sigma(\left\langle A \right\rangle)$ is k-connected. Let

f:
$$S^i \to \sigma(X/A) - \sigma(\langle A \rangle)$$
.

Since S^i is compact, $f(S^i) \subset (X/A) \times [\epsilon, 1 - \epsilon]$ for some $\epsilon > 0$. By hypothesis, there exists a neighborhood V of $\sigma(\langle A \rangle)$ such that

$$i_*: \pi_i(V - \sigma(\langle A \rangle)) \to \pi_i(\sigma(X/A) - \sigma(\langle A \rangle))$$

is trivial. Since X/A is compact, there is a $t_0 < 1$ such that $(X/A) \times t \subset V$ whenever $t_0 \le t \le 1$. Let H be a homotopy of $\sigma(X/A) - \sigma(\langle A \rangle)$ into itself that slides $(X/A) \times \epsilon$ "vertically" up into $(X/A) \times t_0$. This homotopy carries $f(S^i)$ into $V - \sigma(\langle A \rangle)$. Hence $f(S^i)$ bounds in $\sigma(X/A) - \sigma(\langle A \rangle)$.

(3.3) LEMMA. Let X be compact, let $A \subset X$, and let a be a point of A. If $\sigma(X) - \sigma(A)$ is projectively k-connected at $a \times \frac{1}{2}$, then X - A is projectively k-connected at a.

Proof. Let U be a neighborhood of a in X. By hypothesis, there exists a neighborhood W of a $\times \frac{1}{2}$ such that W \subset U $\times \left(\frac{1}{4}, \frac{3}{4}\right)$ and

$$i_*: \pi_i(W - \sigma(A)) \rightarrow \pi_i\left(U \times \left(\frac{1}{4}, \frac{3}{4}\right) - \sigma(A)\right)$$

is trivial $(0 \le i \le k)$. Without loss of generality, we may assume that $W = V \times \left(\frac{1}{2} - \delta, \frac{1}{2} + \delta\right)$ for some neighborhood V of a and some $\delta > 0$. It is easy to see that $i_* \colon \pi_i(V - A) \to \pi_i(U - A)$ is trivial $(0 \le i \le k)$.

4. SOME SPECIAL CONSTRUCTIONS

- (4.1) For n > 3, there exists an arc α_n in S^n such that
- (1) α_n is wild at each point,
- (2) α_n is not cellular,
- (3) every proper subarc of α_n is cellular (and wild).

(Recall that an arc is wild at a point if it is not locally flat at the point, and that a subset A of an n-manifold is cellular if for each neighborhood U of A there exists an n-cell Q^n such that $A \subset \overset{\circ}{Q}{}^n \subset Q^n \subset U$.)

Proof. Let α_3 be the arc (1.1) of [8]. Then S^3 - α_3 is not 1-connected, and S^3 - α_3 is not projectively 1-connected at α_3 . Therefore α_4 = α_3^* (see Section 2) is an arc in S^4 such that S^4 - α_4 is not 1-connected (by 2.1) and not projectively 1-connected at α_4 (by 3.2). Similarly, α_5 = α_4^* inherits these two properties, and so forth. For n > 3, $\alpha_n = \alpha_{n-1}^*$. Since S^{n-1} - α_{n-1} is not projectively 1-connected at α_{n-1} , it follows from (3.1) that S^n - α_n is not projectively 1-connected at any interior point of α_n . Hence α_n is everywhere wild. Since S^n - α_n is not 1-connected, α_n is not cellular. The fact that every proper subarc of α_n (n > 3) is cellular is a consequence of the following observation.

(4.2) If α is any arc in S^n , then every proper subarc of α^* is cellular.

This is a special case of a collection of theorems about spaces whose cones are euclidean at the cone point. For a proof of a theorem implying (4.2), see Rosen [10].

(4.3) For $n \geq 4$, there exist a 1-sphere Σ_n^l and a point $P_n \in \Sigma_n^l$ such that $S^n - \Sigma_n^l$ is not projectively 1-connected at P_n (hence Σ_n^l is wild).

- *Proof.* For n>3, let α_{n-1} be an arc in S^{n-1} such that $S^{n-1}-\alpha_{n-1}$ is not projectively 1-connected at α_{n-1} . Let q_{n-1} be a point of S^{n-1}/α_{n-1} other than $\left<\alpha_{n-1}\right>$. Then $\Sigma_n^1=\sigma(\left<\alpha_{n-1}\right>\cup q_{n-1})$ is a 1-sphere in $S^n=\sigma(S^{n-1}/\alpha_{n-1})$, and by (3.1), $S_n-\Sigma_n^1$ is not projectively 1-connected at $P_n^k=\left<\alpha_{n-1}\times\frac{1}{2}\right>$.
- (4.4) Let $n \geq 3$, $1 \leq k < n$, $n k \neq 2$. Then there exist a k-sphere Σ_n^k in S^n and a point $P_n \in \Sigma_n^k$ such that $S^n \Sigma_n^k$ is not projectively 1-connected at P_n (and since $n k \neq 2$, Σ_n^k is wild).
- *Proof.* For n = 3, we have k = 2, and the appropriate example is described in [8]. Suppose we have constructed a Σ_n^k , P_n^k for all admissible (n, k) with n < n_0. Then by (4.3) we may assume k > 1. But then let $\Sigma_{n_0}^k = \sigma\left(\Sigma_{n_0-1}^{k-1}\right)$, and let $P_{n_0}^k = P_{n_0-1}^{k-1} \times \frac{1}{2}$ in the space $\sigma(S^n) = S^{n+1}$. Since $S^{n_0-1} \Sigma_{n_0-1}^{k-1}$ is not projectively 1-connected at $P_{n_0-1}^k$, it follows from (3.3) that $S^{n_0} \Sigma_{n_0}^k$ is not projectively 1-connected at $P_{n_0}^k$. This completes the proof.

The only case not covered by (4.3) and (4.4) is that in which n - k = 2. But here we may choose, in S^3 , the simple closed curve (2.1) of [8] whose complement has a nonabelian fundamental group. Various suspensions of the 3-sphere and the wild simple closed curve produce all the required examples for co-dimension 2.

- (4.5) An arc in S^n (for n > 3) that pierces no locally flat (n 1)-sphere.
- An arc α in S^n pierces a sphere Σ^{n-1} at a point P if for some subarc β of α , $\beta \cap \Sigma^{n-1} = P$ and the endpoints of β are in different components of $S^n \Sigma^{n-1}$. The arcs of (4.1) satisfy (4.5). In fact, we shall prove the following.
- (4.6) THEOREM. If $\alpha \subset S^n$ (n > 3) is a noncellular arc such that every proper subarc of α is cellular, then α pierces no locally flat (n 1)-sphere.
- For n = 2 the theorem is vacuous, and for n = 3 it is false. In order to prove (4.6), we shall need the following lemmas. Since the proofs of the first two lemmas are similar to those in [4], we shall only outline them. The third lemma is an application of a theorem of Cantrell.
- LEMMA 1. Suppose B^n is an n-cell, $A \subset B^n$, and $A \cap B^n$ is a single point a. Suppose also that B^n/A is homeomorphic to B^n . Then there exists a map $f \colon B^n \to B^n$ such that $A = f^{-1}(a)$ is the only nondegenerate inverse of a point under f and $f \mid B^n = 1$.
- *Proof.* Let $\pi\colon B^n\to B^n/A$ be the projection map, and let $h\colon B^n/A\to B^n$ be a homeomorphism. Then $h\pi$ maps B^n into itself, and the only nondegenerate inverse of a point under $h\pi$ is $A=(h\pi)^{-1}(b)$. It is not difficult to show that $b\in B^n$ and that $h\pi\mid \dot{B}^n$ is a homeomorphism of \dot{B}^n onto itself. Let H be a homeomorphism of B^n such that $H\mid \dot{B}^n=h\pi\mid B^n$. Then $f=H^{-1}h\pi$ is the required map.
- LEMMA 2. Suppose, in addition to the hypotheses of Lemma 1, we are given a neighborhood U of A. Then there exists a map g of B^n onto B^n such that $A = g^{-1}(a)$ is the only nondegenerate inverse of a point under g and $g \mid \dot{B}^n \cup (B^n U) = 1$.
- *Proof.* Let f be the map provided by Lemma 1. Then f(U) is a neighborhood of the point a. Let Γ be a homeomorphism of B^n into f(U) such that $\Gamma \mid V = 1$, where V is a (small) neighborhood of a. Then

$$h = \begin{cases} f^{-1} \Gamma f & \text{on } B^n - A, \\ 1 & \text{on } A \end{cases}$$

is a well-defined homeomorphism of B^n into U. Let $Q^n=h(B^n).$ Then $A\subset Q^n\subset U$ and Q^n/A is homeomorphic to Q^n . This last assertion follows from the fact that $h\,f\,h^{-1}$ maps Q^n onto itself and $A=(h\,f\,h^{-1})^{-1}(a)$ is the only nondegenerate inverse of a point under $h\,f\,h^{-1}$. Now apply Lemma 1 (with Q^n replacing B^n), and get a map g of Q^n onto Q^n such that $A=g^{-1}(a)$ is the only nondegenerate inverse of a point under g, and such that $g\mid \dot{Q}^n=1.$ Extend g by the identity map on B^n - Q^n . Note that $\dot{B}^n\cap \overset{\circ}{Q}^n=\emptyset$ (by invariance of domain), so that $g\mid \dot{B}^n=1.$

LEMMA 3. Let $A \subset B^n \subset S^n$, where A is cellular in S^n , B^n is a ball whose boundary is locally flat in S^n , and $A \cap \dot{B}^n$ is a point. Then B^n/A is homeomorphic to B^n if $n \neq 3$.

Proof. Since A is cellular in S^n , S^n/A is homeomorphic to S^n , by [4]. In S^n/A , \dot{B}^n is locally flat except possibly at the point $\langle A \rangle$. Hence, by [7], \dot{B}^n is locally flat in S^n/A , and by [5], B^n/A is homeomorphic to B^n .

Proof of 4.6. Let $\alpha \subset S^n$ (n \neq 3) be noncellular while each proper subarc of α is cellular. Suppose α pierces a locally flat sphere Σ^{n-1} at a point P. Let D be a fixed complementary domain of Σ^{n-1} . (D is an n-cell by [4], [5].) Let α_1 , α_2 be the two subarcs of α determined by P, and suppose α_1 is the arc that is locally inside D, near P. (See Figure 1.) Using the collar [5] of Σ^{n-1} in D, construct a ball C^n with locally flat boundary \dot{C}^n in S^n , so that $C^n \cap \alpha_2 = P$. Let B^n be the n-ball $S^n - \mathring{C}^n$. Then by Lemma 3, B^n/α_2 is homeomorphic to B^n . Let U be a neighborhood of α_2 in B^n such that $U \cap \alpha_1 = \emptyset$. (Note that the points of α_2 near P are not in B^n .) Then by Lemma 2 there exists a map g of B^n onto B such that $g \mid \dot{B}^n \cup (B^n - U) = 1$ and $\alpha_2 = g^{-1}(P)$ is the only nondegenerate inverse of a point under g. Extend g by the identity to $S^n - B^n$, to get a map g of S^n onto S^n such

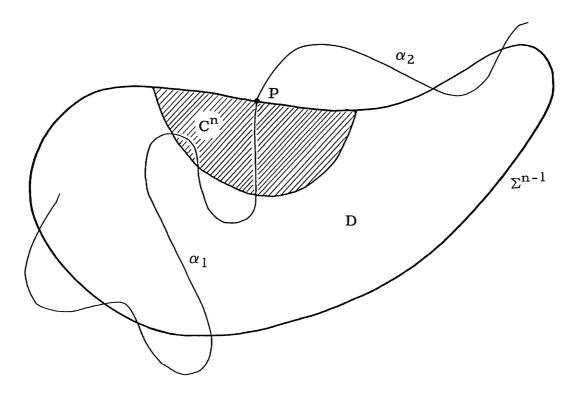


Figure 1.

that $\alpha_2 = g^{-1}(P)$ is the only nondegenerate inverse of a point under g and $g \mid \alpha_1 = 1$ (that $g \mid \alpha_1 = 1$ is the crucial fact that makes use of the piercing hypothesis). But by hypothesis, $\alpha_1 = g(\alpha)$ is cellular in S^n , and hence by [4] there exists a map f of S^n onto S^n such that α_1 is the only nondegenerate inverse of a point under f. Hence fg maps S^n onto S^n , and the only nondegenerate inverse of a point under f is $g^{-1}(\alpha_1) = \alpha$. By [4], α is cellular in S^n , and this is a contradiction.

(4.7) A wild simple closed curve in $S^{\rm n}$ (n > 3) that has a cartesian-product neighborhood.

This example is due to K. Kwun. Let α be a noncellular arc in the interior of a ball I^n ($n \ge 3$). By [1], $(I^n/\alpha) \times R'$ is homeomorphic to $I^n \times R'$. Following [2] (or directly from [6]), one can prove that $(I^n/\alpha) \times S'$ is homeomorphic to $I^n \times S'$. Now form an (n+1)-sphere by attaching $(I^n/\alpha) \times S'$ to $S^{n-1} \times I^2$. The required simple closed curve is $J = \langle \alpha \rangle \times S'$. It has a trivial "normal bundle" in S whose fibre is I^n/α . J of course is wild, but in a completely homogeneous fashion.

(4.8) A tame (and locally flat) 2-cell I^2 and an arc α in S^4 such that

$$\alpha \cap I^2 = \overset{\circ}{\alpha} \cap \overset{\circ}{I}^2 = \overset{\circ}{I}^2 = 1 \text{ point}$$

and such that every two-cell sufficiently close to I^2 intersects α .

The example is due to Zeeman [11, Chapter 6], and we mention it as an application of the construction α^* .

REFERENCES

- 1. J. J. Andrews and M. L. Curtis, n-space modulo an arc, Ann. of Math. (2) 75 (1962), 1-7.
- 2. R. H. Bing, The cartesian product of a certain nonmanifold and a line is E⁴, Ann. of Math. (2) 70 (1959), 399-412.
- 3. W. A. Blankinship, Generalization of a construction of Antoine, Ann. of Math. (2) 53 (1951), 276-297.
- 4. M. Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960), 74-76.
- 5. ——, Locally flat imbeddings of topological manifolds, Ann. of Math. (2) 75 (1962), 331-341.
- 6. ——, A note on Cartesian products (to appear).
- 7. J. C. Cantrell, Almost locally flat embeddings of Sⁿ⁻¹ in Sⁿ, Bull. Amer. Math. Soc. 69 (1963), 716-718.
- 8. R. H. Fox and E. Artin, Some wild cells and spheres in three-dimensional space, Ann. of Math. (2) 49 (1948), 979-990.
- 9. H. Gluck, Embeddings in the trivial range, Bull. Amer. Math. Soc. 69 (1963), 824-831.
- 10. R. H. Rosen, Stellar neighborhoods in polyhedral manifolds, Proc. Amer. Math. Soc. 14 (1963), 401-406.
- 11. E. C. Zeeman, Seminar in combinatorial topology, Institut des Hautes Études Scientifiques (1963).

The University of Michigan