ON THE LOEWNER DIFFERENTIAL EQUATION
Ch. Pommerenke

1. INTRODUCTION AND SUMMARY

1.1. Let D denote the unit disk in the z-plane. For -o< a < g < «, we denote
by #(a, B) the-class of all functions

f(z, t) = etz +a,(t)z2+-- (z €D, te [a, b])

that are analytic and univalent in D for each t € [, 8] and satisfy the inclusion
relation

G(s) C G(t) = £(D, t) = {f(z, t): z € D}

whenever o < s <t<B. Ina similar manner, we define ¥(a, =) by taking [a, «)
instead of [a, B].

In.the terminology of [7], #(a, B) is the class of all univalent normalised sub-
ordination chains over [@, 8]. The inclusion requirement implies that f(z, s) is
univalently subordinate to f(z, t) if o < s <t < B. This means that there exists a
function

&z, s, t) = etz + e,
analytic and univalent in [zI < 1, such that
(1.1) (z, s) = f(¢(z, s,-t), 1) (s < t).
It follows that
(1.2) ¥z, s, 7) = ¢(P(z, s, t), t, 7) (<t 7).

The function ¢(z, s, t) is absolutely continuous in s and t, and ¢(z, s, s) = z. Also
(see [17, p. 165]),

(1.3) f(z, s) = lim et¢(z, s, t).

ft— 00
The class .¥(c, B) can be characterised by a differential equation that was first
considered by Loewner [6] and later by Kufarev [4].

Theorem A (see for instance [7, Satz 4]). Let f(z, t) = etz + -+ be analytic and
univalent in |z| <1 for each t € I=[a, B]. Then f(z, t) € ¥(a, B) if and only if

(i) the function f(z, t) is absolutely continuous on I, locally uniformly in D;

(ii) for almostall t € I,

(1.4) 2 3z, V) = 2z, Oh(z, ) (z € D),
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where h(z, t) = 1 + - is analytic in |z| < 1 and measurable in t € I, and where
Shiz,t) >0 (ze€eD, tel.

Here ' denotes the derivative with respect to z. The corresponding differential
equations for the function ¢ are

5= ¥z, s, t) = 2¢'(z, s, t)h(z, s),
(1.5) i
o7 ¥z, 8, t) = -z, s, t)h(¥(z, s, t), t).

Every univalent function can be generated by a subordination chain f(z, t):

Theorem B [7, Folgerung 1], [2]. Let f(z) = e z + ** be analytic and univalent
in D. Then there exists 1(z, t) € #(a, ») such that f(z, oz) =f(z). ¥ |f(z)] < eB,
one can assume that (z, t) € 9 (a, B).

1.2. Loewner’s well-known slit-mapping theorem [6] asserts that if G(a) is a
disk slit along a Jordan arc, and G(t) (@ <t < B) is obtained by continuously reduc-
ing this slit to a point, then f(z, t) satisfies (1.4), with

{) = 1+ ¢tz
1-t®)z

We shall give a necessary and sufficient geometric condition that a subordination
chain satisfies this particular form of the differential equation (1.4). We denote by
diam E the diameter of E in the euclidian metric, and by sph dm E the diameter in
the spherical metric.

THEOREM 1. Let f(z,t) € $(a, B) (-» < a <B <) and G(t) = {f(z, t): z e D}.
Then the following two conditions ave equivalent:

(a) Forall t e [a, B],

h(z, (¢(t) continuous in-[a, 8], IC(t)I =

(1.6) 2 8z, 0) = 2f'(z, 1) ;;EB‘* Z  (zeD),

whevre the function ¢(t) is continuous in (o, 8] and |§(t)| =1.

(b) For every € > 0, there exists a 6 > 0O such that whenever s, t € [, B] and
0<Lt-s<d, some cross-cut C of G(t) with sph dm C < ¢ separates 0 from
G(t) \ G(s).

The proof that (b) implies (a) follows the same lines as Hayman’s proof [3, Chap-
ter 6] of Loewner’s slit-mapping theorem. The proof will show that it is sufficient to
assume that (1.6) holds for almost all t € [o, g].

COROLLARY. Let f(z, t) € ¥(a, ©). Suppose that G(t) (o <t < =) is the com-
ponent containing 0 of the complement of B(t) = {b(7): 7 >t}, where b(t) is a
complex-valued function continuous in [a, =). Then (a) holds.

The corollary contains Loewner’s slit-mapping theorem as a particular case.
Each of our figures represents a curve B(s); in each case, the heavily drawn portion
represents B(t). It should be noticed that Figure 1 gives an example for the corol-
lary, whereas Figure 2 does not. The reason is that G(t) is strictly increasing with t,
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Figure 1. Example for Figure 2. Neither the assumption of
the corollary. the corollary nor (b) is satisfied.

Figure 3.

because of the normalisation. In the example of Figure 3, the assumption of the
corollary is not satisfied, but the conclusion (a) still holds.

1.3. It is an interesting question whether every univalent function f(z) = e® z + +--
can be imbedded in a subordination chain f(z, t) € ¥(a, ©) such that f(z, o) = {(z)
and (1.6) is satisfied almost everywhere, where ¢(t) is a measurable function with
|§(t)| = 1. We can only prove a weaker result, which will be deduced from Loewner’s
slit-mapping theorem.

THEOREM 2. Let £(z) = e*z + *** be analytic and univalent in D, and let the
complement E of the image domain be arcwise connected on the spheve. Then there
exists an 1(z, t) € #(a, ©) such that {(z, o) = 1(z) and
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D e o e )+ =
(1.7) ot i(z, t) = zf'(z, t) 20 - z (z € D),

where |C(t)| =1 and €(t) is continuous in (@, ), except possibly on a countable set
whose only limit point is «. ’

Though the complement E with respect to the sphere is always connected, it need
not be arcwise connected. We shall give an example where E is not arcwise con-
nected but the conclusion of Theorem 2 still holds. In the example, E will be an in-
decom]posable continuum that was first described by Knaster (see for instance [5,

p. 143]).

2. THE CONTINUOUS CASE

2.1. We shall need some known results. The first two are proved by length-area
estimates similar to [3, Theorem 2.1].

LEMMA A. Let g(z) be analytic and univalent in D. For every € ( |§ | =1) and
Py > 0, there is a p with py <p <1 such that C = {eg(=2): ‘z - §| =p, z€D} isa
cross-cut and
)-1/2

5

sph dm C < Kl(logpL
0

wheve K1 is an absolute constant.

LEMMA B. Let g(z) be analytic and univalent in D, and let E be a connected
subset of D. Then

sph dm g(E) > exp[-K,/(diam Ef],

whevre K, is an absolute constant,

LEMMA C [3, Lemma 6.6]. Suppose that ¢,(z) =ynz+ -+ (yn > 0) is analytic
and univalent in D, and let ¢ (D)=D\ A, wheve diam A — 0. Then

¢,(z) — z  uniformlyin D.

If z_ (|z,| = 1) corresponds to a point in A, then

z - ¢,(z) . z, +z

1-v, Zy, - Z (i — )

locally uniformly in D.
2.2. Proof of Theorem 1: (a) = (b).

i) Let (1.6) be satisfied for almost all t € [a, B], and let > 0. Since {(t) is a
continuous function, we can choose a positive § <72 /16 such that

(2.1) le) - es)| <mn/4 (@<s<t<B, t-5<0).
Let |z]| <1, |z - C(s)l >, a_‘{_s<B. We want to show that

(2.2) ut) = |&(s) - #(z, s, t)| > n/2 (s <t<min[s+5,p]).
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Suppose this is false. Since u(t) is continuous and u(s) = |z - ¢(s)| > 7, there exists
a first t; with s <t; <s+ 6 such that u(t;) = 7/2. Hence u(t) > /2 for
s <t<t;, and by (2.1)
(2.3) [¢t) - o(z, s, )] > n/d (s <t<ty).

It follows from (1.5) and (1.6) that for almost all t € [s, t;],

Zu® = % |6s) - ¢(z, 5, 8)] > - |9tz s, 0] c(ﬂﬂbl,

g(t) - ¢
Hence (2.3) implies that % u(t) > - 8/n for almost all t € [s, t;]. Since u(t) is
absolutely continuous, this implies that

u(t,) - u(s) > -%(tl -8) > —8179

Because u(t;) =7/2 and u(s) > 5, we find that 6 > n2/16, contrary to our choice.
Hence (2.3) holds, and therefore, by (2.1),

2.4) |8 - ¢z, 5, )] > /4 (|z-8s)| > n, s <t < minfs+3,8]).
ii) Let |z - €(s)| > n. We want to show that
(2.5) |#(z, s, t)| > [z]* (s <t< min[s+85,8]).

Suppose this is false. Then there exists a first t, with s <t,< s+ 6 such that
| #(z, s, t,)| = |z|?, and

|6(z, s, t)] > |z]2 for s <t <t,.

It follows from (1.5) and (1.6) that, for almost all t € [s, t,],

2 PN I I R B I () o0 P Rl .

Hence (2.4) implies that, for almost all t € [s, t,],

%log |¢(z, s, )] > --1-];% (1-|z|% _>_.%g— log |z] .
Consequently
log | ¢(z, s, t&)l > log |z| +l7%5—10g |z] .
Since 6 < 52/16, this contradicts the relation log | ¢(z, s, tz)l = 2 log |z].
iii) For e <s <t < B, let

(2.6) A(s, t) = D\ ¢(D, s, t).
Then, by (1.1),
(2.7) G(t) \ G(s) = f(A(s, t), t).
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Letting |z| — 1 in (2.5), we see that
(2.8) A(s, t)c {z € D: IZ-C(S”S?)} (s <t<s+39).
Corresponding to any ¢ > 0, we choose 7 such that
2K, /(log m)1/2 = ¢.

Let 0<t-s<6. It follows from Lemma A that there is a p with n <p <1 such
that

sphdm C <e¢ (C=£Q,t), Q= {zeD:|z-¢s) =p}).
By (2.8), the cross-cut Q of D separates 0 from A(s, t). Hence it follows from
(2.7) that the cross-cut C of G(t) separates 0 from G(t) \ G(s).

2.3. Proof of Theovem 1: (b) = (a).
i) As in (2.6), we put A(s, t) =D\ ¢(D, s, t) for s <t. By (1.2)

(2.9) D\ A(s, 7) = ¢(D\ A(s, ), t, 7) (s <t < 7).
It follows that
(2.10 A(s, ) D A(s', t) (s <s' <t).

Let (b) be satisfied, and suppose that t, > s, and t, - s, — 0. By (b), we can
choose cross-cuts C, of G(t,) that separate 0 from G(t )\ G(sp) such that
sph dm C, — 0. Let the cross-cuts Q, of D be defined by C;, = f(Qn, ty). (Lemma B
shows that diam Q_ — 0. Since Q, separates 0 from A(s,, t o), it follows that

(2.11) diam A(s_, t,) — O.
Therefore Lemma C implies that, uniformly in D,
(2.12) oz, s ,t) — z.

ii) Let first a <t < B. It follows from (2.10) and (2.11) that as s T t, the set
A(s, t) converges decreasingly to a point. Let {(t) be this limit point. Then
|e®)| = 1, and €(t) € dA(s, t) for s <t.

Let t, —t, and s <t, s <t,. Itfollows from (2.9) and (2.12) that A(s, t,) con-
verges to A(s, t). Because {(t,) € 3A(s, t,), this implies that all limit points of
¢ (t ) as n — « lie in the closure of A(s, t). This is true for every s <t. Hence
et ) — ¢(t). Consequently, £(t) is continuous for a <t < B.

Letnow a <s<t<Band t<L7<B. We deduce from (2.9) and (2.12) that
A(s, 7) converges to A(s, t) as 7 | t. Since A(t, 7) C A(s, 7) and &(t) € 0A(s, t)
for every s < t, it follows that A(t, 7) converges to {(t) as 7 | t.

Finally, let @ < 7 < 7'. As above, A(a, 7) and A(a, 7') differ by arbitrarily
little if 7' - o is sufficiently small. Therefore (2.11) implies that A(a, 7) con-
verges to a point as 7 | @. We define {(a) to be this limit point. Since
¢(7) € 3A(a, 7), it follows that &(7) — &(a) as 7 | a.
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Thus we have obtained a function ¢(t), continuous on [, 8], with |&(t)| =1, and
A(t, t') (respectively, A(t', t)) tends to §(t) as t' —'t.
iii) Let o <s <t <B. The function ¢(z, s, t) maps D onto D\ A(s, t). Asin
[7, p. 160] we define

et+es z-¢(z5t) _ 14 e
et - eS VA +¢(Z, S, t) )

h(z, s, t) =

Since ¢(z, s, t) = 5"tz + ..., Lemma C shows that

h(z, s, t) — %f—g (s 11),
respectively,
hiz, s, ) — S8 X2 )

E(s) - z

It follows [7, p. 163] that (1.6) is satisfied.

2.4. Proof of the Corollary. Let B <, let a <s<t<p, and let
w € G(t) N 9G(s). Because w € 0G(s), we see that w € B(7) for some 7 > s. Be-
cause w € G(t) and G(t) N B(i) is empty we conclude that 7 <t, hence s < 7 <t.
It follows that

(2.13) G(t) N3G(s) c {b(t):s <7 <t}.

Corresponding to any € > 0, we choose 6 > 0 such that Ib('r) - b(s)l < &/2 for
0<t-s<6. By(2.13), diam[G(t) N 3G(s)] < £/2. Hence some cross-cut C of
G(t) with diam C < ¢ separates G(t) \ G(s) from 0. Thus (b) holds, and therefore
(a) is satisfied, by Theorem 1.

3. THE DISCONTINUOUS CASE

3.1. Proof of Theorem 2. Let R = {wk: k=1,2, -} be a countable dense sub-
set of the complement E of the image domain G. Since E is arcwise connected,
some Jordan arc J, € E connects w, with .

Let Ey =J,, and let G; denote the complement of E; . Then G; is simply con-
nected and G; O G. Let wy(7) (0 < 7 <) give a parametric representation of J;
such that w;(«) = . The complements of the sets {wl(o): ¢ > 7} form a strictly
increasing family of domains. We can say that the boundary J; has been continu-
ously reduced to the point «. Let us consider the functions that map D onto these
domains. After a suitable normalisation of the parameter, we may assume that the
mapping functions have the form f,(z, t) = etz + -+ (@; <t <«). By Loewner’s
slit-mapping theorem or by the corollary, we see that f,(z, t) satisfies (1.4), with

hy(z, t) = (§;{(t) +2)/(£;(t) - 2)  (§,(t) continuous in [a; , «)).

Let the construction already be performed up to k - 1. Let JI"; =Jy if
Ji 0 Ey_; is empty. Otherwise, let J¥ be the subarc of J, from w, to the first
intersection cx with Ey_j . Possibly, Jf = {wk}. Let E, = E,_; UJE. Then the
complement Gy of Ey is simply connected and G C G_;. As above, we reduce Jf
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continuously either to « or to ¢, . We obtain a subordination chain
fi(z, t) € #(a)_,, @) that satisfies (1.4), with

h (z, t) = (g (t) +2)/(§ () - 2) (¢, (t) continuous in [, _;, @,]).
We define
e®) = (), £z, = £(zt) for @ ; <t<a (k=1,2, ).

Since R is a dense subset of E, it follows from Carathéodory’s kernel theorem [1,
p. 46] that o) — a. Therefore, if we put £(z, o) = {(z), we have a subordination
chain £(z, t) € #(a, ®). For e <t<eo and t#ay (k=1, 2, ---), &(t) is continuous
and (1.7) is satisfied. '

3.2: Example, Let S be the classical Cantor set in [0, 1], let I =[2-3-k 3.3-K]
(k=1,2, ---), and let H" and H~ denote the closed upper and lower half-planes.
Through each point of S we draw a semi-circle in H of center 1/2. Through each
pointof SN (k=1, 2, -**) we draw a semi-circle in H™ whose center is the mid-

point —g— 3k of I, . The continuum E obtained this way was first described by

Knaster (for a figure, see for instance [5, p. 143, Example 1]). It is indecompos-
able, that is, it cannot be decomposed into the union of two proper subg¢ontinua.

For n=1, 2, :--, let S, be the finite set of all points in S that have the form
v/3" (v=0,1, 2, ---, 37), and let E, consist of the union of the semi-circles in
that have the center 1/2 and pass through a point of S, together with the semi-
circles in H™ that pass through a point of 'Sn N I, and have the center —g— 3-k
(k =1, .-+, n). Then E, is a Jordan arc from 0 to 3*, E, C E_;, and E is the
closure of the open Jordan arc

Let E* and J* be obtained from E and J, respectively, by the transformation
w* = 1/w. Then E* is the closure of the open Jordan arc J*. Hence the function
f(z) that maps D onto the complement of E* satisfies the assumptions of the follow-
ing proposition (we can prove it by considering the complement of

J7) = {w(o): 7 < 0 < w0}

and proceeding as in the last part of the proof of Theorem 2):

Let f(z) = e®*z + --- map D one-to-one onto a domain whose complement is the
closure of the open Jordan arc J = {w(7): 0 < 7 <»} going to «. Then there
exists an f(z, t) € 9(a, «) such that f(z, @) = £(z) and (1.7) holds, where {(t) is
continuous in the open interval (o, «).
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