INTEGRABILITY CONDITIONS FOR
ALMOST-COMPLEX MANIFOLDS

Alfred Adler

The integrability condition 92 = 0 characterizes those almost complex structures
that arise from complex-analytic structures, and it should in some way be reflected
in corresponding conditions on Riemannian metrics; that is, we should be able to
distinguish between metrics that are almost-hermitian with respect to integrable
almost-complex structures, and those that are almost-hermitian with respect to non-
integrable structures. This paper introduces a real-valued function (on the tangent
vectors of the manifold in question) whose positivity (or lack of it) permits us to
make the distinction.

More precisely, let'J be an almost-complex structure on the 2n-dimensional
manifold M, and let g(X, Y) be an almost-hermitian metric on M such that

g(JX’ JY) = g(X; Y) .
We denote by B the bundle of almost-complex frames of M, by w the restriction to
B of the Riemannian connection of M, and by M, the orthogonal complement to the

Lie algebra of U(n) in the Lie algebra of O(2n). Let A denote the M-component of
w, and finally, for each tangent vector X of M, let

04(X) = -trace Im [A(X), AIX)]

(see Section 3). We shall prove in Section 5 that o, is nonnegative whenever J is
integrable, and in Section 6 that Og vanishes identically if and only if g is a Kihler
mefric.

1. THE METRICS

Let M be an almost-complex manifold of real dimension 2n, with an almost-

complex operator J: J2 = -1. Let g(X, Y) be a Riemannian metric on M that is
compatible with J. That is, let

g(0X, JY) = g(X, Y)
for each pair of tangent vectors X and Y of M; or equivalently, let

g(JX’ Y) = —g(X, JY)

for each pair of tangent vectors X and Y of M. Such a metric g is called almosi-
hermitian, and its fundamental form is the real-valued 2-form

(X, Y) = -(4n)!-g(X, JY).
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The almost-complex structure J of M is called infegrable if it arises from a
complex-analytic structure of M. The metric g is called a Kahley metric if J is
integrable and if the fundamental form of g is closed:

daQ = 0.

The bundle of frames F(M) of M is the set of all (2n+ 1)-tuples (m, ey, ***, €2,),
where m is a point of M and e;, ***, ez, are tangent vectors at m satisfying the
conditions g(e;, e;) = 6;;. This bundle is reducible to a principal U(n)-bundle over
M, which we denote by B; in other words, B consists of all points (m, e, *-, e;,)
of F(M) that have the additional properties

Je; = ey and Jepy; = -e; (1_<_iSn)-

A will denote the natural projection of F(M) onto M.

2. THE CONNECTIONS

Let o(2n) denote the Lie algebra of O(2n), and let u(n) denote the Lie algebra of
U(n). The set o(2n) then consists of all real skewsymmetric 2n X 2n matrices, and
u(n) of all real 2n X 2n matrices of the form

A B

-B A

where A and B are n X n matrices satisfying the conditions At=-A and B'= B.
Let M be the set of all real 2n X 2n matrices of the form

A B

B - A

where A and B are n X n matrices satisfying the conditions At=-A and Bt=-B,.
Then M is orthogonal to u(n) with respect to the Killing metric of O(2n), and o(2n)
is the sum of M and u(n):

o(2n) = u(n) + M, adUn)(M) C Ww.

Let w be the Riemannian connection of M. Then w is an o(2n)-valued 1-form
on F(M). We denote by p the projection of o(2n) onto u(n) with respect to the de-
composition o(2n) = u(n) + M. Let w denote the restriction of w to the bundle B,
let wo=pow,and let A=w - w,. Itis known that the 1-form w, is a connection
on the bundle B, and that the metric g is a Kdhler metrvic if and only if A vanishes
identically on B.

Certain vector fields El, ---, E2n on B, associated with the connection w,, are
defined in the following way. If m = (m, e;, ***, e,,) is a point-of B, then E*(m) is
the unique tangent vector at {m satisfying the conditions

A(EX(m)) = €5, w(EYm)) = 0.
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These make it possible to define a linear operator J on M, in the following way: If
t is a tangent vector of B with A, (t) = 0, then J(t) = 0; moreover, J(EY) = EP*L ang
J(Entl) = -El. Hence A, 0J=J o A,.

3. THE FORM Og

The matrices of u(n) have two interpretations. They can be considered either
as complex n X n matrices of the form A ++vV-1-B, where A and B are real
n X n matrices satisfying the conditions At = - A and Bt = B, or else as real
2n X 2n matrices of the kind described in Section 2. The second interpretation is
the one that makes u(n) a subgroup of o(2n); the first makes the following definition
reasonable: If 6 = ( Gij) is an element of u(n), then

n
trace Im @ = kZ_)l 6k,n+k'

We extend this formally to o(2n), that is, if 6 = ( Gij) is an element of o(2n), we

n
define trace Im 6 = Ek=1 0% ntk - Thus trace Im is a linear real-valued function
on of2n), invariant under the adjoint action of U(n). It should be observed that

traceIm 6 = 0 if 6 isin M.

Finally, we define an o(2n)-valued 2-form [A, A] on B: If t and t' are tangent
vectors of B, let

[4, Al t1) = 3+ (A1) ARY) - AE?) - A).

Thus the real-valued 2-form trace Im [A, A] on B is invariant under the right-
action of U(n), and it is horizontal (that is, it vanishes on any pair of vectors one of
which is in the nullspace of A ) This means that it can be dropped to a real-valued
2-form on M, which will also *be denoted by trace Im [A, A]. We let

og(X) = - (trace Im [A, A])(X, IJX)

for each tangent vector X of M. Then o
gree 2.

g is real-valued and homogeneous of de-

4. THE INTEGRABILITY CONDITIONS

Real-valued 1-forms ¢;, **-, ¢, can be defined on B in the following way: If t
is a tangent vector at a point (m, e}, -, e, ) of B, then A(t) is a tangent vector at

2n
the point m of M and hence is a linear combination Z"i= 1 Ci-e; of the vectors

ey, "=, €25 we let ¢;(t) =c; for 1 <i< 2n. As we mentioned previously, the
almost~complex structure J of M is said to be integrable if it arises from a com-
plex-analytic structure of M. In terms of the bundle B, this means that the points
(m, ey, -+, e,,)) of B have the following property:

The vectors e; - V-1-ep4 clf M (1 < i < n) are holomorphic vectors. We can
define complex-valued 1- forms $1, ***, b2, On B by setting
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$;=¢;+V-T-¢py; and 3,45 =0;-V-1-¢,45 (1<i<n).

The forms ¢; (respectively, ¢,;) are called homogeneous of type (1, 0) (respec-
tively, homogeneous of type (0, 1)). More generally, a form

3’11 A e A a,ir A 3’51 A e A $-js

on B is called komogeneous of type (r, s) if 1<i;, ,i,.<n<j;, = ,is <2n,
and an (r + s)-form on B is called a form of type (r, s) if it is a linear combina-
tion (over the ring of functions on B) of homogeneous forms of type (r, s).

An alternate interpretation of type is often useful. A vector t-+v-1-Jt of B is
called of Zype (1, 0) if t is a real tangent vector of B with w,(t) = 0. Similarly, a
vector t++V-1-Jt of B with w (t) =0 is called of type (0, 1). An (r + s)-form B
on B is of Zype (r, s) if and only if the following conditions are satisfied:

1. B is horizontal; that is, it vanishes whenever one of its vector arguments lies
in the nullspace of A, .

2. If each of the vectors f; , ***, t,4s is either of type (1, 0) or of type (0, 1),
then (t;, -+, £.,.) = 0 unless exactly r of the vectors {y are of type (1, 0), and

exactly s are of type (0, 1).

A tangent vector t of B is called vertical if A (t) = 0, and it is called horizon-
tal if w(t) = 0. Therefore every tangent vector t of B is the sum of a unique ver-
tical vector V (t) and a unique horizontal vector H (t). The covariant differential
D, B of a k-form B on B is defined by the rule that, for each set t; , ***, t,y; of
tangent vectors of B,

Do Bty , ***, tit1) = dB(H(t1), =+, Holtk+1)).
In particular, it is known that if k =r + s, B is of type (r, s), and J is integrable,

then D, is the sum of a form of type (r + 1, s) and a form of type (r, s + 1).
Henceforth, we assume that J is integrable.

5. SEVERAL LEMMAS

LEMMA 1. The forms D 9, ave of type (1, 1) (1 <i < n).

Proof, The Riemannian connection w on B is torsion-free; that is,

2n
dg; = 2w, A¢. (1<i<2n),
r=1
Thus, for 1 <i<n,
: 2n Zn
d$i = d¢i+m'd¢n+i = o Wip N ¢r+m'§l Wnti,r N ¢y

n
= Z) (.. N ¢-+wi’n+j AN ¢n+j+v _l'wn-i-i,j AN ¢j+ v "1'wn+i,n+j A ¢n+j)'
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It follows that for 1 <i < n,

I

[y

D, ¢ = (A /\¢ + A,

J‘_‘

n+i,j N ¢ +v A n+i,n+j A ¢n+_])

i,nt+j

However, the form A = (Aij) is M-valued, and therefore

An-l-i,n+j = 'Aij’ Ai,n+j = An"'isj'
Consequently,
Doqsi= Zl;(A13A¢+A1n+JA¢+J+“ A1n+.] ¢'j""1'Aij/\¢n+j)
j
n
= E (A T Al n+3) ¢n+_]

To compare types, we note first that the 1-form ¢; is of type (1, 0), so that the
2-form D q’ol is the sum of a form of type (1, 1) and a form of type (2, 0). On the
other hand

= 27 (AIJ + */_'_1'Ai,n+j) N Z’Snﬁ;

j=1

therefore D o ®; is the sum of a form of type (1, 1) and a form of type (0, 2), be-
cause ¢n+ is of type (0, 1). It follows that D, ¢; must be of type (1, 1), as
required.

We notice as a first consequence that the form (4;; + V-1-A; ;) must be of
type (1, 0). Applying this to the vectors of B of type (0, 1), we obtain the following
lemma.

LEMMA 2. Let I' be the veal 2n X 2n matrix (6
A(Jt) = -1' - A(t) for each tangent vector t of B.

jonti 7 1n+J) Then

Proof. It suffices to consider vectors t with w(t) = 0, because the form A
vanishes on the nullspace of A,. Let t be sucha vector Then t+V-1-3t is of
type (0, 1), and hence

(A + V=T 8; ny )t +V-T-3t) =

Comparison of real and imaginary parts yields the identities

Ai,n-i-j(Jt) = AiJ(t)’ Aij(Jt) = "Ai,n-f-j(t) .
Thus

At) = ,  AQE) =
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and therefore I'- A(t) = - A(Jt).
LEMMA 3. For each tangent vector t of B, I'- A(t) = - A(t) - 1.
Proof. A(t) is in M, and hence it has the form

A B

B -A

where A and B are skew-symmetric matrices: At =-A and Bt = -B. Therefore
the lemma is an immediate consequence of ordinary matrix multiplication.
LEMMA 4. If 6 is an element of u(n), then

trace Im 6 = —%-trétce I1''6.

Proof. 6 is in u(n) and hence is a 2n X 2n matrix of the form

where at = -a, Therefore

trace I'*0 = -2+ 2 by n4x = -2-trace Im 0.
k=1

LEMMA 5. If t -is a langent vector of B, then
(trace Im [A; A])(t, Jt) = trace A(t) - Alt).

Proof. Since the bracket of any two matrices of M lies in u(n), we can invoke
Lemma 4 for the matrix 0 = [A(t), A(Jt)] of u(n).' Thus

(trace Im [A, A])(, Jt)

trace Im [A(t), A@Tt)]

= - %.trace I'-[At), A@TE)]

= =-trace I' - [A®), I' - At)] (Lemma 2)

DO =

—;—-trace (- A@G)-T' - AR) - ' - T' - Alt) - A(E)

= -trace (I' - I' - A(t) - A(t)) = trace A(t)* A(t).

LEMMA 6. If t is a tangent vector of B, then trace A(t)-A(t) <O0.

Proof. Since trace A(t)-A(t) = 2-trace (A2 + B2) and At=-A and Bt = -B, we
obtain the relations
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n

trace A(t)- Alt) = Z; (a;j a5 + byjby;) = 27 (- a - bz) <o.
i,j=1 i,j=1

Here A = (aij) and B = (bij).
COROLLARY. If J is integrable and t is a tangent vector of B, then
(trace Im [A, A])(E, Jt) < 0.

Proof. This is an immediate consequence of Lemmas 5 and 6.

6. KAHLER METRICS

PROPOSITION. If J is iniegrable, then g is a Kahler metvic if and only if Og
vanishes on M.

Proof. I g is a Kihler metric, then A = 0 and therefore Og = 0 on M. Suppose
on the other hand that J is mtegrable and that Og = 0 on M. Let t be a tangent vec-
tor of B, and let X = a_(t). Then

0 = 04(X) = -(trace Im [A, A])(X, JX) = -(trace Im [A, A])(t, Jt)

= -trace A(t) - Alt) (Lemma 5)

= E (a +b) (Lemma 6),
i,j=1

and it follows that a;; =b;;=0 for 1 <i, j <n. Thus A(t) = 0. Therefore A van-
ishes identically on B andl consequently g is a Kihler metric.
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