BOUNDARY CORRESPONDENCE UNDER
QUASICONFORMAIL MAPPINGS

J. A. Kelingos

1. INTRODUCTION

It is known that a quasiconformal mapping of x%+y2 <1 onto u2+v2< 1 can
be extended to a homeomorphism between the closed discs [1]. In view of the con-
formal invariance of quasiconformal mappings, these closed domains can be mapped
onto the half-planes y > 0 and v > 0, respectively, by Moebius transformations
under which the points at infinity correspond. The boundary correspondence is then
determined by a monotone continuous function u(x), in the sense that the point (x, 0)
is mapped onto (u(x), 0) (it is sufficient to consider the case where u(x) is strictly
increasing). By reflection in the real axes, we obtain a quasiconformal mapping of
the extended plane onto itself. It follows from a result of A. Mori [9] that

ux +t) - ux)
exp (-1K) < w0 - u& - 1) < exp (1K)
for all real x and all t > 0, where K is the maximal dilatation of the quasiconformal
mapping. This condition indicates that u(x) possesses a degree of approximate sym-
metry, and for this reason we refer to u(x) as a quasisymmetric function.

A. Beurling and L. Ahlfors introduced these boundary functions and characterized
them by means of a certain compactness criterion (see [4] and Section 7 of this
paper). An analogous characterization can be given for quasiconformal mappings of
the plane (or space [6]). Hence we can regard quasisymmetric functions as one-
dimensional quasiconformal mappings, and we naturally expect them to have prop-
erties analogous to those of two-dimensional quasiconformal mappings. In the pres-
ent paper we examine quasisymmetric functions, in the hope of attaining a better
understanding of quasiconformal mappings. In Section 2 we define quasisymmetric
functions and determine the one-dimensional conformal mappings. In Sections 3 to
8 we investigate properties of quasisymmetric functions. In Section 9 we show how
these functions can be used to shed some light on a problem in quasiconformal map-
ping. In the final section we introduce the concept of local quasisymmetry, and we
generalize a result of Beurling and Ahlfors.

2. QUASISYMMETRIC FUNCTIONS

Let u(x) be a strictly increasing, continuous, real-valued function of a real
variable, defined on an interval (a, b) (- <a <b < «),

Definition 1. The function u(x) is k-quasisymmetric (1 <k < «) if
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1 ux+t) - ukx)
E—u(x)—u(x—t)sk

(1)

whenever a <x -t <x<x+t<b. A function is quasisymmelric if it is k-quasi-
symmetric for some k.

For convenience, we set

(2) Qulx, 1) = Qlx, 1) = HEH w0,

where there is no confusion about the function that is under consideration, we shall
omit the subscript. The maximal dilatation of u(x), denoted by k(u), is the infimum
of all k for which (1) is satisfied.

Let us determine the 1-quasisymmetric functions. Certainly, linear functions
are 1-quasisymmetric. On the other hand, if a < x <y < b, then (1) implies

u (3{—_51) = % [u(x) + u(y)].

By repeated application it follows that u(x) is identical with a linear function on a
dense subset of each closed subinterval of (a, b). The continuity of u(x) implies that
u(x) is itself linear on (a, b).

THEOREM 1. A function u(x) is l-quasisymmeltvic if and only if it is linear.

It is easy to verify that the composition of a k-quasisymmetric function with a
linear function yields a k-quasisymmetric function. Hence k-quasisymmetric func-
tions are “conformally” invariant.

3. INVARIANCE OF DOMAIN TYPE

It is known that a plane quasiconformal mapping of a simply connected domain
preserves the domain type [9]. On the line we distinguish four types of domains: the
entire line, finite open intervals, open rays infinite to the left, and open rays infinite
to the right.

THEOREM 2. Quasisymmelvic functions presevve domain type.

Proof. Suppose u(x) is a quasisymmetric function defined on an interval (a, b).
Since u(x) is monotone, its image is an interval (c, d). We shall prove that if a is
finite, then c is finite (all other cases can be treated similarly). Assume to the
contrary that ¢ = -», Fix 0 <t < (b - a)/3, and consider Q(x, t) for

at+t<x<a+2t.

The numerator of Q is continuous in the closure of this interval, and hence it is
bounded. On the other hand, as x — a + t, the denominator becomes unbounded, and
hence Q(x, t) — 0, which is impossible.

As an application of this theorem we note that a function quasisymmetric on a
finite open interval is continuous and quasisymmetric on the closed interval.
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4, REMOVABLE POINTS AND THE REFLECTION PRINCIPLE

Suppose u(x) is continuous on (a, b) and quasisymmetric on (a, ¢) and (c, b)
(a < c <b). Then u(x) need not be quasisymmetric on (a, b). For example, if
u(x) =vVx (x> 0) and u(x) = -x2 (x < 0), then u(x) is quasisymmetric on (- «, 0)
and on (0, «) [4]. However,

1/2
O, 1) = t—g— = t73/2,
t

and hence u(x) is not quasisymmetric in any neighborhood of the origin.

In this section we derive necessary and sufficient conditions for the function
u(x) to be quasisymmetric on (a, b). There are two cases. If (a, b) is the entire
line, then u(x) is quasisymmetric on (a, b) if and only if Q(c, t) is bounded away
from zero and infinity, for all t > 0. If either a or b is finite, then u(x) is quasi-
symmetric on (a, b) if and only if there exists a positive & such that Q(c, t) is
bounded away from zero and from infinity, for 0 <t <.

THEOREM 3. Suppose u(x) is continuous on (-b, b) (0 <b < =) and k-quasi-
symmetric on (0, b) and on (-b, 0). Suppose further that theve exists kg > 1 such
that

(3) 1/kg < Q(0, t) < kg
for all 0<t<b. Then u(x) is quasisymmeltric on (-b, b), and
(4) k(u) < kg(1 +k +k?2).
Proof. Let -b<x-t<x<x+t<b. We must prove that 1/K < Q(x, t) <K,
where K=ky(l +k+k?). ¥ x+t<0,or 0<x-t, or x =0, the result follows

from the hypotheses of the theorem. We may therefore assume that x - t < 0 <x.
The case x < 0 < x+t will follow by symmetry.

Divide the interval [-(x +1t), (x+t)] into six equal parts by points a;
(i=0,:-,6). Then apg=-(x+t), a3=0,and ag=x+t. Let

b; = u(a;) -uwa; ;) (@(G=1,--,6).
Then 1/k <b;/b; 1<k for i=2,3,5,6 and 1/kg<by/bs<ky. Now
u(x+t) -ulx) < bgtbg+bg and u(x)- u(x-t) > min(bs, by.

Therefore

by + kby + kZby
- 2
Qlx, t) < T ko(l +k +k?).

To obtain a lower bound greater than 1/K, divide the interval [-(x +1t), (x +t)]
into four equal parts. Using an analogous notation, we obtain the inequalities

=2

2
S—,
1

c‘lc“
>

<k and

==
w
S=

Also,
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u(x+t)—u(x)_>_b4, u(x)—u(x—t)_<_b1+b2+b3.
Hence
by
W t) 2 555,70,

We consider four cases, depending on whether b, /bl and by, /b 3 lie between 1 and
k or between 1/k and 1; in each case, Q(x, t) > 1/K. We omit the details of the
proof.

If we merely assume that (3) holds for all sufficiently small values of t, Theo-
rem 3 is no longer valid. For example, consider the function

ux) =x (x<0), u(x) = x + x2 (x> 0),
which is quasisymmetric on (-, 0) and on (0, »). Furthermore,
QO, t) = (t+t%)/t = 1 +t,

and therefore Q(0, t) is bounded away from zero and from infinity in each finite
neighborhood of the origin. However, u(x) is not quasisymmetric on the entire line,
since Q(0, t) is unbounded for t > 0.

COROLLARY 1. Let b=, and let u(x) satisfy the hypotheses of Theorem 3,
with the exception that (3) holds only for 0 <t < 6 < ©. Then u(x) is quasisym-
meltric on each finite interval.

Proof., Suppose a < «, By Theorem 3 and the hypotheses of the corollary, we
need only show that Q(0, t) is bounded away from zero and from infinity for
0 £t <a. Butin this range,

u(6) - u(0) u(t) - u(0) u(a) - u(0)
u(0) - u(-a) = u(0) - u(-t) = u(0) - u(-6)°

If we set ky = 1, we obtain the reflection principle for quasisymmetric func-
tions.

COROLLARY 2. Suppose u(x) is symmetric about the ovigin and K-quasisym-
metric on (0, b). Then u(x) is quasisymmetric on (-b, b), and

(5) k(u) < 1+k+k2,

In contrast to the reflection principle for quasiconformal mappings, the maximal
dilatation of the reflected quasisymmetric function may increase. It is shown in [4]
that if u(x) = x% (x> 0), then k(u) = 3, whereas the maximal dilatation of the re-

flected function, U(x) = (sgn x)x%, is 2 + 5.

THEOREM 4. Suppose u(x) is continuous on (-1, b) (1 <b < »), and k-quasi-
symmetric on (-1, 0) and on (0, b). Suppose further that theve exist ko and o
(ko > 1, 0< 6< 1) such that

2 < QO, ) < ko
0

for 0<t< 4. Then u(x) is quasisymmetvic on (-1, b).
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Proof. By the “conformal” invariance of quasisymmetric functions, we may as-
sume u(0) = 0, u(1l) = 1. Two applications of the method of Corollary 1 show that
k(u) =k; <= on (-1, 3).

Let -1 <x<b. If t<L1,itis clear that

1

max (k,, k) < Qx, t) < max(k,, k).

For t > 1, we need only consider the case where -1 <x-t<0 and 1 < x. Here
x<t<Lx+1, hence 2x<x+t<2x+1 and

ulx+t) -ulx) _ ul2x+1)-ulx)

Qx, t) =

u(x) - ulx - t) = u(x)
_ (1) /u(@x + 1) - u(x)
- (1+3(X))( u(x)+u(1l;x)§2(1+k+k2)

(the last inequality follows from the reflection principle). Also,

1 _u®) -ux-t)  ulx)-u(-1)
Qx,t)  ux+t) - ux) = u(2x) - u(x)

this completes the proof.

5. QUASISYMMETRIC CONTINUATION

Ahlfors [2] showed that a quasiconformal mapping of a Jordan domain onto a disc
can be extended to a quasiconformal mapping of the entire plane if and only if the
boundary of the domain possesses a certain geometric property (see also [10]). Sup-
pose u(x) is a quasisymmetric function that maps (a, b) onto (¢, d). Since these in-
tervals are always of the same type, u(x) can be extended to a homeomorphism U(x)
of the entire line onto itself. If U(x) is itself quasisymmetric, we say that U(x) is a
quasisymmetric continuation of u(x). We allow k(U) > k(u). In this section we prove
that quasisymmetric continuation is always possible. In fact, it is always possible to
find a quasisymmetric continuation that is continuously differentiable outside the
closure of the original interval (see [7] for a simple proof based on the theory of
quasiconformal mappings).

THEOREM 5. Suppose u(x) is a k-quasisymmetvic function that maps (0, 1)
onto itself. Then there exists a quasisymmeltric continuation U(X) of u(x) to the
entive veal line such that k(U) < 28k4%.

Proof. Define U(x) by repeated reflection-of u(x); that is, on (-1, 0) let
U(x) = - u(- x), and then extend the definition by the rule U(x + 2) = U(x) + 2.

By two applications of the reflection principle, we conclude that for each integer
n, U(x) is K-quasisymmetric on (n, n+ 3), with

K=1+(1+k+k%)+(1+k+k%)? < 13k*.
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Hence, if t < 1, then 1/13k* < Q(x, t) < 13k%. Furthermore,

2 _U(x+2)-U(x) _ Ux+2)-Ux+1)
Ux+1)-Ukx) UEx+1)-0x  Ux+1)- g(x) +1 < 13k%+1 < 14k4,

Therefore U(x + 1) - U(x) > 1/7k%. Suppose then that t > 1, and let n > 1 be the
integer such that n <t <n+ 1. Then t/n > 1, and using the above result n times,
we obtain the inequalities

n/(7k?) 1
Z n+1 Z 141{4.

Ux+t) - U®x)
t

Also, since t/n < (n+ 1)/n < 2, we deduce from the recursion relation for U(x) that

U{x) -Ux-t)  2n _
t Sh ot

Therefore Q(x, t) > 1/28 k%. A similar argument shows that Q(x, t) < 28k*, which
completes the proof.

Before constructing a continuously differentiable quasisymmetric continuation,
we need a preliminary result. Suppose u(x) is k-quasisymmetric on the entire line.
For fixed a, define

1
V(x) = S uf(x - a)s +alds.
0

LEMMA 1. The function V(x) is k-quasisymmetric, has a continuous derivative
Jfor X # a, and satisfies the inequalities

k

[ - u@)] < V) - ula) < g [ul) - ()]

(6) 1+k

Proof, Since, by a change of variable,

‘S 8 u(t) dt

a

V(X)=x-a

for x # a, the differentiability is clear. The k-quasisymmetry of V(x) follows if we
integrate inequality (1) after multiplying by the denominator of the middle member.

Now fix x (x #a) and consider the function

ul[(x - a)s +a] - u(a)
u(x) - ua)

a(s) =

By the “conformal” invariance of quasisymmetric functions, a(s) is k-quasisym-
metric., Furthermore, @(0) =0 and «(1) = 1. Hence, by a result of Beurling and
Ahlfors [4, page 137],

(7‘) L< Sla(s)ds< k
T+k= ) =1k’
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which yields (6).

THEOREM 6. Let u(x) be as in Theorem 5. Then theve exists a quasisymmeil-
ric continuation V(x) that is continuously diffeventiable outside [0, 1].

Proof. Let U(x) be the quasisymmetric continuation in Theorem 5. Define

u(x) (0<x<1),

V(x) = ¢ ;1—1 51 U(s)das (x>1),

}l{ ‘S:c U(s)ds x<0).

By Lemma 1, V(x) is quasisymmetric and continuously differentiable on (-, 0) and
(1. ©). We shall prove that there exist constants k; and k, (k;j > 1, k> 1) such
that

(a) Eli < Qy(l,t) <k; (0<t<1),
and
(b) -kli < Qy(0,t) <k, (0<t< ),

where Qy(x, t) is defined by equation (2). Then Theorem 4 and (a) imply that V(x)
is quasisymmetric on (0, «), and the result follows from Theorem 3 and (b).

To prove (b), we first assume 0 <t < 1. Then
Vv(0+1t) - v(0) u(t)- : u(t)

WO, Y=oy vE-1 -5 .t S '
%So U(s)ds -:— S;) u(s)ds

Hence Lemma 1 implies that
1
1+E—<— Qv(o, t) _S_k-l-l.
Next assume t > 1. Then, again by Lemma 1,

1S Uls)ds U + o [UG) - U(L)]

Qy(0, t) = ) SO/ R - )
1 S U(s) ds
0

+k < 1+k,

and

U+ U - vl
Qv(0, t) > _k = U(t) +E

1+k

>
U(t)
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To prove (a), we recall that U(x) =2 - u(2 - x) for 1 < x < 2, and therefore

1 1
1 -t S u(s)ds
1-t

Q‘V(I, t) = 1 - u(l - t)

If we replace s by 1 - s and apply Lemma 1 to 1 - u(l - s), which is also k-quasi-
symmetric on (0, 1), we see that

1
Trr S Q-0 <

_k_
1+k’

which completes the proof.

6. DENSE FAMILIES OF QUASISYMMETRIC FUNCTIONS

The continuously differentiable K-quasiconformal mappings of a domain D are
known to be dense in the class of K-quasiconformal mappings of D, in the sense of
uniform convergence on compact sets.

THEOREM 7. The class of infinitely differventiable k- quasisymmetric functions
on an interval (a, b) is dense in the class of K-quasisymmetric functions on (a, b).

Proof. Suppose first that (a, b) is the entire line. Let

-1
k, exp 7 (Ix| < 1/n),

- nex2
fn(x)= nex

0 (|x] > 1/n),

[~
where k, is chosen so that S fn=1. Let u(x) be k-quasisymmetric on (-, «),
- 00

and define

o0 o0

g,(x) = S ult)f (x - t)at = S u(x - s)f (s)ds.

-C0 -00

It is easy to see that { gn(x)} converges to u(x) uniformly on compact sets, and it
remains only to show that each g (x) is k-quasisymmetric. But for each s,

0 < [ulx+t-s)-ulx-s)lfys) < k[ulx - s) - ulx - t - s)lf,(s).
Integrating this, we see that
ga(x+1t) - g,(x) < klg,(x) - gu(x - t)].

The reverse inequality follows similarly.

Suppose next that (a, b) is a finite interval, which we may take as the unit inter-
val. We define g, (x) as above, except that we use f (x - t + @ (x)) for the kernel,
where .
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an(x)=l—11(1—2x) (0<x<1).

Then g,(x) is defined and k-quasisymmetric, and {gn(x)} converges uniformly to
u(x) on (0, 1). The details are similar to those above, and we omit them.

A similar technique can be used for the case where (a, b) is semi-infinite.

7. COMPACTNESS CHARACTERIZATIONS, COMPOSITION, AND INVERSES

Beurling and Ahlfors [4] characterize k-quasisymmetric functions on the entire
line by means of a certain compactness condition. We derive analogous character-
izations for functions k-quasisymmetric on rays and bounded intervals, respectively,
and we use these characterizations to show that quasisymmetry is preserved under
the operations of composition and inverse mapping.

Denote by F(a, b) any family of strictly increasing, continuous functions that
map (a, b) onto itself.

Definition 2. A family F(-«, ) of functions is said to be closed under linear
transformations if for each u(x) in F(-c, ) and each pair of linear functions T
and S, the composed function SuT is again in F(-c, ).

Definition 3. A family F(0, «) of functions is said to be closed undevr linear
transformations if for each u(x) in F(0, «), each interval J = (a, ) (a > 0), each
linear function T from (0, ) onto J, and each linear function S from J'= u(J)
onto (0, =), the composed function SuT is again in F(0, «).

Definition 4. A family F(0, 1) of functions is said to be closed under linear
transformations if for each u(x) in F(0, 1), each subinterval J of (0, 1), each
linear function T from (0, 1) onto J, and each linear function S from J'= u(J) onto
(0, 1), the composed function SuT is again in F(0, 1).

We shall use the following compactness conditions.

(A) Every infinite set of functions u in a family F(-, «) with u(0) = 0 and
u(1) = 1, or in a family F(0, ) with u(1) = 1, or in a family F(0, 1), contains a se-
quence that converges to a strictly increasing limit function.

THEOREM 8. The functions u in a family F(-«, «), F(0, ), or ¥(0, 1) that is
closed under linear transformations satisfy condition (A) if and only if each func-
tion is kK-quasisymmetric for some fixed K.

Proof. The proof for a family F(-w, «) is given in [4, Theorem 2]. We omit the
proof for a family F(0, «), since it is similar to the proof for a family F(0, 1).

For a family F(0, 1), the necessity follows easily if we continue each function in
F(0, 1) to a quasisymmetric function of the entire line. This process yields a family
F(-, ) for which Theorem 8 is valid.

For the sufficiency, suppose F = F(0, 1) satisfies condition (A). Let
0<x-t<x<x+t<1, and let u(x) be a function in F. Denote by uj, uz, us the
images of x - t, X, and X + t, respectively, under u(x). Map the intervals
J=(x-t, x+t) and J'= (uy, us) linearly onto (0, 1). Then x and u, are carried
onto the points 1/2 and (u, - uy)/(uz - uy), respectively, and the resulting mapping
from (0, 1) onto itself is in F. This procedure gives rise to a family F'C F of
functions that map the point 1/2 onto (u; - uj)/(usz - uj). Let
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o = inf {u(1/2)} and B = sup {u(1/2)},

where u ranges over all functions in F'. Then there exist two sequences {un} and
{vn} of functions in F' such that uy(1/2) — @ and v, (1/2) — 8. Since there exist
subsequences converging to a homeomorphism, @ > 0 and 8 < 1. We have shown
that for every u(x) in F,

Uz - 0
a < —— < B,
uz -,
or

1-8 _ux+t)-ukx) 1-a

g —ux)-ulx-t)— «a < e

0<

Therefore each u(x) in F is k-quasisymmetric, where k is the maximum of

(1 - a)/a and B/(1 - B).

It is easy to prove the following result by means of quasiconformal mapping
theory. However, it is partly our purpose to derive the properties of quasisymmet-
ric functions from the basic definition.

THEOREM 9. Inverses and compositions of quasisymmelric functions are quasi-
Ssymmelric.

Proof. Suppose f and g are quasisymmetric functions. By Theorem 5, we may
assume that they are defined on the entire line. If h = gf, the family of functions
F = {ThR}, where T and R range over all possible linear functions, is certainly
closed under linear transformations.” Let {U_ } = {T hR_ } be a sequence of func-
tions from F such that U_(0) = 0 and U,(1) =1 (such functions of the entire line are
said to be normalized). It follows from Theorem 8 that h is quasisymmetric if we
can find a subsequence {Unk} that converges to a strictly increasing function.

Let S, be the linear function that carries the points fR (0) and fR_(1) onto 0
and 1, respectively. Then

T, bR, = (T, g8;')(S, fR,) = P, Q,

and each P, and each Q, is normalized. Since each P, is k(g)-quasisymmetric
and each Q, is k(f)-quasisymmetric, there exist subsequences {Pnk and {an}

that converge to normalized functions. The an are equicontinuous on compact sets
[4, page 127], and hence the composed functions Unk converge to a normalized func-
tion.

The proof that the inverse of a quasisymmetric function is quasisymmetric is
similar to the above, and we omit it.

An unfortunate feature of quasisymmetric functions is that the maximal dilatation
of a function is not necessarily the same as that of its inverse, nor is the dilatation
of a composed function bounded by the product of the dilatations (both conditions hold
for quasiconformal mappings). For example, if f(x) = x® (x> 0), then k(f) = 2¢ - 1
if @ >1,and k(f) =1/(2% - 1) if 0 < a <1 [4]. Hence, if @ =2, then k(f) = 3 and
k(f-1) =v2 + 1. Similarly, k(f(f)) = 15 and k(f)k(f) = 9. The exact bounds for k(f-1)
and k(f(g)) are unknown. However, using the results of [4], one can easily show that
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k(1) < P-1(k(f)?) and k(f(g)) < P-l(k(f)%k(g)?),

where P is the ratio of certain hypergeometric functions.

8. DISTORTION

In this section we establish some Holder inequalities for normalized k-quasi-
symmetric functions, that is, for functions k-quasisymmetric on the entire line with
fixed points 0 and 1. The results resemble rather closely analogous results for
guasiconformal mappings of the entire plane under which the origin is a fixed point
and the unit disc is invariant (see [8] and [9]).

THEOREM 10, Suppose u(x) is normalized and k-quasisymmetvic on the entive
line. Then

(8) 27%x% < ux) < 2xP
Jor 0<x<1,
(9) g~ (x, - xl)a < ulx,) - ulx;) < g% (x, - xl)B

Jor 0<%, <x, <1, and

(10) xB/2 < u(x) < (2x)®
Jor x> 1, where

(11) @ =log,(1+k), B =log, (1 +%)

Furthermore, the exponents a and B ave best possible.

Proof. If we substitute x =t =2"""1 (n=0, 1, ---) into inequality (1), it is easy
to show that

1 1
(12) ——— <u2M) <L —F,
(1+%x)"— T (141 .
( +3)
or equivalently,
@™ < u@™) < @™,

If 0<x<1, there exists n > 0 such that -n - 1 <log, x < -n. Hence

) < u@™) < @M < 22T 2 2BaB < 0b,
and similarly

1 -
uG) > (287 TN = grax?,

Suppose next that 0 < x;3 <x; < 1. Since
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u(x + x1) - u(xy)
- u(x; +1) - u(x;)

£(x)

is a normalized k-quasisymmetric function, we obtain for x = x, - x; the inequali-
ties

u(xz) - u(xl) < 2u(2) (x2 - XI)B < 2k(x2 - xl)B < 9o+l (Xz - xl)B.

Since a > 1, the right-hand inequality of (9) follows. An elementary computation

shows that u(x;+1) - u(xy) > E(—llTl_a Hencé
(x, - x,)% _
u(xz) - u(xy) > -—az—-——l— > 8 a(xz - xl)a .
27 k(1 + k)

Inequality (10) is derived in much the same way as (8).

Since the functions x% and x® are k-quasisymmetric for x > 0 [4], it follows

that the exponents @ and B are best possible.

9. INTEGRABILITY

Boyarskii has pointed out [3], [5] that there exists p > 1 such that the Jacobian
of each plane K-quasiconformal mapping is locally p-integrable. The supremum of
admissible values of p is not known. The result is false for quasisymmetric func-
tions. Hence the proof in the plane must utilize the added restrictions on the map-
ping that quasiconformality implies.

THEOREM 11, For each k > 1, each p > 1, and each compact set E of positive

measuvre, theve exists a function u(x), k-quasisymmetvric on the entive line, such
that

5 u(xPdx = o,

E

Proof. Let {u(x)} be a sequence of normalized k-quasisymmetric functions
that converge to a completely singular function (see [4] for a construction of such a
sequence). Since the class of all k-quasisymmetric functions on a given interval is
evidently closed under addition and under pointwise passage to limits, the limit func-
tion is k-quasisymmetric. Then

lim sup S ul(x)Pdx =
n— oo E

since otherwise the u,(x) would be uniformly absolutely continuous on E, and there-
fore the limit function would be absolutely continuous. We may assume that

2
S u!(x)Pax > nP *1,
E

Since the u,(x) are normalized, they are uniformly bounded on compact sets (Theo-
rem 10). Hence the function
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ulx) = 2o n"Pu (x)

n=1

is defined and k-quasisymmetric on the entire line. Therefore, by a theorem of
Fubini,

ul(x) = 27 n"Pul(x) > n"Pul(x)

n=1

almost everywhere, for all n. Thus

a2
S u'(x)Pdx > nP S u (x)Pdx > n,
E E

and the result follows if we let n approach infinity.

10. LOCAL QUASISYMMETRY

A strictly increasing continuous function is said to be locally k-quasisymmeltvric
at a point if it is k-quasisymmetric in an interval containing the point. A function is
locally k-quasisymmetric if it is locally k-quasisymmetric at each point of its do-
main. Locally K-quasiconformal plane mappings are K-quasiconformal in the large.
However, the function u(x) = e* is locally k-quasisymmetric on the entire line for
all k > 1, but since it does not preserve the domain type, it is not k-quasisymmetric
for any k > 1.

Throughout this section we consider only functions that map the entire line onto
itself. It is shown in [4] that if such a function is k-quasisymmetric, it can be ex-
tended to a kz—quasiconformal mapping of the upper half-plane onto itself. We shall
prove that if such a function is locally k-quasisymmetric, it can be extended to a
G -quasiconformal mapping between two horizontal strips (by a korizontal strip we
mean a simply connected domain in the upper half-plane whose boundary contains the
entire real axis).

THEOREM 12. Suppose 1(x) is a locally k-quasisymrﬁetfric Junction that maps
the entire line onto itself. Then 1(X) can be extended to a X%-quasiconformal map-
ping between two hovizontal strips.

Proof. We shall produce a quasiconformal extension of undetermined dilatation.
The computations needed to obtain a kz—quasiconformal extension are found in [4].
Define

ol

1 1 ¢!
(13) ulx, y) = S [f(x +ty) + f(x - ty)]ldt, v(x,y)= ES [£(x + ty) - £(x - ty)]dt.
0 0

Then w(z) = u + iv is a homeomorphism of the closed upper half z-plane onto the
closed upper half w-plane with f(x) as the boundary correspondence [4]. Further-
more, w(w) = ©, u and v are continuously differentiable, and if 3z > 0, then

: Sl Far e+ Easah],

(14) H(z)+ Hz) (£ +7)
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where H(z) > 1 is the dilatation of the mapping, & = @'/a, 7 = 8'/8, and
u(z) = (@ +8)/2, uyz) = (a'-p')/2,
Vi(z) = (@ - B)/2, v (z) = (a'+p')/2.

The theorem is proved if we can show that £, n, and a/B are bounded away from
zero and from infinity in some horizontal strip, for then H + 1/H and therefore H is
also bounded there.

Fix zg=Xy+iyy (yo> 0). Assume that f(x) is k-quasisymmetric on the inter-
val (x4 - yg, Xg+ ¥g). A simple calculation shows that
B f(xg) - f(xy - yy)’

and that @'/a and B'/B are the integrals over the unit interval of appropriate
normalized k-quasisymmetric functions. From (1) and (7) we obtain

(15) <2<k ama —S_<% B__K_

Wl
™| R

Let D be the set of points (%, y) (y > 0) for which (15) holds, and such that if
(x, y) isin D and y' <y, then (x, y') is in D. The set D contains a horizontal
strip if for each finite interval [a, b] there exists an € > 0 such that (x, y) is in D
whenever a < x<b and y <e. Let ¢ be the Lebesgue number of the covering of
[a, b] induced by the local quasisymmetry. For each a < x <b, f(x) is k-quasi-
symmetric on (x - £, X+ €), and thus if y < ¢, (15) is satisfied at the point (x, y),
which is therefore in D. This completes the proof.
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