LOOSELY CLOSED SETS AND
PARTIALLY CONTINUOUS FUNCTIONS

Gordon T. Whyburn

Dedicated to R. L. Wilder on his seventieth birthday.

1. INTRODUCTION

In this paper we study certain pseudo-closedness properties of sets, similar to
semi-closedness [11], in relation to partial continuity of functions. We characterize
peripheral continuity of multifunctions and functions in terms of countervariance of
such properties. The monotone-light factorization theorem [1], [2], [9], [10], [12] is
presented in a new and improved form; in this form, it includes in one simple state-
ment not only all previous versions for continuous functions known to the author, but
also Hagan’s recent extensions to peripherally continuous and connectivity functions
[3]. By using cohesion properties closely related to unicoherence, we display rela-
tions between these two types of functions in a new setting. Our new theorems in-
clude as special cases recent resulis of Hagan [4], Long [7], and the author [15].
These are extended to multifunctions, and they assert approximately that peripher-
ally continuous functions are connectivity functions. Also, we give a new and
simplified proof for the reverse implication as established by Hamilton [6] and
Stallings [8].

By X, Y, --- we denote topological spaces with the usual open-set topology, addi-
tional restrictions being clearly stated when they are imposed. Functions f: X —Y
are always single-valued, except when they are specifically called multifunctions.
The double arrow f: X => Y means that the relation is from X onio Y. A mapping
is always a continuous function. A function f: X — Y is monotone provided each
point-inverse f-1(y) is a continuum, that is, a compact connected set; and f is light
provided each f-1(y) (y € Y) is totally disconnected.

A set M is lotally separated provided there exists a separation of M between
any two of its points, or, equivalently, provided each point of M is a quasi-compon-
ent of M. A space X is completely normal provided any two separated sets in X
lie in disjoint open sets in X.

A connected set is cyclic provided it has no cut-point. A region in a space X
is a connected open set in X. The boundary of an open set U will be denoted by
Fr(U).

2. LOOSELY CLOSED AND RELATED SETS

A set S in a topological space X is semi-closed (see [11, p. 131]) provided each
of its components is closed and each convergent sequence of its components whose
limit set intersects X - S converges to a single point of X - S. We shall define and
use two related but stronger properties.

_A point p is called an adhesion point of a set M provided there exists a point q
in M - p that is not separated from p in M+ p + q. A setis loosely closed
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provided it contains all of its adhesion points. A set E in X has exfevior (or ex-
ternal) dimension 0 provided the Menger-Urysohn dimension of E + p at each point
pof X-Eis 0.

Clearly, every set of exterior dimension 0 in a Hausdorff space is loosely
closed, and every loosely closed set is semi-closed. In general, the reverse impli-
cations do not hold. However, we shall show below that in a completely normal T, -
space X a set with a locally compact closure is loosely closed if and only if it has
exterior dimension 0. Thus in particular, in a locally compact completely normal
T)-space, “loose closedness” and “exterior dimension 0” are entirely equivalent
properties.

Since every totally disconnected set is semi-closed, semi-closedness is a weaker
property than the two just mentioned, even in compact metric spaces. It is interest-
ing to note, however, that in a space X that is a hereditarily locally connected con-
tinuum, all three properties are equivalent; and indeed each is equivalent to the
simple property of having closed components. (See [11, page 93].)

Note. We see at once that the intersection of an arbitrary collection of loosely
closed sets (sets of exterior dimension 0) is a loosely closed set (a set of exterior
dimension 0). However, the union of two such sets may fail to inherit the property in
question. For example, both the set R of rationals and the set I of irrationals on
the open real interval J = (0, 1) are loosely closed and of exterior dimension 0, but
their union is J.

(2.1) THEOREM. Let E be a loosely closed set with a locally compact closure
in a completely normal Ti-space X. Let Q) be a compact subset of a quasi-com-
ponent Q of E, and suppose that Q) is open in Q and that U is an open set about
Q1. Then theve exists an open set V such that Qy CVC U, Fr(V)-E =@, and
V-E is compact.

Remark. In case E itself is locally compact, we need only assume X to be a
Hausdorff space to get the same conclusions. In particular, by standard methods of
argument in a Hausdorff space, the following is readily shown: If K is a compact
component of a locally compact subset E of a Hausdovff space X, then for each open
set_U about K there exists an open set V such that KCV C U, Fr(V)-E =@, and
E -V is compact,

Proof. Using compactness of Q;, local compactness of E and normality of X,
we can readily show that U contains an open set W about Q; such that E-W is
compact and does not intersect Q - Q;. Let x € E-Fr(W). If x € E, then since x
is not in Q, there is a separation of E between x and Q, and thus by complete
normality there exist disjoint open sets Vx and V4 containing X and Q, respec-
tively, with E C V. + V. If x is not in E, it is not an adhesion point of E, and thus
there is a separa.tlon of E + x between x and Q;; and again, x and Q; are contained
in disjoint open sets Vy and Vq whose union contains E. Since E - Fr(W) is com-
pact, some finite union R of the V, contains E - Fr(W), and the corresponding finite
intersection S of the V_ contains Ql Since R and S are open and disjoint, the set
V =S-W is open and contains Q), VC W C U, and Fr(V)-E = ¢. The last relation
holds because R+S D> E-W. Thus V meets all our requirements.

(2.11) COROLLARY. Every compact quasi-component of E is connected and
thus is a component of E.

(2.12) COROLLARY. If the quasi-components of E are all compact, they are
identical with the components of E.
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(2.13) COROLLARY. If Q is any compact quasi-component of E and U is any
open set about Q, theve exists an open set V such that V-E is compact, QCV C U,
and Fr(V)-E = @

(2.14) COROLLARY. If X is compact, the components and quasi-components of
any loosely closed set in X ave identical.

Now we can readily see that if E is any loosely closed set in a T;-space X, then
for each p € X - E, E + p is loosely closed and p is a compact quasi-component of
E+p. Forlet E'=E+p,let q € X - E', and take any r € E' - q. Then, if r =p,
we have the separation

E'+r+q=(E+p)+r+q=E+p+q=Ep+Eq
between r and q. If r # p, the separations
E+p+r=Ep+E%. and E+q+r=Eq+E%

between p and r and between q and r, respectively, yield the separation
E'+r+q=(E+p)+r+q = (E, +Eg) +EL-EZ

between r and q. Thus q is not an adhesion point of E'. Thus, using (2.13), we get
at once the following theorem.

(2.2) THEOREM. In a completely normal T)-space X, a set E with a locally
compact closure is loosely closed if and only if it has exteynal dimension 0.

Thus in a metric space X, a totally separated set with locally compact closure
in X is loosely closed if and only if it is O-dimensional.

(2.21) COROLLARY. Iz a locally compact, completely normal T;-space, a set
is loosely closed if and only if it has external dimension 0. In a locally compact
metvic space a totally sepavated set is loosely closed if and only if it is 0-dimen-
sional,

(2.22) COROLLARY. If E is a loosely closed set with compact quasi-components
and locally compact closure in a completely normal Ti-space X, the decomposition
G of X into components of E and single points of X - E is upper-semicontinuous.

To see this, note first that by (2.12) the elements of G are the same as the
quasi-components of E and the single points of X - E. Now let U be any open set in
X, and let K be an element of G lying in U. Then if K is a component of E, (2.13)
yields an open set V in U about K whose boundary does not intersect E, so that
every element of V intersecting V is contained in V. On the other hand, if K is a
single point p € X - E, then since E + p is loosely closed and has p as a quasi-
component, again the same reasoning gives an open set V of the same sort about p.
Thus each element of G lying in U in interior to the union of all elements of G ly-
ing in U, and thus G is upper-semicontinuous.

Next we show that the property of being loosely closed is invariant under the
action of certain types of monotone functions. To that end, we first prove a lemma.

(2.3) LEMMA. Let P and Q be disjoint compact sets in a Hausdovff space X,
andlet R=X-P -Q. Ifforeach pe Pand q€ Q, R+p+q is sepa'mted between
p and q, then X is sepavated between P and Q.
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Proof. Fix p € P. Then for each q € Q we have a separation
R+p+q-= Rp + Rq

between p and q. Let A, and Ay be disjoint open sets about p and q, respectively,
chosen so that A, - (Rq +Q)=9 = Ag: (Rp + P), and let

Rp = Ap+(Rp-p), Ry=Aq+Rq-q).

These sets are open, since Ry - p and R4 - q are open. Hence some finite union
Uq of the Réi sets contains Q. Let Up be the intersection of the corresponding
finite collection of sets Rp . Then

pe Uy, QC Uy, UP+UqDR+p+Q, Up'Uq=§25.

We now choose such sets Up and Uq for each p € P. Some finite union Vy of
the sets U, contains P, and we let V4 be the intersection of the corresponding
collection of sets Ugq. Then Vp and V4 are open and contain P and Q, respec-
tively. Also,

X=R+P+Q=V’P+V(1

and Vp . Vq = @, so that this is a separation of X between P and Q.

(2.4) THEOREM. If f: X = Y is a monotone function that is quasi-compact on
every invervse set in the Hausdovff space X, then the image H of any loosely closed
inverse set K in X is loosely closed.

Proof. Let pe H-H, q € H - p. Then for each p' € P=1"1(p), q' € Q = ~1(q),
the set K+ p' + q' is separated between p' and q'. Thus, since X' =K+ P +Q is
a Hausdorff space with relative topology in X, there exists by (2.3) a separation

K+P+Q = Kp+Kq

with P C K, QC Kg-

Now, since f is monotone, K, and Kq are inverse sets such that if Hp = f(Kp)
and Hg = f(Kq), then HyHg=¢; and Hy and Hq are both open (and closed) relative
to H+p + q, since £ | X' is quasi-compact. Thus H+p+q =Hp + Hq is a separa-
tion between p and q, and H is loosely closed.

(2.41) COROLLARY. The conclusion of (2.4) holds in case (a) f is closed and
monotone, or (b) f is open and monotone, or (c) Y is a weakly separable Hausdorff
space and f is monotone, quasi-compact, and continuous.

To see this, note that in each of these cases f is necessarily quasi-compact on
each inverse set (see [13]).

(2.5) THEOREM. Let X be a Ty-space, and let ¢: X => Y be a monolone
closed mapping. If the inverse D = ¢~1(E) of a subset E of Y is of external dimen-
ston 0, then so is E.

Let p € Y - E, and let V be any open set in Y about p. Then P = ¢ -p) is
compact and lies in the open set S = ¢-1(V). Since P C X - D, each x € P lies in
an open set Uy with Uy € S and Fr(Uy)-D =¢. Thus P lies in a finite union U of
the U,-sets, and Fr(U)-D = @. Then, if W =Y - (X - U), we see that
peWC¢(U)CV and W is open. Also, Fr(W)-E = ¢, because each point q of
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Fr(W) is in both ¢(X - U) and ¢(U) = ¢(U), so that ¢~1(q) intersects both U and
X - U. Thus ¢-1(q) intersects Fr(U), since ¢ is monotone. Hence q is not in E.

Note. Complete normality is invariant under closed onto mappings f: X = Y.
For let o and B be separated sets in Y. Then A =f-1(a) and B = t-1(8) are sepa-
rated in X and thus lie in disjoint open sets U, and Uy, respectively. Therefore
Vo =Y -£X-1T,) and Vg=Y - (X - Up) are open and disjoint and contain & and
B, respectively.

(2.6) THEOREM. If f: X = Y is a closed mapping and E' is a set of external
dimension 0 in Y such that £-1 is single-valued on Y - E', then E = £-1(E') has
extevnal dimension 0.

Let p € E - E, and let U be any open set about p. I p'=f(p), then E'+p' is
0-dimensional at p'. Accordingly, since Y - £(X - U) is open and contains p', there
exists an open set V about p' with

VCY-f(X-U)cf(U) and Fr(V)-E'= Q.

Hence, if W = f‘l(V), W is an open set about p lying in U and satisfying
Fr(W)-E = @.

(2.7) THEOREM (Converse). Let E be a loosely closed set with compact quasi-
components and locally compact closure in a completely normal T)-space X. Then
there exists a closed monotone mapping ¢: X => Q of X such that ¢ is one-to-one
on X - E and carries E onto a totally separated set E' of external dimension 0,
and such that the nondegenevate components of E are exactly the nondegenevate
point-inverses for ¢.

We have only to take ¢ as the natural mapping of the decomposition G of X into
components of E together with single points of X - E. Since G is upper-semicon-
tinuous, ¢: X => Q is closed and monotone and Q is a completely normal T;-space.
Thus, since E is a loosely closed inverse set for ¢, it follows by (2.4) and (2.41)
that E' = ¢(E) is loosely closed. Also, E' is totally separated, E' is locally com-
pact, and E' has external dimension 0 by (2.2).

3. PERIPHERAL CONTINUITY OF MULTIFUNCTIONS

A multiple-valued function from X to Y, that is, a relation that associates with
each point x € X a subset f(x) of Y, is called a multifunction (see [5], [14]). In
case f(x) is a single point for each x € X, f(x) is an ordinary function, of course.
All concepts and results developed here for multifunctions f apply to the special
case in which f is a (single-valued) function.

A multifunction f: X — Y is said to be peviphervally continuous provided that for
each x € X and each pair of open sets U and V containing x and f(x), respectively,
there is an open set W such that x € W C U and f[Fr(W)] C V. (Compare with [6],
[8]).

(3.1) THEOREM. A multifunction f: X — Y is peripherally continuous if and
only if the invevse of each closed set in Y is of external dimension 0.

Suppose first that f is peripherally continuous. Let C be any closed set in Y,
take any point p € X - £-1(C) and any open set U about p. Then, if V denotes the
open set Y - C, we have the inclusion relation f(p) = P C V. Thus by peripheral
continuity there exists an open set W in X with p € W C U and f[Fr(W)] C V. This
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gives Fr(W)-f-1(C) = @, so that f-1(C) + p has dimension 0 at p. Thus £-1(C) is of
external dimension 0.

Now suppose the inverse of each closed set in Y is of external dimension 0. Let
p € X and P =1{(p), and let U and V be open sets about p and P, respectively. De-
fine C =Y - V. Then, since p € X - £-1(C) and C is closed (so that £-1(C) + p has
dimension 0 at p), there exists an open set W such that p €¢ W C U and
Fr(W)-£-1(C) = 5. This gives the relation

f[Fr(W)] c Y-C =V.

Thus f is peripherally continuous at p.

(3.11) COROLLARY. Any upper-semicontinuous multifunction is pevipherally
continuous. Thus the inverse of any closed multifunction (or function) is pevipherally

continuous.

In view of the characterizations in Section 2, particularly (2.21), we have the
following immediate consequence.

(3.2) THEOREM. If X is a locally compact, completely normal T-space, a
multifunction f: X — Y is perviphevally continuous if and only if the inverse of every

closed set in Y is loosely closed,

4., THE COMPONENT DECOMPOSITION. FACTORIZATION

For any function f: X — Y, the decomposition of X into the collection G of com-
ponents of point inverses for f, that is, components of the sets f-1(y) (y € Y), is
called the component decomposition of X generated by f. The elements of G are
disjoint, since f is single-valued. It will be recalled that a collection G of sets is
upper-semicontinuous provided that for any open set U in X the union Uy of all
elements of G lying wholly in U is open. Throughout this section, the symbols
f, ¢, and ¢ refer to (single-valued) functions. A function f: X — Y is locally closed
prov1ded that for each p € X there exists an open set W about p such that

f I W: W — Y is closed.

(4.1) THEOREM. Let X be a Hausdovff space, let the peviphevally continuous
Sfunction f: X = Y have point-inverses with compact quasi-components and locally
compact closurves, and let G be the component decomposition fov f. If for each
K € G and each open set U about K theve exists an open set V about K such that

VCU and f(K)=peY-I[Fr(V)],

then G is upper-semicontinuous. In particular, for a completely normal X, this
holds in case (a) £ is locally closed or (b) X is locally compact and Y is a
Hausdorff space.
Proof. Let U be any open set in X, and let K be any element of G contained in

U. Let V be an open set about K (V C U) such that f[Fr(V)] = C does not contain

= f(K). By peripheral continuity, each x € K lies in an open set W, C V such that
f[Fr(W ) © Y - C. Thus K lies in a finite union W of these sets Wx, moreover,
W C U and f{Fr(W)]C Y - C, so that f[Fr(W)]-{[Fr(V)] = . Now, if H is any ele-
ment of G intersecting W, 1t must lie wholly in U, since it cannot intersect both
Fr(W) and Fr(V). Thus K C W C Uy C U, so that Uy is open. (Here U, denotes
the union of all elements of G lying wholly in U.)
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To verify (a), suppose that f is locally closed, and take any element K of G and
any open set U about K. Since K is compact, there exists an open set W about K
(W c U) such that f l W is a closed mapping. Now by (3.1) and the fact that X is a
Hausdorff space, the set E = f~1[f(K)] is of external dimension 0 and hence is
loosely closed. By (2.1) there exists an open set V such that K€ VC W and
Fr(V)-E = ¢. Since f | W is closed, this implies that

f[Fr(V)]-f(K) = ¢ and f£[Fr(V)] is closed.

To verify (b), let X be locally compact, let Y be a Hausdorff space, and again
take any element K of G and any open set U about K. We may assume U to be
chosen so that U is compact. Taking E = f-1(p), where p = f(K), we again deduce
from (2.1) the existence of an open set S such that K S c U and Fr(S)-E = .
Now, since Fr(S) is compact and f[Fr(S)] C Y - p, the peripheral continuity of f
readily implies the existence of an open set W about Fr(S) such that
f[Fr(W)] C Y - p. Indeed, since Y is a Hausdorff space, we can find an open set
W about each point x € Fr(S), such that p does not belong to f[Fr(Wy)|; some
finite union W of these W, covers Fr(S) and meets our requirements.

Now let V=8 - W. Then K C V C S C U; the inclusion Fr(V) C Fr(W) implies
that f[Fr(V)] c f[Fr(W)] C Y - p.

Since each compact component of a closed locally compact set E in a Hausdorff
space is also a quasi-component of E, and in view of the remark following the state-
ment of (2.1), above, we have the following simplified form of the results for con-
tinuous functions.

(4.11) COROLLARY. If X is a Hausdovff space and the locally closed mapping
f: X = Y has locally compact point-inverses with compact components, then the
component decomposition of { is upper-semicontinuous.

(4.12) COROLLARY. If X is locally compact and both X and Y ave Hausdovff
spaces, then each mapping f: X = Y with compact components of point-inverses
genevates an uppev-semicontinuous component decomposition.

(4.2) FACTORIZATION THEOREM. Let X be a Hausdovff space, and let
f: X = Y be periphervally continuous and have compact components of point-in-
vevses. If the component decomposition G is uppev-semicontinuous, then t factors
uniquely into the form f= ¢, wheve ¢: X = X' is a closed monotone mapping,
0: X' = Y is light and peripherally continuous, ard wheve X' is a Hausdovff space.
Also, 0 is continuous if and only if f is continuous,

Proof. Let ¢: X = X' be the natural mapping for G. Then since G is upper-
semicontinuous, X' is a Hausdorff space and ¢ is closed and monotone. Thus if we
define 2(x') = f¢-1(x') for x' € X', then ¢ is single-valued. It is also light. For if
Q is a connected subset of ¢-1(y) for some y € Y, then ¢-1(Q) is connected, since
¢ is closed and monotone. Thus ¢-1(Q) lies in.a component K of f-!(y); and since
K€ G, Q=¢6"1(Q) c ¢(K) € X', so that Q is a single point.

Finally, ¢ is peripherally continuous. Indeed, let L. be any closed set in Y.
Then f-1(L) has external dimension 0 by (3.1). By (2.5) ¢f-1(L) also has external
dimension 0, because f-1(L) = ¢-1¢f~1(L), so that £-1(L) is an inverse set for ¢.
Hence, by (3.1), ¢ is peripherally continuous, because ¢~}(L) = ¢f-1(L).

To show that the factorization f = ¢¢ is topologically unique, let f = ¢; ¢; be any
other factorization, where ¢;: X => X, is a closed monotone mapping and
£1: X3 = Y is a light function. Take any x) € X;, and let y = ¢; (x1). Then, since
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#71(x,) is connected and contained in f-i(y), it lies in a single component K of
f-1(y). However, since ¢;(K) is connected and lies in ¢7!(y) and ¢; is light, ¢; (K)
must be the single point x;. Hence d)il(x ) =K, and ¢; generates precisely the
same decomposition of X as does ¢, namely, the component decomposition of f.

Accordingly, if we define h(x) = ¢; ¢-1(x) for x € X', then h: X' => X is one-
to-one. It is also continuous and closed, and thus topological, since ¢ and ¢; are
continuous and closed. Since ¢; =h¢ and ¢; = ¢h-1, the mappings ¢; and £; are
topologically equivalent to ¢ and ¢, respectively.

Finally, to verify the last statement in (4.2), we need only note that if f is con-
tinuous, then £-1(C) = ¢f-1(C) is closed when C C Y is closed.

We remark also that our uniqueness proof for the factorization depends only on
the continuity, quasi-compactness (closedness), and monotoneity of the monotone
factor and the lightness of the second factor. Thus no form of continuity of f or of
£ is needed for uniqueness.

(4.21) COROLLARY. If X is a completely normal Hausdorff space, then a
peripherally continuous function f: X => Y with point-inverses having compact
quasi-components and locally compact closures has a unique factovization f = (¢ as
in (4.2), in case (a) 1 is locally closed or (b) X is locally compact and Y is a
Hausdovff space. The middle space X' = ¢(X) is completely normal, and in case (b)
it is locally compact. In either case, if X is sepavable and metric, so is X'.

Again, since compact components of a locally compact Hausdorff space are also
quasi-components, (4.11) implies the following result for continuous functions.

(4.3) THEOREM. If X is a Hausdovff space, each locally closed mapping
f: X — Y {hat has locally compact point inverses with compact components has a
unique factorvization f = {¢, wheve ¢: X => X' is a closed monotone mapping,
£: X' = Y is a light mapping, and X' is a Hausdorff space.

Since each of the properties involved is invariant under monotone closed map-
pings, we have the following result.

(4.31) COROLLARY. If the space X is normal, completely normal, pevfectly
separvable, sepavable and metric, or locally compact, then X' has the corresponding
property.

Also, since any mapping from a locally compact Hausdorff space to a Hausdorff
space is locally closed and has locally compact point-inverses, we have the following
corollary.

(4.32) COROLLARY. If X and Y ave Hausdorff spaces and X is locally com-
pact, then each mapping f: X — Y with compact components of point-inverses has a
unique factovization f = 1¢, as in (4.3).

5. COHESIVE SPACES

A connected space or set M is said to be unicohevent, or cohesive, belween
disjoint connected subsets (or points) A and B of M provided H, - Hy is connected
for every representation M = H, + Hy,, where H, and H;, are closed and connected
and contain A and B, respectively, in their interiors relative to M. In case M is
locally connected, unicoherence is equivalent to each of the following:

(a) Every subset of M that separates A and B in M contains a closed connected
subset also separating A and B in M.
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(b) Every subset of M that separates A and B irreducibly in M is connected.

Also, it is clear that a connected set is unicoherent if and only if it is unicoherent
between every pair of its points. Likewise a connected Hausdorff space M is unico-
herent between two of its compact connected disjoint sets A and B if and only if
¢(M) is unicoherent between ¢(A) and ¢(B), where ¢: M => M' is the natural map-
ping of the decomposition of M into A, B, and single points of M - A - B.

A connected space M is locally cohesive provided that for each p € M and each
open set U about p there exists a region R in M that contains p, lies in U, has a
connected boundary, and is such that R is cohesive between p and Fr(R). Such a
region R will be called a canonical vegion about p in U. Note that a locally cohe-
sive space is always locally connected and locally peripherally connected.

(5.1) THEOREM. Every unicohevent, cyclic, connected, locally connected, and
locally compact Hausdorff space M is locally cohesive.

Suppose that p € M and U is an open set about p. Since M is cyclic, there
exists an open set V suchthat pe VCU and M - V=N is connected. If R is the
component of M - N containing p, then R lies in U, and Fr(R) is connected by uni-
coherence of M. Thus R is a canonical region for p in U.

The same conclusion holds in case M is assumed to be locally unicoherent and
without local cut points instead of being cyclic and unicoherent. Local unicoherence
of M means that each p € M lies interior to some connected set in M that is uni-
coherent.

We remarked earlier that each unicoherent space is unicoherent between every
pair of its points, and conversely. Remarkably enough, a cyclic, locally connected
continuum M is necessarily unicohevent if it is unicohevent belween one paiv of
distinct points. This is a special case of the next theorem. (By a continuum we
mean a compact connected metric space.)

(5.2) THEOREM. A locally connected continuum M is unicoherent between two
of its points a and b if and only if the cyclic chain C(a, b) (see [11, p. T1]) is uni-
cohevent,

If C(a, b) is unicoherent, it is unicoherent between a and b. Thus M also is
unicoherent between a and b, because a set X in M separates a and b in M if and
only if X-C(a, b) separates them in C(a, b).

Suppose, on the other hand, that M is unicoherent between a and b. To prove
that C(a, b) is unicoherent, it suffices to show that each cyclic element E of M in
C(a, b) is unicoherent, because unicoherence is cyclicly extensible. Now E contains
exactly two points p and q of E(a, b) + a + b, where E(a, b) denotes the set of all
points separating a and b in M. Further, E is unicoherent between p and q, be-
cause any subset of E separating p and q in E irreducibly also separates a and b
in M irreducibly and is therefore connected.

Hence it remains only to show that E is unicoherent. We suppose the contrary.
Then there exists a nonalternating open retraction r: E = J of E onto a simple
closed curve J in E (see [11, p. 216]). In case r(p) # r(q), let x and y be points
separating r(p) and r(q) on J. Then the set K = r-1(x) + r-1(y) separates p and q
in E. However, neither r-1(x) nor r-1(y) separates p and q in E, because neither
of these sets separates E at all. Thus any subset of K that separates p and q
meets both of these sets and hence is disconnected. This contradicts the fact that E
is cohesive between p and q.
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There remains the case where r(p) = r(q). Here we choose distinct points a;
and by on J, each different from r(p), such that if A=r-1(a;) and B = r-1(b,), then
E - (A + B) consists of two regions R and S, each bounded by A + B and each con-
stituting the r-inverse of one of the open arcs of J from a; to b; (see [11, p. 215]).
Thus R or S, say R, contains p + q.

Now let ¢(R) = N be the natural mapping of the decomposition of R into the sets
A and B and single points of R. Since E is cyclic, it follows at once that N is the
cyclic chain C(a', b') in N, where a' = ¢(A) and b' = ¢(B). Now if p' = ¢(p) and
q' = ¢(q) lie together in a cyclic element C of N, then C contains disjoint arcs join-
ing p' and q' to the two points of C that separate a' and b' in N. Thus there exist
disjoint arcs @ and B in N joining a' and b', respectively, to the set p' +q'. (In
case some point x separates p' and q' in N, we get such arcs «@ and B at once,
since then x also separates a' and b' in N.) To be definite, suppose @ = a'p' and
B=b'q".

Let K' be any compact set separating @ and 8 in N. Then K = ¢-1(K') sepa-
rates A+ ¢-}(a) and B+ ¢-1B) in R. Now, if H = r~1(x) for some fixed x on the
open arc of J in S, then H+ K separates p and q in E. However, neither H nor K
separates p and q in E. (Note that K does not separate p and q because
S+ ¢-1(a)+ ¢-1(B) is connected.) Thus any subset of H + K that separates p and q
in E meets both H and K and is therefore disconnected. Again, this contradicts the
fact that E is cohesive between p and g, and our proof is complete.

(5.21) COROLLARY. A cyclic, locally connected continuum is unicohevent pro-
vided it is cohesive between some paiv of its points.

(5.22) COROLLARY. If the locally connected continuum M is unicoherent be-
tween two of its points a and b, and if $(M) = N is a monotone closed mapping, then
N is unicohevent between o(a) and ¢(b).

This corollary is easily proved directly for arbitrary connected spaces, and in-
dependently of any requirement that M is compact or locally connected.

We can now assert the following converse to (5.1).

(5.3) THEOREM. Let the locally connected continuum M be locally cohesive at
X € M. Let R be a canonical vegion R in M about x, and let ¢: M — M"' be the
natural mapping for the decomposition of M into Fr(R) and single points of
M - Fr(R). Then ¢(R) and M are unicohevent between p = ¢(x) and o = ¢ [Fr(R)].
Thus the cyclic chain C(p, q) in_ M' is unicohevent, and if M is cyclic, then C(p, q)
is cyclic and is identical with ¢(R).

Also, it is now clear that a cyclic, locally connected continuum (or generalized
continuum) M is locally cohesive at x € M if and only if M is unicoherent modulo
the complement of some vegion R in M about x, in other words, if and only if M
maps onto a unicoherent space under the decomposition (identification) mapping
that sends M - R into a single point and is topological otherwise.

6. PERIPHERAL CONTINUITY AND PRESERVATION
OF CONNECTEDNESS

Let X be a connected, locally cohesive regular T;-space, and let Y be a com-
pletely normal T,-space.

(6.1) THEOREM. Under each peripherally continuous multifunction f: X — Y
with connected point values, the image of every connected set is connected. (See

(4], [15].)
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To prove this theorem, we first establish a lemma.

LEMMA. For any x € X and any open sets U and V containing x and £(x), re-
spectively, theve exists a canonical vegion Q in X about x, with Q C U and
f[Fr(Q)] c V.

Let R be a canonical region about x with R C U. Then, by peripheral contin-
uity, R contains the closure of an open set G about x such that f(K) C V, where
K = Fr(G). Let Q; be the component of G containing x, let S be the component of
R - Q) containing Fr(R), and let Q be the component of R - S containing Q;. Then
C = Fr(Q) C K, and unicoherence of R between x and Fr(R) implies at once that C
is connected. Hence, f(C) C £f(K) € V, and Q has all the desired properties.

Now suppose, contrary to our theorem, that for some connected set E in X
there is a separation

f(E) = E1+E2.

Let a and b be points of E, with f(a) € E; and f(b) € E,. By complete normality
of Y, there exist disjoint open sets U; and U, in Y containing E; and E,, respec-
tively. Now, using the lemma, let Q, and Q; be disjoint regions about a and b,
respectively, having connected boundaries, and such that

(*) flFr(Q)lcu;, (f[FrQy)lcU,.

For each x € E - Q, - Q}, there exists by the lemma a region Q4 about x such
that Q, does not contain a or b and has a connected boundary C, , with £(C ) C U;
if f{(x) CE; (i=1, 2).

Since E is connected and is covered by the regions Q_, Qp, and [Q,], there
exists a simple chain of these regions

a€Q, =Q,Q, ,Qu.1,Q, =Q,Db

from a to b. Let C;, C,, -+, C, be the boundaries of Q;, Q,, ***, Q,, respec-
tively. Since Q, intersects Q; but does not contain a, C, intersects Q;; and since
Q; also contains a point of Q 3, but not all of Q3, and Q3 is connected, C, also in-
tersects Q3. Thus C;, intersects both C; and C3, since C, is connected. Ac-
cordingly, £(C,) € Uy, since f(C;) C Uy ; and £(C3) C U;, since £(C,) C U;. Now,
reasoning similarly with C3, we see that, for n > 3, C3 intersects Q4, since Q3
intersects but does not contain all of Q4. Thus, C3-C4 # @, since C3 is connected
and also intersects Q,. Hence, £(C4) C Uy, because f(C3) C U;. Also, C4-Q3 # @,
since Q3 intersects Q4 but is not contained in Q4. Thus, for n > 4 again

C4-Cg # @, so that £(C5) C Uy, and so on. However, continuation of this reasoning
leads to the conclusion that f(C,) € U;, contrary to the fact that Q, is the same as
Qp and the boundary of Qp, maps into Uz under f, by (*). This contradiction com-
pletes the proof.

(6.11) COROLLARY. If X and Y satisfy the conditions in the first sentence of
this section and, in addition, X X Y is completely novmal, then every peviphevally
continuous multifunction f: X — Y having compact connected point values is a con-
nectivity multifunction.

We define the graph of a set E in X as the set of points (p, q) in X XY with
p € E, q € f(p). The corollary asserts that the graph of every connected set E in X
is connected. This follows at once because the induced multifunction g: X - X XY
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defined by g(p) = p X {(p) is peripherally continuous when f is peripherally contin-
uous and has compact point values.

We next give a new proof and extension of the converse of this corollary for the
case of functions, as proved originally by Hamilton [6] and Stallings [8]. The con-
verse for multifunctions is not valid even in the most restricted setting. Let X be
the unit square plus its interior in a plane, and let X be represented as the union
X = X1 + X, of two disjoint, totally imperfect sets X; and X,. If I; and I, denote
the intervals 0 <t <1 and 1<t<2, and if f(x) =1, for each x € X, (n=1, 2),
then the f-image of every set in X is connected. However, the boundary of any suf-
ficiently small neighborhood of a point in X intersects both X; and X,, so that f is
not peripherally continuous.

To establish the converse theorem for functions, we shall need the restriction
that the domain space X is connected, locally cohesive, locally compact, and metric.

Remayrks (1). If M is connected, locally connected, and unicoherent, then for any
totally disconnected set D of noncut points of M, the set M - D is connected, since
otherwise some subset of D would separate M irreducibly between some two points,
and this set would have to be connected and would thus reduce to a single point by
unicoherence.

(2). If X is compact and f: X — Y is a connectivity function, then for any closed
set C in Y, £-1(C) is semi-closed, by Hagan’s Theorem 3.1 in [3]. Thus, if X is
compact, the decomposition of X into components of f-1(C) and single points of
X - £-1(C) is upper-semicontinuous. (See [11, pp. 131-132].)

(6.2) THEOREM (Hamilton and Stallings). Let X and Y be separable and met-
vic, and suppose that X is locally compact and locally cohesive., Then every con-
nectivity function f: X — Y is peviphervally continuous.

Proof. For any x € X, let U and V be open sets about x and f(x), respectively.
We may suppose that U is chosen to be a canonical region, so that it is connected
and has a connected boundary B and a compact closure unicoherent between x and
Fr(U). Now let U; and V; be open sets about x and f(x), respectively, with U; C U
and V] C V. Let D=TU; f-1(Vy).

If either x is interior to the set A consisting of the component Ay of D contain-
ing x together with the union of all components of U - Ay except the one containing
B, or x is separated in U from B by a component H of D, we get an open set
W C U about x with Fr(W) Cc Ag or Fr(W) C H. We take W = int A in the first
case, W = component of U - H containing x in the second. In either case,
f_[Fr(W)] C V. Thus we assume that x is not interior to A and is not separated in
U from B by any single component of D, and we show that this leads to a contra-
diction.

It follows by Remark (2) that the decomposition of U into the sets A and B,
components of D not contained in A, and single points of U - A - D is upper-semi-
continuous. Thus if ¢(U) = M is the natural mapping of this decomposition, ¢ is
monotone and closed, and M is a locally connected continuum. Further, if a = ¢(A),
b = ¢(B), and the cyclic chain C(a, b) = N is taken in M, then no point of ¢(D)-N is
a cut point of N, since no such point can separate a and b in M or in N. Now,
since U is unicoherent between x and Fr(U), it follows by (5.2) that N is unicoher-
ent. Thus, since ¢(D) is totally disconnected, the set R = N - ¢(D) is connected, by
Remark (1), and RO a. Hence ¢~1(R) = Q is connected, since ¢ is monotone and
closed. Also Q D x, since any region S in U; about x must intersect Q. To see

BN
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this, note that S is not in A and a is not a cut point of M, so that ¢(S)-N is non-
degenerate and connected and thus is not contained in ¢(D). However, Q + x is then
connected, whereas [x, f(x)] is an isolated point of the graph of f l (Q + x), because
[q, f(q)] is never in U; X Vi for q € Q since f(q) € Y - V; for all q € Q. This
contradiction completes the proof.
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