OPEN MAPS ON HAUSDORFF SPACES

James E. Keisler

Dedicated to R. L. Wilder on his seventieth birthday.

In [1], McAuley proved the following theorem.

THEOREM 1. Suppose that X is a compact subset of a metric space M, BdX $\neq \emptyset$, Int X $\neq \emptyset$, and f is a light open mapping of X into M such that

- (1) f(Int X) = Int f(X),
- (2) f(Bd X) = Bd f(X),
- (3) the singular set S_f has the property that $f(S_f)$ does not contain a nonempty set open relative to f(X),
 - (4) $f(S_f)$ does not separate f(X), and
- (5) there exists a nonempty U in X, open relative to X, such that $f \mid U$ is one-to-one and $f^{-1} f(U) = U$.

Then f is a homeomorphism.

In this note we show that McAuley's methods yield the same conclusions with weaker hypotheses. Given topological spaces X and Y and a map $f: X \to Y$, we define the sets

$$S_f = \{x \mid f \text{ is not one-to-one on any neighborhood of } x\},$$

$$P = \{y \mid f^{-1}(y) \text{ is nondegenerate}\}.$$

We recall that f is *open* if and only if for each set U open in X the set f(U) is open in f(X). The following three lemmas are known and obvious.

LEMMA 1. S_f is closed.

LEMMA 2. If X is a Hausdorff space and f is an open map, then P is an open subset of f(X).

LEMMA 3. If X is a compact Hausdorff space, Y is a Hausdorff space, and f is an open map, then $P \cup f(S_f)$ is closed.

THEOREM A. Let $f: X \to Y$ be an open map of a compact Hausdorff space X into a Hausdorff space Y such that

- (1) $f(S_f) \not\supset P$ (unless each is empty),
- (2) $f(S_f)$ does not separate f(X), and
- (3) $P \cup f(S_f) \neq f(X)$.

Then f is a homeomorphism.

It is clear that this is a generalization of Theorem 1, since hypotheses (3), (4), and (5) of Theorem 1 imply hypotheses (1), (2), and (3), respectively, of Theorem A.

Received May 9, 1966.

Proof. If $P = \emptyset$, then f is one-to-one (and $S_f = \emptyset$). Hence f is a homeomorphism. Assume that $P \neq \emptyset$. Then $f(X) = \overline{P} \cup \mathscr{C}\overline{P}$, where complement and closure are taken in f(X). Also, $f(X) \setminus f(S_f) = [P \setminus f(S_f)] \cup [\mathscr{C}\overline{P} \setminus f(S_f)]$, and this separation into two disjoint nonempty open sets provides a contradiction. Hence, $P = \emptyset$, and f is a homeomorphism.

Likewise, Theorem 4 of [1] may be made to read as follows.

THEOREM B. Let $f: X \to Y$ be an open map of a compact Hausdorff space into a Hausdorff space such that

- (1) $f(S_f) \not\supset P$ (unless each is empty),
- (2) $f^{-1}(q)$ is degenerate for all $q \in f(S_f)$, and
- (3) if C is a component of $f(X) \setminus f(S_f)$, there exists $p \in C$ such that $f^{-1}(p)$ is degenerate.

Then f is a homeomorphism.

The proof, by contradiction, is also a separation argument, applied to any component of $f(X) \setminus f(S_f)$ that contains a point of P.

Condition (1) of Theorems A and B is satisfied, for example, if $f(S_f)$ contains no nonempty open subset of f(X).

Our argument, applied to Theorems 2 and 3 of [1], permits us to omit the corresponding conditions (1) and (2), together with the assumption that f is light.

McAuley asks whether Theorem 1 remains valid if condition (3) is deleted. The following example shows that the answer is negative.

Let M be the real line (with open-interval topology), C the Cantor set on the closed interval [0, 1], and $X = C \cup [2, 3]$. Define $f: X \to M$ by

$$f(x) = 1$$
 for $x \in C$ and $f(x) = x$ for $x \in [2, 3]$.

Then f satisfies all hypotheses of Theorem 1 except (3), but not its conclusion. In the plane, one may also construct an example in which X is a connected set.

REFERENCE

1. L. F. McAuley, Concerning a conjecture of Whyburn on light open mappings, Bull. Amer. Math. Soc. 71 (1965), 671-674.

Louisiana State University The University of Michigan