A MILDLY WILD TWO-CELL

Ralph Tindell

1. INTRODUCTION

The results in this paper grew from an attempt to answer the following question of R. H. Fox: Does there exist in 3-space or in 4-space a wild 2-cell with an interior point p such that every 2-cell subset that has p on its boundary is tame? [5, Problem 21.] Doyle [4] has shown that no such cell exists in 3-space. In Section 5, we give an affirmative answer for 4-space, along with a discussion of mildly wild n-cells in (n+2)-space. (An n-cell C^n in E^{n+2} is said to be *mildly wild* if it is wild and one of its interior points p has the property that each n-cell subset of C^n having p on its boundary is tame.) In Section 3 we prove a general theorem on ε -taming. In Section 4 we prove an ε -taming theorem about almost piecewise linear imbeddings; it is the main tool in the construction of the mildly wild 2-cell; we also show, in Section 4, that each almost polyhedral 2-sphere in 4-space is the union of two flat cells.

2. DEFINITIONS

We assume familiarity with the material contained in Chapters 1 and 3 of [18], and we adhere to the notation given there. By a *simplex* we mean a closed rectilinear simplex, and by a *complex* we mean a closed rectilinear simplical complex (which may be assumed to be a subcomplex of a rectilinear division of some Euclidean space E^q). $K \downarrow L$ means that K *collapses* to L (see Chapter 3 of [7]). We shall abbreviate "piecewise linear" (or piecewise linearly) to pwl. If M is a manifold, we shall denote its *interior* by int M and its *boundary* by ∂M ; we shall write M and M for the interior of M as a subset of the topological space M, and M for the closure of M.

If a space C is homeomorphic (respectively, pwl homeomorphic) to a k-simplex, we say that C is a k-cell (respectively, k-ball). An n, m cell pair (n, m ball pair) is a pair (C^n , C^m) of cells (balls) with $C^m \subset C^n$ and $C^m \cap \partial C^n = \partial C^m$; an n, m semi-cell pair (n, m semi-ball pair) is a pair (C^n , C^m) of cells (balls) with $C^m \subset C^n$ and such that

$$C^{m} \cap \partial C^{n} = \partial C^{m} \cap \partial C^{n} = C^{m-1}$$

is an (m-1)-cell (an (m-1)-ball). The *standard* n, m ball pair (Σ, τ) and the standard n, m semi-ball pair (Σ, σ) are defined as follows: let σ' be an (m-1)-simplex in E^{m-1} , and let $u=(0,\cdots,0,-1)$ and $v=(0,\cdots,0,1)$ belong to E^m ; then σ is the m-simplex $u*\sigma$,

$$\tau = \sigma \cup (v * \sigma'),$$

Received May 12, 1966.

The author was supported by the National Science Foundation Grant GP 4006; the contents of this paper form a part of the author's doctoral thesis written at Florida State University under the direction of Professor James J. Andrews.

and Σ is the (n - m)-fold suspension of τ , that is, the join $\tau * S^{n-m}$ of τ with the (n - m)-sphere. The *standard sphere pair* is the pair $(\partial \Sigma, \partial \tau)$. A cell pair (ball pair) $C^{n,m}$ is said to be *flat (unknotted)* if there exists a homeomorphism (pwl homeomorphism) g of C^n onto Σ such that $g(C^m) = \tau$; we similarly define flat (unknotted) semi-pairs. A sphere pair $S^{n,m}$ is said to be *flat (unknotted)* if it is homeomorphic (pwl homeomorphic) to the standard pair $(\partial \Sigma, \partial \tau)$. If B^m is an m-ball in an n-sphere S^n , the pair (S^n, B^m) is said to be *unknotted* if it is pwl homeomorphic to $(\partial \Sigma, \partial \Sigma \cap \partial \sigma)$. A ball pair $C^{n,m}$ is said to be *locally unknotted* if for some triangulation J, L of C^n , C^m and each vertex a of L the pair (lk(a, J), lk(a, L)) is unknotted. (This will then be true for each triangulation of (C^n, C^m) .)

Throughout the remainder of this paper, M will denote a combinatorial m-manifold with compact boundary, N will denote a combinatorial n-manifold, and f an imbedding (not necessarily pwl) of M into int N. f is said to be *locally* pwl at $p \in M$ if for some subpolyhedron P of M with $p \in Int_M$ P, the restriction $f \mid P$ of f to P is pwl. The imbedding (locally pwl imbedding) f is said to be *locally flat (locally unknotted)* at $p \in M$ if there is a closed neighborhood U of f(p) in N such that $(U, U \cap f(M))$ is a flat n, m cell pair (unknotted n, m ball pair) when $p \in int M$, or a flat n, m semi-cell pair (unknotted n, m semi-ball pair) when $p \in int M$. Such a neighborhood U is called a *canonical neighborhood*, and an unknotting homeomorphism of $(U, U \cap f(M))$ is called a *canonical homeomorphism*.

A natural question arises when f is pwl (and n - m = 2): are the notions of local flatness and local unknottedness equivalent? In [15], we gave a partial answer to this question, and in particular we showed that the answer is affirmative when m = 2, n = 4.

Let A be a closed subset of N, and ϵ a positive number. An ϵ -push of N, A is an isotopy $\{h_t\}$ of N onto itself such that h_0 is the identity, $d(x, h_t(x)) < \epsilon$ for all $x \in N$ and $t \in [0, 1]$, and $h_t(x) = x$ whenever $d(x, A) \ge \epsilon$ (d denotes distance). A pwl ϵ -push of N, A is an ϵ -push that is a pwl isotopy (in the sense of [8]). We shall call a homeomorphism of N onto itself an ϵ -push if it is the final stage of an ϵ -push as defined above. Our definition of an ϵ -push is the same as that given originally by Gluck [7].

We shall have occasion to use relative regular neighborhoods as defined by Hudson and Zeeman [9]: If X, Y are polyhedra in a combinatorial manifold M^m , a polyhedron Z in M^m is said to be a regular neighborhood of X mod Y in M if

- 1. Z is an m-manifold,
- 2. $Z \downarrow \overline{X Y}$,
- 3. $X Y \subset Int_M Z$ and $Z \cap Y = \partial Z \cap Y = \overline{X Y} \cap Y$.

In [9], it is proved that such a relative regular neighborhood exists if X is "link collapsible" on Y, a condition that is satisfied if X is a manifold and $X \cap Y = \partial X \cap \underline{Y}$. It is also shown in [9] that if $X \cap \partial M$ is link collapsible on $Y \cap \partial M$, then $\overline{Z \cap \partial M} - \overline{Y}$ is a regular neighborhood of $X \cap \partial M$ mod $Y \cap \partial M$ in ∂M . A detailed discussion of these topics is given in [9], though the reader is cautioned that the uniqueness theorems given there are false (see [14]; for a corrected version of the uniqueness theorems see [10]).

3. AN ε-TAMING THEOREM

THEOREM 3.1. Let $f: M^m \to int N^n$ be an imbedding that is locally pwl on int M and locally flat on ∂M^n . Then for each $\epsilon > 0$, there exists an ϵ -push h of N, $f(\partial M)$ such that hf is pwl and $hf(M) \subset f(M)$.

Proof. Since f is locally flat at each point $p \in \partial M$, there exist a canonical neighborhood U_p of f(p) of diameter less than ϵ and a canonical homeomorphism g_p of $(U_p, U_p \cap f(M))$ onto the standard n, m semi-ball pair (Σ, σ) . Let $Q_p = st(p, J_p^{(r)})$, where J_p is a subdivision of the original triangulation J of M and contains p as a vertex, and where $J_p^{(r)}$ is a barycentric r^{th} derived J of mesh small enough so that $Q_p \subset \operatorname{Int}_M(f^{-1}(U_p))$. Then $g_p f$ maps Q_i into int Σ and onto a subcell of σ ; moreover,

$$g_p f(Q_p \cap \partial M) = g_p f(Q_p) \cap \sigma'$$

is an (n-1)-cell in the interior of σ' . Recall that Σ is the (n-m)-fold suspension of $\sigma \cup (\sigma' * v)$; let $\Sigma' \subset \Sigma$ be the (n-m)-fold suspension of

$$g_p f(Q_p) \cup (g_p f(Q_p) \cap \sigma') * v$$
,

using the same suspension points as in Σ . Clearly, $(\Sigma^{\text{!}}, g_p f(Q_p))$ is homeomorphic to $(\Sigma, \sigma);$ thus $V_p = g_p^{-1}(\Sigma^{\text{!}})$ is a canonical neighborhood of f(p), and since $V_p \subseteq U_p,$ V_p has diameter less than $\epsilon.$ From the construction, we see that $V_p \cap f(M) = f(Q_p).$ We now define $Q_p^{\text{!}}$ as st(p, $J_p^{(r+1)}) \subset \operatorname{int}_M Q_p;$ the sets $\operatorname{int}_M Q_p^{\text{!}}$ cover the compact set $\partial M,$ so that there is a finite subcover $Q_{p_1}^{\text{!}}$, ..., $Q_{p_k}^{\text{!}}$. For simplicity, we write $Q_i^{\text{!}}$ and V_i for $Q_{p_i}^{\text{!}}$ and V_{p_i} .

Let η_i be a pwl homeomorphism of $(Q_i, Q_i \cap \partial M)$ onto (σ, σ') , and let g_i be a homeomorphism of V_i onto Σ that extends

$$\eta_i f^{-1}$$
: $f(Q_i) = V_i \cap f(M) \rightarrow \sigma$.

Since η_i^{-1} is uniformly continuous, there exists a $\delta_i'>0$ such that if h is a δ_i' -push of Σ , σ' , then

(*)
$$d(x, \lambda_i(x)) = d(x, \eta_i^{-1} h^i \eta_i(x)) = d(\eta_i^{-1} \eta_i(x), \eta_i^{-1} h^i \eta_i(x)) < q/k,$$

where $q = \min \{d(Q_i', \overline{M - Q_i})\}$. Since g_i^{-1} is uniformly continuous, there exists a $\delta_i'' > 0$ such that if h' is a δ_i'' -push of Σ , σ' , then

(**)
$$h_i = g_i^{-1} h' g_i \text{ is an } \epsilon/k\text{-push of } V_i, V_i \cap f(M).$$

Let $\delta = \min \left\{ \delta_i^{\text{!`}}, \delta_i^{\text{!`}} \right\}$, and let h' be a pwl δ -push of Σ , σ' such that

- (1) h'(x) = x for all $x \in \partial \Sigma$,
- (2) $h'(\sigma) \subset \sigma$, and
- (3) $h'(\text{int }\sigma') \subseteq \text{int }\sigma;$

such a push is easily constructed.

Define $h_i: N \to N$ by

$$h_{i}(x) = \begin{cases} g_{i}^{-1} h' g_{i}(x) & (x \in V_{i}), \\ x & (x \in \overline{N-V_{i}}); \end{cases}$$

since by (**) each h_i is an ϵ/k -push of N, $f(\partial M)$, $h = h_k \cdots h_1$ is an ϵ -push of N, $f(\partial M)$. To see that h satisfies the conclusions of the theorem, we define the pwl homeomorphism λ_i of M onto itself by

$$\lambda_{i}(x) = \begin{cases} \eta_{i}^{-1}h' \eta_{i}(x) & (x \in Q_{i}), \\ x & (x \in \overline{M - Q_{i}}), \end{cases}$$

and we let λ be the pwl homeomorphism $\lambda_k \cdots \lambda_l$ mapping M into itself. Suppose $x \in \text{int } M$; then by invariance of domain, $\lambda(x) \in \text{int } M$. If $x \in \partial M$, then $x \in Q_1^l$ for some i, since the Q_1^l cover M. By (*),

$$d(x, \lambda_{i-1} \cdots \lambda_{l}(x)) < (i-1)q/k < q \le d(Q_i', \overline{M-Q_i});$$

hence $\lambda_{i-1} \cdots \lambda_1(x) \in \operatorname{int}_M Q_i$; but properties (2) and (3) of h' imply that $\lambda_i(\operatorname{int}_M Q_i) \subset \operatorname{int} M$ and thus $\lambda_i(\lambda_{i-1} \cdots \lambda_1(x)) \in \operatorname{int} M$, so that

$$\lambda(x) = \lambda_k \cdots \lambda_{i+1}(\lambda_i \cdots \lambda_1(x))$$

is in int M. We have thus shown that $\lambda(M) \subset \text{int } M$.

Suppose $y \in f(M)$; then

$$\begin{split} h(y) &= h_{m} \cdots h_{1}(y) = (g_{m}^{-1} h' g_{m}) (g_{m-1}^{-1} h' g_{m-1}) \cdots (g_{1}^{-1} h' g_{1}) (y) \\ &= (f \eta_{m}^{-1} h' \eta_{m} f^{-1}) (f \eta_{m-1}^{-1} h' \eta_{m-1} f^{-1}) \cdots (f \eta_{1}^{-1} h' \eta_{1} f^{-1}) (y) \\ &= f \lambda_{m} \lambda_{m-1} \cdots \lambda_{1} f^{-1}(y) = f \lambda f^{-1}(y). \end{split}$$

Hence $hf(x) = f\lambda(x)$ for all $x \in M$. But $\lambda(M) \subset \inf M$ and f is pwl on subsets of int M, so that $f\lambda = \inf$ is pwl; since $\lambda(M) \subset M$, $f\lambda(M) \subset f(M)$. The proof of the theorem is thus complete.

COROLLARY 3.2. Let $p \in \partial M$, let the imbedding $f: M^m \to int N^n$ be locally flat at p, and suppose that for some neighborhood V of p in M, f is locally pwl at each point of $V - \partial M$. Then for each $\varepsilon > 0$, there exists an ε -push h of N, f(p) such that hf is locally pwl at p and $hf(M) \subset f(M)$.

4. ALMOST PIECEWISE LINEAR IMBEDDINGS

LEMMA 4.1. Let B^n be a locally unknotted ball in the manifold M^{n+2} , and let $B^n \cap \partial M = \partial B^n \cap \partial M$ be either empty or an (n-1)-ball B^{n-1} . Let N^{n+2} be a second derived neighborhood of $B^n \mod \overline{\partial B^n} - \partial M$ in M. Then (N^{n+2}, B^n) is an unknotted ball pair and $N^{n+2} \cap \partial M$ is either empty (when $B^n \cap \partial M = \emptyset$), or else it is an (n+1)-ball N^{n+1} with (N^{n+1}, B^{n-1}) an unknotted ball pair.

A direct proof of this lemma is given in [16]; it is straightforward, though tedious. A variation of Lemma 4.1 is given in [10].

THEOREM 4.2. Let f be an imbedding into E^n (n \geq 4) of \triangle^m that is locally pwl (and locally unknotted) except at a single boundary point. Then f is a flat imbedding.

Proof. Let $(B^{n-1}, \triangle^{m-1})$ be the standard n-1, m-1 ball pair in E^{n-1} , with \triangle^{m-1} a simplex, and let $a=(a_1, \cdots, a_n)$ be the point in E^n such that $a_i=0$ $(i=1, 2, \cdots, n-1)$ and $a_n=1$. Let

$$B = a * B^{m-1}$$
 and $\triangle = a * \triangle^{m-1}$.

Then define \triangle_i (respectively, B_i) to be the set of points (x_1, \dots, x_n) of \triangle (respectively, of B) satisfying the condition $(i-1)/i \le x_n \le i/(i+1)$. Then (B, \triangle) is an unknotted n, m ball pair, and $(B-a, \triangle-a)$ is the union of the unknotted ball pairs (B_i, \triangle_i) $(i=1, 2, \cdots)$. Also, $B_i \cap B_i = \emptyset$ if $j \ne i-1$, i, i+1, and

$$(B_i, \triangle_i) \cap (B_{i+1}, \triangle_{i+1}) = (\partial B_i \cap \partial B_{i+1}, \partial \triangle_i \cap \partial \triangle_{i+1}) = (A_i, \alpha_i)$$

is an unknotted n-1, m-1 ball pair.

We may assume that f maps from \triangle into E^n and that it is locally pwl (and locally unknotted) off the vertex a.

CLAIM. There exist n-balls N_i (i = 1, 2, ...) such that

- 1. $N_i \cap f(\Delta) = f(\Delta_i)$ and $(N_i, f(\Delta_i))$ is an unknotted ball pair,
- 2. $(N_i, f(\triangle_i)) \cap (N_{i+1}, f(\triangle_{i+1})) = (\partial N_i \cap \partial N_{i+1}, \partial f(\triangle_i) \cap \partial f(\triangle_{i+1})) = (A_i^*, f(\alpha_i)),$
- 3. $N_i \cap N_i = \emptyset \text{ if } j \neq i 1, i, i + 1,$
- 4. $\lim_{i\to\infty} (\text{diam } N_i) = 0$.

Proof of the claim. Let $\triangle_j^!$ be the m-ball $\bigcup_{i=1}^J \triangle_i^!$; by hypothesis, $f \mid \triangle_j^!$ is pwl and locally unknotted; therefore, by Theorem 8 of [8], $f \mid \triangle_j^!$ may be extended to a pwl homeomorphism F_{j-1} of E^n onto itself; moreover, by Theorem 4 of [8], we may assume that F_{j-1} is the identity outside some compact set and is thus uniformly continuous. Note that we have arranged our subscripts so that $F_j = f$ on $\triangle_{j+1}^!$.

Let M_1 be a second derived neighborhood of $\triangle_1 \mod \partial \triangle_1$ in E^n . Then (M_1, \triangle_1) is an unknotted ball pair by a variation of Lemma 4.1; moreover, we may assume that $M_1 \cap \triangle_2 = \triangle_1 \cap \triangle_2 = \alpha_1$, and since \triangle_1 and $F_1^{-1}f(\overline{\triangle} - \overline{\triangle}_1)$ are disjoint closed sets and F_1 is uniformly continuous, we may assume that

$$M_1 \cap F_1^{-1} f(\overline{\triangle - \triangle_1}) = \emptyset$$
 and diam $F_1(M_1) < \text{diam } f(\triangle_1) + 1$.

(We need merely take M_1 as a second derived neighborhood in a subdivision of sufficiently fine mesh.) Let $N_1 = F_1(M_1)$; then, by construction,

$$N_1 \cap f(\triangle) = f(\triangle_1) = F_1(\triangle_1),$$

and the conditions of the claim are met for $k \leq 1$.

Suppose we have constructed ${\bf N_l}$, \cdots , ${\bf N_k}$ satisfying the conditions of the claim, condition 4 being replaced by

4'. diam $N_i < \text{diam } f(\triangle_i) + 1/i$.

We define $N_{k+1} = F_{k+1}(M_{k+1})$, where M_{k+1} is a second derived neighborhood of $\Delta_{k+1} \mod \frac{\partial \Delta_{k+1} - \partial M}{\partial \Delta_{k+1} - \partial M}$ in $E^n - M$. Here

$$M = F_{k+1}^{-1}(N_k) = F_{k+1}^{-1} \left(\bigcup_{j=1}^k N_j \right).$$

Inductively we can show that $N_k' = \bigcup_{j=1}^k N_j$ is an n-ball, so that $\overline{E^n - M}$ is a manifold. By our induction hypothesis,

$$\triangle_{k+1} \cap \partial(\overline{\mathbf{E}^n - \mathbf{M}}) = \mathbf{F}_k^{-1}(\mathbf{f}(\alpha_k)) = \alpha_k$$

 $(\alpha_k$ is an (m - 1)-ball). By Lemma 4.1, (M_{k+1}, Δ_{k+1}) is an unknotted ball pair intersecting M in an unknotted face $(\partial M_{k+1} \cap \partial (\overline{E^n} - M), \alpha_k)$. Moreover, as in the case k=1, we may assume that

- (i) diam $F_{k+1}(M_{k+1}) < \text{diam } f(\triangle_{k+1}) + 1/(k+1)$ and
- (ii) $M_k \cap F_{k+1}^{-1} f(\triangle) = \triangle_{k+1}$.

Since $N_{k+1} = F_{k+1}(M_{k+1})$, we have satisfied the conclusion of the claim. (Note that $\lim_{j \to \infty} (\operatorname{diam} N_j) = \lim_{j \to \infty} (\operatorname{diam} f(\Delta_j) + 1/j) = \lim_{j \to \infty} (\operatorname{diam} f(\Delta_j)) = 0$.)

Proof of the theorem. Since the n - 1, m - 1 ball pairs (A_i, α_i) and $(A_i^*, f(\alpha_i))$ are unknotted, $f \mid \alpha_i$ may be extended to a homeomorphism h_i^* of A_i onto A_i^* (see Chapter 4 of [18]); then we may extend h_{i-1}^* and h_i^* over the annulus pair

$$(\overline{\partial B_i - A_{i-1} - A_i}, \overline{\partial \triangle_i - \alpha_{i-1} - \alpha_i})$$

to a homeomorphism $h_i^!$ of ∂B_i onto ∂N_i such that $h_i^! \mid \partial \triangle_i = f \mid \partial \triangle_i$ (see [16]). We may then extend $h_i^!$ to a homeomorphism h_i of B_i onto N_i that agrees with f on \triangle_i .

The conditions of the claim imply that

$$N = \left(\bigcup_{j=1}^{\infty} N_{j}\right) \cup f(a)$$

is a cell and that $(N, f(\Delta))$ is a cell pair; it is actually a flat cell pair, for the homeomorphism h defined by

$$h(x) = \begin{cases} h_i(x) & \text{if } x \in B_i, \\ f(a) & \text{if } x = a \end{cases}$$

carries the flat pair (B, \triangle) onto $(N, f(\triangle))$. Moreover, N is locally polyhedral except at f(a), and hence it is locally flat except possibly at a. Since, by Cantrell's theorem [1], N is flat, the homeomorphism h: $B \to N$ may be extended to all of E^n ; since $h^{-1} f(\triangle) = \triangle$, our proof implies that $f(\triangle)$ is flat, and the proof is complete.

We note that if $n - m \ge 3$, the hypothesis of local unknottedness in Theorem 4.2 is superfluous, by [17], that it may also be removed in the case n - m = 1, and that in the special case n = 4, the condition m = 2 may be replaced by local flatness, by [15]. Finally, we remark that one can choose the flattening homeomorphism h to be locally pwl off a. These comments also apply to the next theorem.

THEOREM 4.3. Let $f: M^m \to int N^n$ $(n \ge 4)$ be an imbedding that is locally pwl (and locally unknotted) except at a countable subset S of ∂M . Then for each $\varepsilon > 0$,

there exists an ϵ -push h of N_1 , f(S) such that $hf(M) \subset f(M)$ and hf is pwl and locally unknotted.

This theorem follows from Corollary 3.2 and Theorem 4.2 by the methods of [2].

We remark that Černavskiĭ [3] and Lacher [11] have independently proved a generalized form of Theorem 4.3. They showed that an imbedding cannot fail to be locally flat at a countable subset of ∂M ; however, they do not obtain an ε -taming theorem, except when m < 2(n-1)/3 [3].

Also, Charles Seebeck [12] has recently extended Theorem 4.3 by removing the hypothesis $S \subset \partial M$ (and, of course, the conclusion $hf(M) \subset f(M)$) in the case $n - m \geq 3$.

COROLLARY 4.4. Let S^2 be a 2-sphere in E^4 that is locally polyhedral except at a countable subset B; then there exist flat 2-cells D_1 and D_2 such that

$$\partial D_1 = \partial D_2 = D_1 \cap D_2$$
 and $S^2 = D_1 \cup D_2$.

Proof. Let f be an imbedding of the standard 2-sphere $\partial \triangle^3$ that is locally pwl off f⁻¹(B); let α be an arc in $\partial \triangle^3$ that is locally polyhedral except at its subset f⁻¹(B). Then f $|\partial \triangle^3 - \alpha|$ is a pwl imbedding of a combinatorial 2-plane into E⁴; by [14], the set of points K' at which it is locally knotted is a subpolyhedron of dimension at most 0; hence K' is countable. Likewise, the set K" of points of α - f⁻¹(B) at which f is locally knotted is countable; let K = K' \cup K" \cup f⁻¹(B), and let γ be a 1-sphere in $\partial \triangle^3$ that is locally polyhedral except at its subset K. Let C₁, C₂ be the closed complementary domains of γ in $\partial \triangle^3$. Then, by Theorem 4.3, f | C_i is locally flat and hence flat; set D_i = f(C_i), and the proof is complete.

COROLLARY 4.5. If D^2 is a 2-cell that is locally polyhedral off a countable subset of its interior, then $D^2 = D_1 \cup D_2$, where each D_i is flat and $D_1 \cap D_2 = \partial D_1 \cap \partial D_2$ is an arc.

5. A MILDLY WILD TWO-CELL

CONJECTURE $\mathbf{1}_n$. There exists a mildly wild $n\text{-cell in }E^{n+2}$.

CONJECTURE 2_n . Every n-cell in E^n is tame in E^{n+2} .

We shall show that for each $n \ge 2$, Conjecture 1_n is equivalent to Conjecture 2_n . Conjecture 1_1 is true by [5], and Conjecture 2_1 is trivial. Also, since the classical Schoenflies Theorem implies Conjecture 2_2 , we shall have proved Conjecture 1_2 (Corollary (5.2)).

THEOREM 5.1. If every n-cell in E^n is tame in E^{n+2} , then there exists a mildly wild n-cell in E^{n+2} .

Proof. Let $D^n = D$ be a wild n-cell in E^{n+2} that is locally pwl and locally unknotted except at a single interior point a (we have constructed such examples in [13]). Suppose C is an n-cell subset of D with a \in C; then there exists an arc α in D with endpoints a, b such that $\alpha \cap D = b$, $\alpha \cap C = a$, and such that α is polyhedral except at a. Now D - a is a pwl punctured ball and can be triangulated by an (infinite) complex L in such a way that st(v, L) \cap C = \emptyset for each vertex v of α - a and the diameters of simplexes of L near a become arbitrarily small. Then

$$N' = N(\alpha - a, L'') = \hat{U} \{ \sigma \in L'' : \sigma \cap \alpha - a = \emptyset \}$$

is an ascending union of cells, as in the claim of Theorem 4.2, and $\overline{D} - \overline{N}$ is a cell; moreover, $\overline{D} - \overline{N}$ is a cell that is locally pwl except at a, and $\overline{D} - \overline{N}$ contains C. $\overline{D} - \overline{N}$ is locally unknotted at interior vertices and hence is locally unknotted wherever it is locally pwl—in other words, except at a (see Corollary 3.5 of [15]). Theorem 4.2 ways that $\overline{D} - \overline{N}$ is flat; let g: $E^{n+2} \to E^{n+2}$ be a homeomorphism with $g(\overline{D} - \overline{N}) = \triangle^n \subset E^n$. Then $g(C) \subset \triangle^n \subset E^n$; hence g(C) is tame in E^{n+2} . Since g is a homeomorphism of E^{n+2} onto itself, it follows that C is tame.

COROLLARY 5.2. There is a mildly wild two-cell in E⁴.

LEMMA 5.4. Let T be a compact subset of E^n such that $Fr\ T=T$ - $Int_{E^n}T$ is a manifold. Then corresponding to every point $p \in Fr\ T$, there exists an n-cell F in E^n such that $T \subset F$, $T \cap \partial F = p$, and F is flat in E^n for $n \geq 4$ and flat in E^{n+1} in the case n=3.

Proof. Since T is compact, there is a combinatorial ball F' such that $T \subset \text{int } F$. Since Fr T is a manifold, $p \in Fr$ T is accessible by an almost polyhedral arc; that is, there exists an arc α in F' with endpoints p, q such that $\alpha \cap T = p$, $\alpha \cap \partial F' = q$, and α is polyhedral off p. We thicken α to a tapering cell N, as in the proof of Theorem 5.1, and we let $F = \overline{F'} - \overline{N}$. Then F is a flat cell (see the proof of Theorem 5.1), and $T \subset F$ and $T \cap \partial F = p$, for $n \geq 4$. If n = 3, we can still have F satisfying the last two claims; but since Theorem 4.2 is not applicable in this case, we may claim only that F is flat in E^4 .

There exists a set T in E^3 , whose boundary is a 2-sphere, such that for some point $p \in Fr$ T no flat 3-cell F (in E^3) contains T - p in its interior and p on its boundary. However, T is not itself a 3-manifold. It seems probable that if T were a 3-manifold, we could find such an F. To show this, one need only consider the case where T is a 3-cell:

CONJECTURE 3. If T is a 3-cell in E^3 and $p \in \partial T$, then there exists a flat 3-cell $F \supset T$ such that $T \cap \partial F = p$.

THEOREM 5.4. If there exists a mildly wild n-cell in E^{n+2} , then every n-cell in E^n is tame in E^{n+2} .

Proof. Suppose D is a mildly wild n-cell in E^{n+2} with distinguished interior point p, and let C be an n-cell in E^n . Let F be a flat n-cell in E^n (all we need is that F is flat in E^{n+2}), with $C \subset F$ and $C \cap \partial F = q$. Let D' be a subcell of D with $p \in \partial D'$, and let $p \in \partial D'$, and let $p \in \partial D'$, and let $p \in \partial D'$ be a homeomorphism such that $p \in \partial D'$ is a combinatorial n-cell. Let $p \in \partial D'$ be a homeomorphism such that $p \in \partial D'$ with $p \in \partial D'$ and let $p \in \partial D'$ be a homeomorphism such that $p \in \partial D'$ and $p \in \partial D'$ (such a homeomorphism exists, because $p \in \partial D'$ are flat n-cells). Then $p \in \partial D'$ has the properties that

$$h^{-1} \, \mathrm{g}(C) \subset D \qquad \text{and} \qquad p \, = \, h^{-1} \, \mathrm{g}(q) \, \in \, h^{-1} \, \mathrm{g}(\partial C) \, .$$

Since D is mildly wild, h^{-1} g(C) must be tame in E^{n+2} , and hence C is tame in E^{n+2} . The proof is thus complete.

REFERENCES

- 1. J. C. Cantrell, Almost locally flat embeddings of Sⁿ⁻¹ in Sⁿ, Bull. Amer. Math. Soc. 69 (1963), 716-718.
- 2. J. C. Cantrell and C. H. Edwards, Jr., Almost locally polyhedral curves in Euclidean n-space, Trans. Amer. Math. Soc. 107 (1963), 451-457.
- 3. A. V. Černavskij, *Isotopies in Euclidean spaces*, Russian Math. Surveys 19, Nr. 6 (1964), 63-65.
- 4. P. H. Doyle, On the embedding of complexes in 3-space, Illinois J. Math. 8 (1964), 615-620.
- 5. R. H. Fox, *Some problems in knot theory*, Topology of 3-Manifolds and Related Topics, 168-176, Prentice-Hall, Englewood Cliffs, New Jersey, 1962.
- 6. R. H. Fox and E. Artin, Some wild cells and spheres in three-dimensional space, Ann. of Math. (2) 49 (1948), 979-990.
- 7. H. Gluck, Embeddings in the trivial range, Ann. of Math. (2) 81 (1965), 195-210.
- 8. V. K. A. M. Gugenheim, Piecewise linear isotopy and embedding of elements and spheres, I, Proc. London Math. Soc. (3) 3 (1953), 29-53.
- 9. J. F. P. Hudson and E. C. Zeeman, On regular neighbourhoods, Proc. London Math. Soc. (3) 14 (1964), 719-745.
- 10. L. S. Husch, On relative regular neighborhoods (submitted for publication).
- 11. R. C. Lacher, Some conditions for manifolds to be tame, Ph.D. Thesis, University of Georgia (1966).
- 12. Charles Seebeck, *\varepsilon-taming in codimension three*, Michigan Math. J. (to appear).
- 13. Ralph Tindell, Some wild imbeddings in codimension two, Proc. Amer. Math. Soc. 17 (1966), 711-716.
- 14. ——, A counterexample on relative regular neighborhoods, Bull. Amer. Math. Soc. 72 (1966), 892-893.
- 15. ——, The knotting set of a piecewise linear imbedding (submitted for publication).
- 16. ———, Unknotting manifolds in Sⁿ (submitted for publication).
- 17. E. C. Zeeman, Unknotting combinatorial balls, Ann. of Math. (2) 78 (1963), 501-526.
- 18. ——, Seminar in Combinatorial Topology (mimeographed notes) Inst. Hautes Etudes Sci., Paris, 1963.

Florida State University