A MILDLY WILD TWO-CELL
Ralph Tindell

1. INTRODUCTION

The results in this paper grew from an attempt to answer the following question
of R. H. Fox: Does there exist in 3-space or in 4-space a wild 2-cell with an in-
terior point p such that every 2-cell subset that has p on its boundary is tame?

[5, Problem 21.] Doyle [4] has shown that no such cell exists in 3-space. In Section
5, we give an affirmative answer for 4-space, along with a discussion of mildly wild
n-cells in (n + 2)-space. (An n-cell C in Ent2 is said to be mildly wild if it is
wild and one of its interior points p has the property that each n-cell subset of C*
having p on its boundary is tame.) In Section 3 we prove a general theorem on ¢-
taming. In Section 4 we prove an g-taming theorem about almost piecewise linear
imbeddings; it is the main tool in the construction of the mildly wild 2-cell; we also
show, in Section 4, that each almost polyhedral 2-sphere in 4-space is the union of
two flat cells.

2. DEFINITIONS

We assume familiarity with the material contained in Chapters 1 and 3 of [18],
and we adhere to the notation given there. By a simplex we mean a closed recti-
linear simplex, and by a complex we mean a closed rectilinear simplical complex
(which may be assumed to be a subcomplex of a rectilinear division of some Eucli-
dean space E9). K | L, means that K collapses to L (see Chapter 3 of [7]). We
shall abbreviate “piecewise linear” (or piecewise linearly) to pwl. If M is a mani-
fold, we shall denote its inferior by int M and its boundary by 0M; we shall write
IntX A for the interior of A as a subset of the topological space X, and A for the
closure of A.

If a space C is homeomorphic (respectively, pwl homeomorphic) to a k-simplex,
we say that C is a k-cell (respectively, k-ball). An n, m cell pair (n, m ball pair)
is a pair (C™, C™) of cells (balls) with C™ c C™ and C™ N3C* =9C™; an n, m
semi-cell paiv (n, m semi-ball pair) is a pair (C®, C™) of cells (balls) with
C™ c C™ and such that

C™ N aC™ = 3C™ N oC? = c™-!
is an (m - 1)-cell (an (m - 1)-ball). The standard n, m ball paiv (Z, 7) and the
standard n, m semi-ball pair (Z, o) are defined as follows: let ¢' be an (m - 1)-
simplex in Em-1 andlet u=(0, ---, 0, -1) and v = (0, ---, 0, 1) belong to E™;

then ¢ is the m-simplex u* o,

T=0U(v*gag),
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and Z is the (n - m)-fold suspension of 7, that is, the join 7 * SB-™ of 7 with the
(n - m)-sphere. The standavd spheve pair is the pair (9%, 87). A cell pair (ball
pair) Cn.m jg said to be flat (unknotted) if there exists a homeomorphism (pwl
homeomorphism) g of C® onto £ such that g(C™) = 7; we similarly define flat (un-
knotted) semi-pairs. A sphere pair S™™ is said to be flat (unknotted) if it is home-
omorphic (pwl homeomorphic) to the standard pair (02, 97). If B™ is an m-ball in
an n-sphere S%, the pair (S®, B™) is said to be unknotted if it is pwl homeomor-
phic to (0Z, 9= N 90). A ball pair C™™ is said to be locally unknotted if for some
triangulation J, L of C?, C™ and each vertex a of L the pair (lk (a, J), k(a, L))

is unknotted. (This will then be true for each triangulation of (C», Cm),)

Throughout the remainder of this paper, M will denote a combinatorial m-mani-
fold with compact boundary, N will denote a combinatorial n-manifold, and f an im-
bedding (not necessarily pwl) of M into int N. f is said to be locally pwl at p € M
if for some subpolyhedron P of M with p € Inty; P, the restriction f | Pof ftoP
is pwl. The imbedding (locally pwl imbedding) f is said to be locally flat (locally
unknotted) at p € M if there is a closed neighborhood U of f(p) in N such that
(U, U N £(M)) is a flat n, m cell pair (unknotted n, m ball pair) when p € int M, or
a flat n, m semi-cell pair (unknotted n, m semi-ball pair) when p € dM. Such a
neighborhood U is called a canonical neighborhood, and an unknotting homeomor-
phism of (U, UN £(M)) is called a canonical homeomorphism.

A natural question arises when f is pwl (and n - m = 2): are the notions of lo-
cal flatness and local unknottedness equivalent? In [15], we gave a partial answer to
this question, and in particular we showed that the answer is affirmative when
m=2,n=4,

Let A be a closed subset of N, and ¢ a positive number. An e-push of N, A is
an isotopy {h,} of N onto itself such that hy is the identity, d(x, hy(x)) <¢ for all
x € N and t € [0, 1], and h(x) = x whenever d(x, A) > ¢ (d denotes distance). A
pwl e-push of N, A is an e-push that is a pwl isotopy (in the sense of [8]). We
shall call a homeomorphlsm of N onto itself an e£-push if it is the final stage of an
e-push as defined above. Our definition of an £-push is the same as that given
originally by Gluck [7].

We shall have occasion to use relative regular neighborhoods as defined by Hud-
son and Zeeman [9]: If X, Y are polyhedra in a combinatorial manifold M™, a poly-
hedron Z in M™ is said to be a regular neighborhood of X mod Y in M if

1. Z is an m-manifold,
2.2 1 X-Y,
3. X-YCIntyZand ZNY=9ZNY=X-YNY.

In [9], it is proved that such a relative regular neighborhood exists if X is “link
collapsible” on Y, a condition that is satisfied if X is a manifold and
X NY=3XNY. It is also shown in [9] that if X N @M is link collapsible on
Y N3M, then Z N 3M - Y is a regular neighborhood of X N oM mod Y N oM in aM.
A detaﬂed discussion of these topics is given in [9] though the reader is cautioned
that the uniqueness theorems given there are false (see [14]; for a corrected version
of the uniqueness theorems see [10]).
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3. AN ¢-TAMING THEOREM

THEOREM 3.1. Let f: M™ — int N be an imbedding that is locally pwl on
int M and locally flat on dOM™. Then for each & > 0, theve exists an e¢-push h of N,
f(d0M) such that hf is pwl and hi(M) C £f(M).

Proof. Since f is locally flat at each point p € oM, there exist a canonical
neighborhood Uy, of f(p) of diameter less than € and a canonical homeomorphism
gp of (U Up N £(M)) onto the standard n, m semi-ball pair (Z, o). Let

Qp = st (p, (r ) where J,, is a subdivision of the original triangulation J of M and
contains p as a vertex, and where J (r) is a barycentric rth gerived J of mesh

small enough so that Qp C Intpg (£~ 1(Up)). Then gpf maps Q; into int = and onto
a subecell of ¢; moreover,

gpf(Q, N aM) = g, #(Qy) N ¢!

is an (n - 1)-cell in the interior of o'. Recall that Z is the (n - m)-fold suspension
of ¢ U (¢' *v); let Z' C Z be the (n - m)-fold suspension of

gpf(Qp) U (gpf(Qp) N 0" * v,

using the same suspension points as in" Z. Clearly, (Z', g f(Q )) is homeomorphic
to (Z, 0); thus Vv, = glgl(E') is a canonical neighborhood o f(p), and since V, C U,
Vp has diameter less than €. From the construction, we see that Vp N £f(M) = f(Qp)
We now define Q as st(p, J §r+1)) C inty, QP the sets inty, Q{o cover the compact
set M, so that there is a finite subcover Q! P Qi)k. For simplicity, we write

1
Qi and Vi for QPi and Vp

i
Let n; be a pwl homeomorphism of (Q;, Q; N oM) onto (o, o'), and let g; be a
homeomorphism of V; onto Z that extends

Since 77{1 is uniformly continuous, there exists a 6{ > 0 such that if h is a Gi -push
of Z, o', then

(*) d(x, 2;(x)) = d(x, n{1h'n;(x)) = A3l ny(x), n;lh'ny(x) < o/k,

where q = min {d(Q i M- Qi)}' Since gj 1 js uniformly continuous, there exists a
6; > 0 such that if h' is a 6} -push of Z, ¢, then

(**) h; = gi‘l h'g, is an £/k-push of V., V. N £(M).

1

Let 6 = min {5; , 5;‘ },and let h' be a pwl 6-push of =, o' such that
(1) h'(x) =x for all x € 3%,
(2) h'(o) C o, and
(3) h'(int ¢') C int o;
such a push is easily constructed.
Define h;: N — N by
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grln'g,(x) (xe vy,
hi(X) =
X (x e N-V;);

since by (**) each h; is an £/k-push of N, £(dM), h =hy *** h; is an e-push of
N, f(0M). To see that h satisfies the conclusions of the theorem, we define the pwl
homeomorphism A; of M onto itself by

n;ihtn(x)  (xe Q),
2i(x) =
X (X €M - Qi)’

and we let A be the pwl homeomorphism Ay **- A} mapping M into itself. Suppose
X € int M; then by invariance of domain, A(x) € int M. If x € 9M, then x € Q; for
some i, since the Q! cover M. By (*),

dlx, A1 0(x) < (E-1Da/k <q <dQj, M- Qy);

hence X;_; - Ay(x) € inty; Q;; but properties (2) and (3) of h' imply that
Ai(inty Q;) c int M and thus A;(x;_; *** A1(x)) € int M, so that

Mx) = At Ay e 2 (%))

is in int M. We have thus shown that A(M) C int M.
Suppose y € f(M); then

h(y) = h,, = hy(y) = (g5 h'e (el h'g_ ) (g7lhtg )y

m-1

= (Enyh'n £ 1) @EnzL hg  £71) - (@97l bt £-1)(y)

fA Ay o A Eiy) = ().

Hence hf(x) = fA(x) for all x € M. But A(M) C int M and f is pwl on subsets of
int M, so that fA = hf is pwl; since A(M) C M, fA(M) C £(M). The proof of the theo-
rem is thus complete.

COROLLARY 3.2. Let p € daM, let the imbedding f: M™ — int N® be locally flat
at p, and suppose that for some neighborhood V of p in M, f is locally pwl at each
point of V.- 9M. Then for each € > 0, theve exists an €-push h of N, £(p) such that
hf is locally pwl at p and hi(M) C £f(M).

4. ALMOST PIECEWISE LINEAR IMBEDDINGS

LEMMA 4.1. Let B™ be a locally unknotted ball in the manifold M®*2  and let
B™ N 9M = 9B™ N aM be either empty or an (n - 1)-ball B2l , Let NP2 pe g
second devived neighborvhood of B™ mod 3B™ - dM in M. Then (N®t2 B™) is an un-

knotted ball paiv and N2t2 N 9M is either empty (when B™ N 3M = @), or else it is
an (n+ 1)-ball N1 with (NnHL Bn=1) gy unknotted ball pair.

A direct proof of this lemma is given in [16]; it is straightforward, though tedi-
ous. A variation of Lemma 4.1 is given in [10].
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THEOREM 4.2. Let f be an imbedding into E™ (n > 4) of A™ that is locally pwl
(and locally unknotted) except at a single boundary point. Then f is a flalt imbedding.

Proof. Let (Bn-1, Am-1) pe the standard n - 1, m - 1 ball pair in En"1 with
Am-1 g Slmplex and let a = (aj, +--, a,) be the pomt in EP such that a; = 0’
(i=1,2,---,n-1) and a, = 1. Let

B=a*Bm-l and A =a*xAm-l,

Then define A; (respectively, B;) to be the set of points (x;, -+, x,) of A (re-
spectively, of B) satisfying the condition (i - 1)/i < x, <i/(i+1). Then (B, A) is
an unknotted n, m ball pair, and (B - a, A - a) is the union of the unknotted ball
pairs (B;, &) (i=1,2, .--). Also, BiN By=@if j#i-1,i,i+1, and

(B;, &) N{(Byy1, Dj41) = (8B N 8B4y, 345 N3l4) = (A, @)

is an unknotted n - 1, m - 1 ball pair.

We may assume that f maps from A into E™ and that it is locally pwl (and
locally unknotted) off the vertex a.

CLAIM. Thevre exist n-balls N; (i=1, 2, =) such that

1. N; N £(A) = £(4;) and (Ny, £(4;)) is an unknotted ball pair,

2. (Nj, #(47)) N (Nyp1, £(A541)) = @N; N 3Nj4y, 88(4;) N 3 £(A541)) = (AT, £(ey)),
3.N; NNy =P ifje#i-1,1,i+1,

4, lim (diam N) = 0.

j— 0

Proof of the claim. Let A} be the m-ball U1 1 A;; by hypothe51s f] Ay is
pwl and locally unknotted; therefore by Theorem 8 of [8] £ ] A may be extended
to a pwl homeomorphism F. j-1 of E™ onto itself; moreover, by Theorem 4 of [8],

we may assume that F. , is the identity outside some compact set and is thus uni-
formly continuous. NofJe that we have arranged our subscripts so that Fj = f on

A_]-I-l

Let M; be a second derived neighborhood of A; mod3A; in E®. Then (M;, 4;)
is an unknotted ball pair by a variation of Lemma 4.1; moreover, we may assume that
M;NA,=A;NA,=a;, and since A; and Filf(A - A1) are disjoint closed sets
and F; is uniformly continuous, we may assume that

M, NFil#(A-A) =0 and diam F;(M;) < diam £(A;)+ 1.

(We need merely take M; as a second derived neighborhood in a subdivision of suf-
ficiently fine mesh.) Let N; = F;(M;); then, by construction,

Ny N1(2) = £(A)) = Fi(Ayp),

and the conditions of the claim are met for k < 1.

Suppose we have constructed N, , ---, N, satisfying the conditions of the claim,
condition 4 being replaced by

We define Ny = Fy;1(My41), where My ,; is a second derived neighborhood of
Aypymod 9A, 1, - 9M in E® - M. Here
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k .
-1 -l
M = Fi (N = 1:‘1<+1(_U1 Nj)'
J:

k —_—
Inductively we can show that Ni = U_, N, is an n-ball, so that E® - M is a mani-
. . < J J
fold. By our induction hypothesis,

Ay NO(E" - M) = Frl((e)) = oy,

(o) is an (m - 1)-ball). By Lemma 4.1, (My,;, c41) is an unknotted ball pair in-
tersecting M in an unknotted face (@M;,; N 3(E® - M), a;). Moreover, as in the
case k = 1, we may assume that

(i) diam Fy (M, ;) < diam £(A, )+ 1/(k + 1) and

(i) My N Fpl £(A) = A
Since Ny ,; = F,_. (M, ,,), we have satisfied the conclusion of the claim. (Note that
lim; ;e (diam Nj) = limj e (diam f(Aj) +1/j) = lim; e (diam f(Aj)) =0.)

Proof of the theovem. Since the n - 1, m - 1 ball pairs (A;, o;) and (A¥, f(a;))
are unknotted, £ | a; may be extended to a homeomorphism h¥ of A; onto A¥ (see
Chapter 4 of [18]); then we may extend h’i"_1 and h¥ over the annulus pair

(@B; - A; 3 -4y, 04 -y - a;)

to a homeomorphism h! of 3B; onto &N, such that h!{ | 8A; = £ | 84, (see [16]). We
may then extend hj to a homeomorphism h; of B; onto N; that agrees with f on A,.

The conditions of the claim imply that

N=(UNj)Uf(a)

j=1

is a cell and that (N, £(A)) is a cell pair; it is actually a flat cell pair, for the hom-
eomorphism h defined by

h,(x) if x € By,
h(x) =
f(a) if x=a

carries the flat pair (B, A) onto (N, £(A)). Moreover, N is locally polyhedral ex-
cept at f(a), and hence it is locally flat except possibly at a. Since, by Cantrell’s
theorem [1], N is flat, the homeomorphism h: B — N may be extended to all of E";
since h-1f£(A) = A, our proof implies that f(A) is flat, and the proof is complete.

We note that if n - m > 3, the hypothesis of local unknottedness in Theorem 4.2
is superfluous, by [17], that it may also be removed in the case n - m = 1, and that
in the special case n = 4, the condition m = 2 may be replaced by local flatness, by
[15]. Finally, we remark that one can choose the flattening homeomorphism h to be
locally pwl off a. These comments also apply to the next theorem.

THEOREM 4.3. Letf f: M™ — int N® (n> 4) be an imbedding that is locally pwl
(and locally unknotted) except at a countable subset S of aM. Then for each € > 0,
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there exists an e-push h of Ny, £(S) such that hi(M) C (M) and hf is pwl and lo-
cally unknotted.

This theorem follows from Corollary 3.2 and Theorem 4.2 by the methods of [2].

We remark that Cernavskil [3] and Lacher [11] have independently proved a gen-
eralized form of Theorem 4.3. They showed that an imbedding cannot fail to be
locally flat at a countable subset of 9M; however, they do not obtain an &-taming
theorem, except when m < 2(n - 1)/3 [3].

Also, Charles Seebeck [12] has recently extended Theorem 4.3 by removing the
hypothesis S C @M (and, of course, the conclusion hf(M) C £(M)) in the case
n-m>3. :

COROLLARY 4.4. Let S% be a 2-sphere in E* that is locally polyhedval except
at a countable subset B; then theve exist flat 2-cells Dy and D, such that

9D; = 9D, = D; ND, and ‘S%°=D,UD,.

Proof. Let { be an imbedding of - the standard 2-sphere 9A3 that is locally pwl
off £-1(B); let @ be an arc in dA3 that is locally polyhedral except at its subset
£-1(B). Then f|3A3 - @ is a pwl imbedding of a combinatorial 2-plane into E4; by
[14], the set of points K' at which it is locally knotted is a subpolyhedron of dimen-
sion at most 0; hence K' is countable. Likewise, the set K" of points of o -1 -1(B)
at which f is locally knotted is countable; let K = K' U K" U £-1(B), and let y be a
1-sphere in 9A3 that is locally polyhedral except at its subset K. Let C; , C, be
the closed complementary domains of y in 8A3. Then, by Theorem 4.3, f I C; is
locally flat and hence flat; set D; = £(C;), and the proof is complete.

COROLLARY 4.5. If D? is a 2-cell that is locally polyhedral off a countable
subset of its interior, then D2 = D; U D,, wheve each D; is flat and
D; N D, =0D;y N 2D, is an arc.

5. A MILDLY WILD TWO-CELL

CONJECTURE 1_. There exists a mildly wild n-cell in EPt2
CONJECTURE 2,. Every n-cell in E™ is tame in Ent2,

We shall show that for each n > 2, Conjecture 1, is equivalent to Conjecture 2,,.
Conjecture 1 is true by [5], and Conjecture 2 is trivial. Also, since the classical
Schoenflies Theorem implies Conjecture 2,, we shall have proved Conjecture 1,
(Corollary (5.2)).

THEOREM 5.1. If every n-cell in E® is tame in EPY2 then theve exists a
mildly wild n-cell in ERT2, '

Proof. Let D™ =D be a wild n-cell in E2*2 that is locally pwl and locally un-
knotted except at a single interior point a (we have constructed such examples in
[13]). Suppose C is an n-cell subset of D with a € C; then there exists an arc «
in D with endpoints a, b such that @« N D=b, @ N C = a, and such that a is poly-
hedral except at a. Now D - a is a pwl punctured ball and can be triangulated by
an (infinite) complex L in such a way that st(v, L) N C = @ for each vertex v of
o - a and the diameters of simplexes of L. near a become arbitrarily small. Then

Nu=N(a_a_,L")=U{aeL":oﬂa-a=¢}
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is an ascending union of cells, as in the claim of Theorem 4.2, and N'Ua =N is a
cell; moreover, D - N is a cell that is locally pwl except at a, and D - N contains
C. D - N is locally unknotted at interior vertices and hence is locally unknotted
wherever it is locally pwl—in other words, except at a (see Corollary 3.5 of [15]).
Theorem 4.2 ways that D - N is flat; let g: Ent2 _, Ent2 pe a homeomorphism with
gD -N)=A"C E®, Then g(C)cC AP C E™; hence g(C) is tame in E®*2, Since g is
a homeomorphism of En+2 onto itself, it follows that C is tame.

COROLLARY 5.2. There is a mildly wild two-cell in E%.
LEMMA 5.4. Let T be a compact subset of E® such that Fr T =T - IntEnT is

a manifold. Then corvesponding to every point p € Fr T, there exists an n-cell F
in E™ such that TC F, TNoF =p, and ¥ is flat in E™ for n > 4 and flat in Entl
in the case n = 3.

Proof. Since T is compact, there is a combinatorial ball F' such that
T Cint F. Since Fr T is a manifold, p € Fr T is accessible by an almost poly-
hedral arc; that is, there exists an arc @ in F' with endpoints p, q such that
aNT=p, a NgF'=q, and a is polyhedral off p. We thicken @ to a tapering cell
N, as in the proof of Theorem 5.1, and we let F=F'- N. Then F is a flat cell (see
the proof of Theorem 5.1), and TC F and T NdF =p, for n > 4. If n=3, we can
still have F satisfying the last two claims; but since Theorem 4.2 is not apphcable
in th1s, case, we may claim only that F is ﬂat in B4,

There exists a set T in E3, whose boundary is a 2-sphere, such that for some
point p € Fr T no flat 3-cell F (in E3) contains T - p in its interior and p on its
boundary. However, T is not itself a 3-manifold. It seems probable that if T were
a 3-manifold, we could find such an F. To show this, one need only consider the
case where T is a 3-cell:

CONJECTURE 3. If T isa 3-cell in E3 and p € 0T, then theve exists a flat 3-
cell ¥FDO T suchthat T NOF =p.

THEOREM 5.4, If theve exists a mildly wild n-cell in ERY2  then every n-cell
in EM is tame in ENtZ,

Proof. Suppose D is a mildly wild n-cell in Ent2 with distinguished interior
point p, and let C be an n-cell in En, Let F be a flat n-cell in E? (all we need is
that F is flat in En*2), with CC F and C N 3F = q. Let D' be a subcell of D with
p € 8D, and let h: Ent2 — Ent2 pe 3 homeomorphism such that h(D') is a com- '
binatorial n-cell. Let ¢ be an n-simplex of h(D') with h(p) € o, and let
g: Ent2 _, Ent2 pe 3 homeomorphism such that g(F) = ¢ and g(q) = h(p) (such a
homeomorphism exists, because ¢ and F are flat n-cells). Then
h-1lg: Ent2 , Ent2 has the properties that

h'lg(C)cD and p=hlgq) e hlglC).

Since D is mildly wild, h-1 g(C) must be tame in E"*2  and hence C is tame in
Ent2 | The proof is thus complete.
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