THE REGULAR CONVERGENCE THEOREM

C. N. Lee

Dedicated to R. L. Wilder on his seventieth birthday.

INTRODUCTION

The concept of regular convergence dates back to Whyburn [15], Wilder [14], and
White [13]. A powerful theorem of E. E. Floyd [6, (2.3)], relating the Cech homology
groups of compact Hausdorff spaces and their finite closed coverings, unifies several
other theorems on regular convergence. The cohomology version of this theorem by
Floyd was formulated and proved by E. Dyer [4, Theorem 1] by means of Leray’s
sheaf theory. This was the key theorem upon which Floyd based his proof of the
major part of the conjecture by D. Montgomery that any compact Lie group acting on
a compact manifold has only a finite number of conjugate classes of isotropy sub-
groups [6, Chapters 4 and 5].

The purpose of the present paper is to extend the theorem of Floyd to a larger
class of spaces (see Theorems 3.3 and 3.6 below). As an application, we prove that
the Borel-Moore homology groups with compact supports are naturally isomorphic
with the singular homology groups on the class of locally compact Hausdorff HL.C
spaces (see Theorem 4.2).

The author is indebted to R. L. Wilder and F. Raymond for their encouragement
of this work.

1. AXIOMATIC HOMOLOGY THEORY

We shall generally follow the notation and terminology of Eilenberg and Steenrod
in [5]. Thus, a homology H, is defined on an admissible category .# so that it sat-
isfies the seven axioms. Typical categories .« with which we shall be concerned
are « 1y, which consists of all Hausdorff pairs and all continuous maps between such
pairs, and 2/, which consists of pairs (X, A) such that X and A are of the homotopy
type of a CW-complex and all continuous maps between such pairs. We adopt the
convention that whenever we apply a functor to an object, the object is assumed to be
in the category on which the functor is defined.

We shall consider some additional axioms for homology theory H, .

Compact Support Axiom. If z € Hq(X, A), there exists a compact pair
(X', A') € (X, A) such that z € Im(H (X‘ A')—H (X A)).

A homology theory satisfying this axiom is called a komology theory with com-
pact supports. Clearly, the singular homology theory over any coefficient group
satisfies this axiom. Later in this section we shall consider another homology
theory with compact support, namely the one considered by Borel and Moore in [3].

In [10], J. Milnor considered the following axiom for homology theory H,
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Additive Axiom. If a space X is the disjoint union of open subsets X, of X,
then the homomorphisms

Hy(Xy) = Hy(X)

induced by the inclusion maps Xg C X provide a representation of Hy(X) as the
direct sum of the Hq(Xq).

The dual statement for cohomology theory, with “direct sum” replaced by “direct
product,” is also called the additive axiom. A homology (or cohomology) theory
satisfying the additive axiom is said to be additive. It is easy to see that any homol-
ogy theory with compact supports is additive. Clearly, the singular homology theory
is also additive. In fact, Milnor proved in [10] that any additive homology theory H,
is isomorphic with the singular homology theory (over the same coefficient group
H(point)) on the category 9#. Making use of this, we shall set up a natural transfor-
mation T from a singular homology theory (which we shall denote by H:) to an
arbitrary homology theory H, with compact supports over the same coefficient
group. For definiteness, we shall work in the category .#;, and we assume that the
homology theories are defined on #1; . For any space Y, we shall denote by SY the
singular complex over Y, by |SY| its geometric realization given by J. B. Giever
[7], and by r: |SY| — Y the natural projection maps. For each pair (X, A) in «fqg,
we define a homomorphism

Ty ot HE(X, A) - H(X, A)

as the composition of
s I‘;l s Tk
H (X, A) 3 H(|sx]|, [sA]) - H(|sx], |sA]) — HX, A),

where the unlabelled map is the natural isomorphism given by Milnor. Inasmuch as
the map r and the Milnor equivalence are natural with respect to maps of pairs, so
is the transformation T: Hi —H . In particular, if H = Hi’ , then T is an equiva-
lence. We summarize these relations:

LEMMA 1.1. Theve exists a natuval trvansformation T, from the singulay ho-
mology theory over a coefficient group to an arbitvarily given homology theory with
compact supports over the same coefficient group, such that T is an equivalence on
U,

The remainder of this section is devoted to a brief description of the relative
form of the Borel-Moore homology theory with compact supports. First recall from
[3] that Borel and Moore defined single space homology theory with compact supports
on the category of locally compact Hausdorff spaces and proper maps. Following the
suggestion by F. Raymond [11], we shall first define, for compact Hausdorff pairs
(X, A), the Borel-Moore homology group H (X A) of the single space X - A with
compact supports over any fixed coeff101ent group. The naturality of Hc with re-
spect to maps is easily seen from the naturality of the Borel-Moore homology
theory. Now, following the suggestion of Eilenberg and Steenrod [5, p. 255], we ex-

tend HZ to the category /1y of all Hausdorff pairs by
Hg(X, A) = Dir Lim Hq(X), A)),

where the (X) , A)) are compact pairs contained in (X, A). The naturality of this
extended Ha follows from that of the original Hfl. Eilenberg and Steenrod [5, p. 225]
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suggest as an exercise the problem of showing that the extended Hi is also a homol-
ogy theory on 3. Furthermore, the extended homology theory clearly satisfies the
compact support axiom. We shall call this homology theory the (»elative) Borel-
Moore homology theory with compact supports.

2. HOMOLOGY SPECTRAL SEQUENCE OF AN OPEN COVERING

In order to state our theorem on homology spectral sequences, we need the dual
concept of what Godement called a system of coefficients on a simplicial complex (6,
pp. 42-44}. We shall call Godement’s system a cohomology coefficient system, and
we define its dual as follows.

A howmology coefficient system & on a simplicial complex K consists of
(L--1) an abelian group ¥ s for each simplex o of K, and

(L.-2) a homomorphism ¥ J:: 5"? — F 4 for each pair o', ¢ with o' < ¢ such
that if o" < o' < 0, then ’1[/8:" = gbgu I,Ugi .

If we regard K as a category whose objects are simplicies and whose morphisms
are incidence relations, then such a system ¥ may be regarded just as a contravar-
iant functor from K into the category b of abelian groups, and vice versa. In this
sense, a cohomology coefficient system on K is a covariant functor from K (re-
garded as a category) into #b.

For each orientation on K, we define the chain complex C*(K; F) to be the set

of all functions c: K — U &, such that c(oc) € 5 and c(o) = 0 except for a finite
number of 0. As usual, we require that c respect orientations of simplicies. Thus,
if we denote by go (0 € K, g € %) the element called an elementary chain of
C,(K; #) (characterized by (go)(c) =g and (go)(7) =0 for 7 # 0), then each
ceC.(K; F ) is a finite sum of elementary chains. We define the boundary homo-
morphism 3: C, (K; #) — C_(K; #) by

a(go) = 22 yI([o: Tlg)T,
T

where [o: 7] is the incidence number. Consequently, the homology group H*(K; F)
is defined to be the homology group of the chain complex (C,(K; #),2). Itisa
standard exercise to show that H (K; #) is independent of the orientation of K.
Note also that there is the canonical way of grading C,(K; #), and hence H_(K; %),
by means of the dimension of the simplicies. Finally, if K' is another simplicial
complex and Z' is a coefficient system for K', and if f: K — K' is a simplicial map
and F: 4 — &' is a natural transformation compatible with f, then the induced ho-
momorphism H (K; #) — H (K'; #') is well-defined in the obvious way.

Example 2.1. Let & be a covariant functor from the category of all open sub-
sets of a space X and inclusion maps into the category b of abelian groups and
homomorphisms. We shall assume that # (empty set) = 0. If o is an open covering
of X, then we define the local system (denoted by # ®) for the nerve Xa by the
formula F; = F(cary (0)); here

cary (o) = Uiy N N uiq,

where {uio’ . uiq} is the set of all vertices of ¢ € X, ; if 7 < 0, then
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Y$: F(car,, (0)) — F(cary (7))

is the homomorphism induced by the inclusion map carg (0) C cary (7). We denote
the homology group of Xy over such a coefficient system by H, (Xo; & ¥). If B is
another open covering of X and 8 refines «, then there exists a unique homomor-
phism 7,: H,(Xg; FP) — H, (Xg; #?) induced by a projection map 7: § — a. The
cohomology form of all these is well known (see Godement [6, Chapter II, Section 5],
for example).

THEOREM 2.2. Let Hy be a homology theory with compact supports defined on
Ay, If a is a locally finite open covering of a normal space X, theve exists a ho-
mology spectral sequence E(a) = {E;’q} such that

2

EP:q

~ Hp(Xy; #g),

where X & is the coefficient system defined by #q(c) = Hy(cary (o)) (see Example
2.1 above), and En is the graded group of a suitable filtration of Hn(X). Further-
move, if f: X - Y is a map between the normal spaces, and if @ and B ave locally
finite open coverings of X and Y, vespectively, such that f(a) vefines B, then theve
is an induced homomorphism E(a) — E(B) compatible with f,: H,(X) — H,(Y).

Since we shall publish a more general result in a forthcoming joint paper with
F. Raymond, we shall state the definition of such a spectral sequence, but only out-
line the proof of the conclusions.

Following E. Dyer in [4], we consider the subspace 2o = Ucara ()% |o]| of
the product space X X |Xa ] , where the union is taken over the set of all simplices
0 € X, . It is not difficult to see that the projection map &5 — X is a homotopy
equivalence, provided X is normal and « is locally finite. In fact, we take the
canonical map ¢y: X — IXa l, defined by means of a partition of unity; then the map

x 5 -'.@”a defined by ¥4 (x) = (%, ¢o(x)) is a homotopy inverse of the projection map
&y — X. Furthermore, the projection map %o — |Xy| composed with ¥ is iden-
tical with ¢, . The construction &, is natural with respect to maps X — Y and the
compatible projection maps between the open coverings.

The desired spectral sequence is now obtained from the exact couple (as defined
by Hu [9, p. 234]) that is associated with the filtration

¢=Q”&l cadcal c-,

of &, , where &8 =771 |XB |, where m: &, — |X,| is the projection map, and
where |X5| is the p-skeleton of the polyhedron of the nerve X, . In the forthcom-

ing paper mentioned earlier, we shall show the computation of the EIZJq to confirm
the conclusion. Furthermore, using the notation of Hu [9], we see that

Eyq = Dy o/Dp-1,qs1  and  Dir Lim Hy(2h) = Hp(a,).

p—®

This is how we get the conclusion about E;, stated in the theorem. The last state-
ment about the naturality of the spectral sequence is the consequence of the natural-
ity of the construction of 2°y, . This completes the outline of the proof.

REMARK 2.3. If we assume that Hq(U) =0 for q <0 and every open subset U
of X, then the composition of the homomovphisms
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— epi o mono
H,(X) Dy o — En,o EZ o ~ Hy(Xa; #0) = Hp(Xq)

is equivalent to the homomorphism Hy(X) — H,(X,) induced by the canonical map
gt X = Xy .

Proof. Take the filtration of 2, as before, and that of | Xy | Dby its skeletons.
Then the projection map 7: & — |Xa| preserves the filtration, and hence it in-

duces a homomorphism of the spectral sequence of %7, into that of |Xa | Now the
conclusion follows, since the spectral sequence of |Xa| collapses.

REMARK 2.4. The cohomology spectral sequence of a locally finite open cover-
ing can be obtained in the same way as for homology in Theorem 2.2 provided that
the cohomology theory used satisfies the additive axiom.

REMARK 2.5. We could also obtain Theorem 2.2 for a locally finite closed
covering of X instead of an open covering, provided that the inteviors of the sets of
the closed covering make a covering of the space X. (This latter vequivement en-
sures that the covvesponding projection map Xy — X is still a homotopy equiva-
lence.) We can say the same for cohomology.

3. THE REGULAR CONVERGENCE THEOREM

In this section, we suppose that H, is a fixed homology theory with compact
supports defined on 7.

A map f: X — Y is said to be homologically locally n-trivial with respect to H,
if for each x € X and an open neighborhood u of y = f(x) there exists an open
neighborhood v of x such that f(v) C u and the induced homomorphism
ﬁq(v) — ﬁq(u) is trivial for all q < n, where

ﬁq(Z) = Ker (H(Z) — H (point))
for any space Z. The concept of a cohomologically locally n-trivial map is simi-

larly defined for a given cohomology theory.

A special case of the following lemma was proved by Floyd [4, (2.2)] for finite
closed coverings.

LEMMA 3.1. Lel X and Y be parvacompact Hausdovff spaces. If f: X — Y is
homologically locally n-trivial, then for each open covering B of Y theve exist a
locally finite open covering « of X and a projection map w: a@ — B with f(u) C 7 (u)
(u € o) such that the induced homomorphism

f.: Hq(ui NN u, ) — Hq(wuiO NN wuip)

0 P
is trivial for q <n.

The lemma can be proved by an easy modification of the argument given by
Floyd [4].

The cohomology version of Lemma 3.1 is easily formulated and similarly proved.
REMARK 3.2. Let £: X — Y and m: a — B satisfy the conditions in the preceeding

T
lemma, with n=0. Then the coefficient system Im (J‘fg =3 (%g) over the nerve YB
is isomovphic with the simple system Hgy(point).
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This follows immediately from the definitions of the reduced homology group ﬁ* ,
the homology local O-triviality, and the commutative diagram

Ho(uio N..nN Uip) - Ho(point)
L1, =
Ho(wuio NN Truip) — Hp(point) .

THEOREM 3.3 (Regular Convevgence). Assume Hq=0 for q<0. Let 1 XY
be the composition of n+ 1 maps

£ £
'X=X0—>X1——> "'—>Xn—> Xn+1=Y

such that each map is homologically locally n-trivial and each X, is a pavacompact
Hausdovff space. Then, for each open coveving B of Y, there exist a locally finite
open covering o of X and a projection map m: @ — B with f(u) C 7(u) (u € a) such
that in the commutative diagram

¢a*
HyX) - Hy(Xa)
l £y l Ty
bk

B
HL(Y) — H(Yp)

we have the inclusion relations
(1) Ker byx C Kerf, for p<n,

(2) Imﬂ*CImq)B* for p<n+1.

Proof. We shall follow the general idea of Dyer in his proof of the correspond-
ing theorem [3, Theorem 1]. By repeated application of Lemma 3.1, we find for
each j a locally finite open covering aj of Xj and a projection map Tjt Q5 — Q44
with fj(u) C m; () (ue ozj) that induces the trivial homomorphism

Hp(ui, N - N uiq) — Hp(mjuj, N -+ N uiq)

for p <n and all q. Here we assume without loss of generality that a,;; = B.

Let E(ozj) = {J-E;’q} be the spectral sequence of the covering aj, and let
Bj: E(aj) — E(Otj+1) be the induced homomorphism for each j < n. We know by the
definition of «j that jE{,,q — j+1E;,q is the trivial homomorphism for 1 < q < n,
1 <r <, and all p. Denote by ;Dp,q the Dp g-term for E(aj). Since jDp,q =0
for p <0, H,(X;) = ;Dg n-

To prove (1), it is clearly sufficient to consider only the case p =n. Let
a € H (X) with ¢a*(a) = 0. We need only show that (fg **- fi),(a) € 14 1Dn-k-1,k+1
for each k, since then the particular case k = n reduces to the relation

(fg -+ fp)i(a) € n+15-1,n+1 =0
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and hence a € Ker f,. We shall do this by an induction on k. Consider the commu-
tative diagram

epi  mono

Hn(X) OEn, 0

0En,o

Hox | |

epi w Mono
H, (X)) — 1En,0 — 1En,0.

From Lemma 3.2 it follows that the image of a under the homomorphism composed
of the two horizontal maps in the upper line, followed by the vertical map on the far
right, is zero. Hence the image of f () under the homomorphism H,_(X;) — lEn 0

is zero. This implies that f *(a.) € D 11 Now let k > 0, and assume that we

have already proved (£ - fk)*(a) € k+1Dn-k—1,k+1 for smaller k. Consider the
commutative diagram
incl _ proj 0o

—_— . —_— . —_— 0

p-1,qtl i¥p.q Fpra

| |

. incl _ proj -
0 — 541Dp_1,q+1 — j+1Pp,q — j+1Ep,q — 0.

0—-»J-D

We complete the induction by inspection of this diagram, for j=k+1, p=k + 2, and
n=p-+q.

In order to prove (2), it is sufficient to consider the case p=n+1. Let
a € Hy;(X4). We must show that gbB*(b) =7,(a) for some b € Hp;(Y). From

Lemma 3.2 it follows that there is a b; € 1E1?I+1,0 such that 651*(b = 770*(21),
where 551*: 1E121+1,0 - Hn+1(Xa1)' Now, we need only show 6, ---8,(b,) = b, repre-
sents an element of kEﬁH,O for k=1, **, n+ 1, since then b,;; represents an
element of n+1EEi% 0= nt1Ent1,0 = Hp+1(Y). Consider the commutative diagram

d

2 2
1Bnt1,0 = 1Bn-1,0
|91 } 91

d,

2
2Eni1,0 — 2Bn-1,1-

Since 6 is trivial on (EZ_j o, we see that dz 61(b1) = 0, and this implies that
61(b1) = b2 represents an element of ZE%H,O . Repeating a similar argument, we
get the conclusion; this completes the proof of Theorem 3.3.

REMARK 3.4. In Theorem 3.3, we made the unfortunate assumption that Hq =0
for q < 0; this excludes the example of the Borel-Moore homology theory with com-
pact supports. Denole this latter homology theory by H;f Then Ha =0 for q< -1,
and we can prove the same theovem for Hf; , wheve the number of factor maps must

be incrveased by one. The proof, although more complicated, involves no new essen-
tial difficulty, and we leave it to the reader.
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Assume that Hq =0 for q <-1.

COROLLARY 3.5. Let X be a locally compact Hausdorff space that is homolog-
tcally locally n-comnnected; in othev wovds, let the identity map 1x: X — X be homo-
logically locally n-trivial. If A and B ave compact subsets of X with A C Int B,
and if B is a finite open covering of B, then theve exists a finite open covering «
that vefines B, and such that in the diagram

¢ 4
Hy(A) 2 Hy(A,)

}ig | 7y
¢B* ,
Hq(B) L Hq(BB)

we have the inclusion velations

(1) Ker ¢ , C Keri, for q<n,
) o
(2)Im1T*CImqb‘8,|< for q <n+1.
Proof. Simply take n + 1 intermediate compact subsets
A=A_1CA0C"'C AnCAn+1=B

such that A; C Int A;;; for all i. Clearly, the inclusion map A; C A;;; is n-trivial,
Now the conclusion follows from Theorem 3.3 and the subsequent remark.

For completeness, we shall record without proof the cohomology version of
Theorem 3.3 that was first formulated by Dyer [4, Theorem 1]. Let H* be an addi-
tive axiomatic cohomology theory defined on +; (see Section 1).

THEOREM 3.6, Assume H1=0 for q < 0. Let f: X —» Y be the composition of
n + 1 maps each of which is cohomologically locally n-trivial, and suppose the
spaces involved are paracompact Hausdovff spaces. Then, for each open covering 3
of Y, theve exist a locally finite open covering a of X and a projection map
m: B — a with f(u) c 7(u) (u € a) such that in the diagram

P (i%(l P
HP(X) - HY(X,)

e* fa*

¢
HP(Y) B HY(Y )
we have the inclusion velation
(1) Kertbé"CKerﬂ* for p<n+1,
(2) Imf*clmqsz Sor p <n.

REMARK 3.7. Theovems 3.3 and 3.6 can also be proved for locally finite
closed coverings, provided the inteviors of the sets of each covering constitute an

open covering.
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4. APPLICATION

We shall say that a space X is HLC" with respect to a homology theory H, if
the identity map of X onto itself is homologically locally n-trivial with respect to
H,. HLC™ is the homology version of CL.C". Denote by Hi the singular homol-
ogy theory over a fixed coefficient group R, and by Hi the Borel-Moore homology
theory with compact supports over the same coefficient group R. HLC" with re-
spect to H: with R = Z (the group of integers) is merely called HLC", and HLC"
with respect to Hi with R = Z is called hlc".

LEMMA 4.1. Let X be a locally compact Hausdovff space. If X is HLC", then
X is hle™-!,

This is easy to prove, and hence we leave it to the reader.

Now, recall from Section 1 the natural transformation T: Hi — HS, which is an

equivalence on the category 9¢. The following theorem implies that T is also an
equivalence on HLC spaces.

THEOREM 4.2. Let (X, A) be a Hausdovff pairv. If X and A are of the homo-
topy type of a locally compact Hausdovff space that is HLC™, then

Tx,a* HyX, A) — H((X, A)

is an isomoyphism for q < n - 1, and it is surjective for q = n.

Proof. We need only prove the theorem for A = @, since the relative form stated
above will then follow from the Five Lemma. It is also sufficient to consider the
case where X is actually a locally compact Hausdorff space and is HLC™,

We shall encounter the diagram

H5(A) — Hg(Ay) > Hg(Ag) « HG(A)
! ! ! !
Hg(B) — Hy(Bg) - Hy(Bg) — H(B)
! ! ! !

Hg(C) — HY(C,)

2 |4 2|3

2 (X

Hg(C,) < H(C),

where A C B C C are compact subsets of X and a > 8 > y are their respective
finite open coverings.

To see the injectivity of Tx on H§(X), let a € H§(X), with Tx(a) = 0. By the
compact support axiom, there exist a compact subset A of X and an element
a'e Hfi(X) such that:a = i (a'), where i: A C X. Since

0 = Tp(a) = Txi,a') =i, Tp(a") € Hg(A),

there is a compact subset B with A C B such that j, T a(a') = 0, where j: A C B.
This follows from the general fact that

Dir Lim H;(c) ~ H,fl(X),
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where the limit is taken over the set of all compact subsets C of X; this is true for
any homology theory with compact supports (see Spanier [12, p. 204]). We take
another compact subset C with B C Int C, and by applying Corollary 3.4 we can find
finite open coverings a > >y of A, B, and C, respectively, such that

Ker (H:(B) — HZ(BB)) C Ker (H5(B) — Hg(C)) (g <n).

It follows by easy diagram-tracing on the above diagram that a' is mapped onto O,
under the homomorphism Hg(A) — H§(C). Hence a =0, and this completes the proof

of the injectivity of Ty, for q <n.

To see the surjectivity of Tx, let a € HS(X) (g <n -1). By the compact sup-
port axiom, there exist a compact subset A and a' € Hg(A) such that i (a') = a,

where i: A C X, Choose any compact subsets B and C such that A € Int B and

B C Int C. Since X is hle®-! (by Lemma 4.1), we can apply the regular converg-
ence theorem, and get finite open coverings a > g > y for A, B, and C, respectively,
such that

Im (Hy(Ay) — Hg(Bp)) © Im (H (B) — Hy(Bg)),
Ker (Hg(B) — H§(Bg)) € Ker (H{(B) — Hg(C))

for q < n - 1. Easy diagram-tracing now shows that there exists an element
a"e€ HS(C) with T(a") =j,(a'), where j: A € C. This completes the proof.
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