ON THE ZEROS OF POWER SERIES
Alexander Peyerimhoff

1. An upper bound for the number of zeros.

2. The exact number of zeros.
3. The function £, (z) = E(n + 1)Kz (k > 0).

4. The function g (z) = 271 -tk m (0<e <1, k> 0).
5. Hurwitz’s theorem on the zeros of Bessel functions.
The results of this paper developed from an investigation of the zeros of the func-

tion f,(z) = Z)T,’ (n + 1)% z™ which has an analytic continuation into the complex plane
with a cut along the real axis from 1 to «. The location of the zeros of this function
is of importance for questions in Riesz-summability (see for example Riesz [24],
Peyerimhoff [21], Kuttner [11], and Miesner [18]). In 1962, Kuttner [11] showed that
if 0 <k <2, then f,(z) #0 for |z| < 1; a short proof of this result (Peyerimhoff
[22] ) used the fact that f, (z) can be written in the form fy(z) = Y(z) F(z), where

Y¥(z) has no zeros and

o0

1
F(Z) = Pk-l(z)+ Z) ann-k = Pk-l(z)+ZkS fg_(zt

n=k 0

(here P (z) is a real polynomial of degree at most k; k =k+ 6, k=0,1, ---,

0 < 6 < 1; the sequence {p,} is totally monotone, and g(t) is increasing); this
representation was essential for the short proof. (For various other properties of
£, (z), see Polya and Szegd [23, p. 7], Truesdell [28] and the literature given there,
Lawden [13], Zeitlin [33], Miesner and Wirsing [19]. For k < 0, see also LeRoy
[14], Sandham [25], Levin [15].)

Functions of the form F(z) may be regarded as generalizations of polynomials
(insofar as the coefficient of the highest power of z is itself a function of z belong-
ing to a certain class), and they have in common with polynomials the property of
admitting at most k zeros in the complex plane with a cut along the real axis from 1
to « (Theorem 1). (Various other properties of functions F(z) have been investi-
gated by Hadamard [5], LeRoy [14] (regularity); Wall [30], [31], Thale [27], Merkes
[17], Seall and Wetzel [26] (k = 0 and continued fractions); Climescu [4] (characteri-
zation of a case similar to k = 2); Kaplan [8] (real zeros of entire functions); Marden
[16] (zeros); Bendat and Sherman [1], Kor4nyi [9], [10] (characterization of a case
similar to k =1).)

The maximum number of zeros is not attained in all cases; in Theorems 2 and 3
we give two instances where the maximum number is actually reached. Theorém 3
contains a refinement of a special case of the Borel-Laguerre Theorem; we shall
use it in Section 5 to give a new proof of Hurwitz’s theorem on the complex zeros of
Bessel functions of order less than -1.
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194 ALEXANDER PEYERIMHOFF

Kuttner [12] has recently introduced the function
0
g,(z) = 221 -c*H ™ (0<ce<1, k> 0);
0

like K(z), it plays a role in Riesz summability. We show in Theorems 4 and 5 that
both functions have real zeros only. Both functions have exactly k simple zeros on
the negative real axis; we also obtain some further information on the location of
these zeros.

1. AN UPPER BOUND FOR THE NUMBER OF ZEROS

In this section we shall show that functions of the type

1
_ k dg(t)
) = B y(e)+2° ) T2,

where Py _,(z) is a real polynomial of degree at most k-1 (k=1, 2,
P _,(z) = 0), have at most k zeros in the set

= {x+iy| x < 1if y=0}

if g(t) increases (unless f(z) = 0).

Numbers denoted by z, £, or {; always belong to C*, and g(t) T means that gft)
is increasing in the wider sense. V(a., b) denotes the space of functions of bounded .
variation in [a, b]. Our first lemma is substantially due to LeRoy [14, pp. 330-331].

LEMMA 1. If

1
iz) = { S @)1, 1) > g0,
0

then 1(z) # 0 for z € C*.
Proof. If z =reif e C*, then

£(z) = S 1-rtcos @ rt cos 6 dg(t) + ir sin 0 S —-Ltl—z dg(t) .
-z

We may assume that g(1) > g(+0) (otherwise f£(z) = g(+0) - g(0) > 0), and this im-
plies that the second integral is positive. I cos 6 =1 (in this case, 0 <r < 1) or

cos 6§ = -1, then 1 - rt cos 6 > 0, and this implies that the first integral is also
positive; this proves the lemma.
LEMMA 2. If
1 /s
@) = a+z | BE w1, 1) > g0), A read,

then all zevos of f(z) (z € C*) ave veal.
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Proof. I z =relf € C*, then

1
S £(z) =rsin65 _dg_(_t_)_z_,
b |1 - zt]

and this integral is positive (we denote the real and imaginary parts of a complex
number a by 9%ia and Ja, respectively).
LEMMA 3. Let

k-1

1
@)= 2 Az’ +2 | BB o a g0 € vio, 1)
=0 b -zt
then, for € € C* and ¢ +0,
k-l gr) e dg(t)
- (2 n it VR Y | g
= (8) Ttz anA A (l—zt)(l-Ct)

(emply sums ave zevo).

1
Proof. X |z| is small, then, with the notation A, = S tYdg(t) (v =0, 1, ),
0

i(z) _ S _ s n -,
1-2z/¢ l—z/sz _nE:OZ V+§=nAV§ ’
for n>k -1,
k-1 n 1
oAt = D A I 0r R ekagt)
y+U=n =0 y=k *0

n-k+1
_n(f(c) -t S dg(t) +§. S 1- (tg)tc d (t))

1in-ktl
= ¢maE) - ¢ | e de).
0

The result follows from a short calculation.
Let f(z) be defined as in Lemma 3, and assume that £({;) = --- = f(Cp) =0 and

P -
i(z) Hi:l (1-2/¢) s regular; then, by a repeated application of Lemma 3 for
p <k, we see that
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P .
£(z) IT (1 - 2/¢)7" = By+ Byz++ + By ;.12

i=1

k-p-1

k-p (1 dg(t)
+ (- 1)P§1 sz P“S; T-guv.-(1- gp t)(1 - zt)

for some By, ‘-, Bx_p.1 (all B; are 0, for p =k), and By = A for p <k. It fol-
lows, in particular, that

k-1 -1
1) fz) II (1-2) =a,+¢0kte, o 1 de(t) ,
Z o1 ( Ci) 0 ( &1 Cx 12‘8; (l_gl t) ...(1_§k_l (1 - zt)

-1 dg(t)

k 1
= (-1) §1"'§k50 A-g 8- Q-5 -z

k
Z
@)  1(z) H1 (1- Ci)

THEOREM 1. Let
k-1

1

dg(t

f(Z) = E AV Zv +Zk5(\) -l_g-(—z)—t (g(t)T, AO, T Ak-l Teal);
V=0

then £(z) has at most k zevos in C*, unless £(z) = 0.

Proof. Because of Lemma 1 we may assume that k > 1; we also assume that
g(1) > g(0) and £(0) # 0. If £({) = 0, then also f({) = 0 (since the A; are real), and
we assume that f(z) has more than k zeros in C*. If k is even, select zeros
€1, -+, § in such a way that with {,;, {. also appears in this sequence. It follows
from (2) that

k
_ i 1 t dg(7)
f(z) = il;Il (z - ¢;) So 1 _thj; (1-87) Q-8 7)

and Lemma 1 shows that f(z) has no other zero (since (1 - §; 7) - (1 - §{, 7) > 0 for
07

If k is odd, select zeros €;, -+, {)_7 in such a way that with ¢;, Ei also appears
in this sequence. It follows from (1) that

k-1
_ ) 1 dg(t)
f(z) = il;Il (1 ——g—i)(Ao-l-(- 1)k 1§1 12 So d -t ) - (1g- & 0 - zt))’

and any other zero of f(z) is real, by Lemma 2. The result now follows again from
(2) and Lemma 1. If z = 0 is a g-fold zero (1 < q, and obviously q < k), then we
replace the function f(z) in this proof by
k-1 1
2z U(z) = 2o A, zV1 + 257
v=q 0
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Remarks. (1) For |z| < 1, the function f(z) in Theorem 1 admits the expansion

k-1 o 1
f(z) = 27 A, zV + 27 zV ‘S‘ tV Kag(t),
v=0 V=k 0

and it follows from the Hausdorff moment problem (Hausdorff [6]) that a power

o0
series 2 a,z" is of this type if A™a_>0 (m=0,1,2, ~-; n=k, k+1, -;
Aa =a,, Aay=ap- a1, A™a,= A(A™ay)). This criterion will be used in
later applications.

(2) A function

p L dg(t)
de(t
= VP g
h(z) 27 A,z" +z X Tt
V=0 0

0<p<k, gt)T, g(1)>g(+0), Ay, ---, A, _; real)

can also be written in the form

k-1

1
2 Byt +ak | PO 601, 50)>40), By, -, By, real).
V=0 0

t
If we write y(t) = S kP dg(t), then this is easily seen from the relation

0
k-p-1
1 1 ;k-p 1
zP S ldg(t)t - zK S lt : dg(t) = zP 20 ZV S t¥ dg(t).
o - % o+ 2 v=0 0
. . _ . 1 gg(t)
Marden [16] has shown that functions h(z) with p = 0 and with 1. i mero-

(4]
morphic have at most k zeros in the region

_ i6 k k+2 )
z =1+ re (k+1ﬂ<9<k+1ﬂ'

1
(It should be noted that Marden’s theorem also deals with the case where S) %(t?)t

has complex residues.)
2. THE EXACT NUMBER OF ZEROS

The function f(z) in Theorem 1 may have fewer than k zeros (even if
g(1) > g(0)). This is shown by the example

1 tat 1
f(Z) =1+z im— —Elog(l—z).
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The following theorems give some cases where the maximum number of zeros is
attained.

THEOREM 2. Let g(t) € V(0, 1) be a function with the following properties:
(i) there exists an a (1 < a < 2) such that for every 0< 6 <1

. g(t') - g(t) _
aﬁtlzft'<1 (t' - ) n( >0,

. Vdg(t) - dg(t) -
(11)r_|01—+—rt—> (r — ), Sl i (©<p—0).

Then the function

k-T

1
f(z) = 20 ApzV +2K ) lig_(—tz)—t (z € C*, k>1, Ay, -, A, , 7eal)
V=0

has exactly k zervos in C¥*.

1
_ k-1 v,k dg(t) _ .6 *
Proof. Let f (z)=17 Ev:o A,z" +z . 1ot 0<7<L1 For z=re”’ €C
we have the formulas (see Lemma 1 and Lemma 2)

f-(z) 1
3 ;';1:—7 EAkl_msmm9+rsin95 dg(t)z,
z=" m=1 rm 0 Il 'Ztl
f7(z) : 0 11 t' 6
0 7k s > AkmM+S S-S5 7 dg(t);
Z m=1 r 0 ll 'Ztl
it follows that
1. 1 ag(t €1
® 0] 2 Jaf*!Jsim o] (= f A0S

for some C; > 0 that is independent of r, 6, and 7, as long as r > 1, |6| < 3n/4,
and 0 < 7 < 1. Also,

1 C
k l1-rtcos @ 2
(4) lt,(2)] > |z] ( o J1-zt]? dg(t) - — )

for some C, > 0 that is independent of r and 7, aslongas r>1, 0< 7 < 1. For
r>1and 0< 0 <-g (observe that sin 6 + cos 8 =+ 2sin (6 +%) > 1),

T ‘S‘l_ig_(_t)___ > 1/ dg(t)
|1 - ztl2 - 1/r(sin 8+ cos ) (1 - rt cos 6)2 + (rt sin 6)2
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> 1 [g(;l.‘) B g(r(sin 0 -}-cos 9))]

= 2sin? 6

P o

. T .
S r n( 1 )r_a sin (9+Z)-sz
= 2sin® 0 " \rv2 sin (9 —l—%)
a
) sin 0

) 0
Cos

COS (—9‘
a 2
0 +

% (rx/—)smze s1n(

T
4
il
*3 2

: -2
> 37(05) i (s (5+5))

From this estimate and (3) it follows that
¢ c

(5) |t (z)] > rk- 1|5m9|(2n( r)lsm Glaz[cos(lg_|+%)] _Tl)

0<7<1 Hr>1and 059_<_g1r,then

it r>1,0< 0| <3,

1 1
r S dg(t) > _dg(t) % S
|1-2zt|2 =" 4 @+rt)?
and it follows that
1
k-2 | s r dg(t) _
(6) |t ()| > r*-2|sin e|(2 | T C;
ifr>1, [0] <37, 0<T<1 For Sn<o<2a,

1 1

1—rtcos€ 1 S 1-+rt
dg(t) > — —=dg(t),
S g()_\/.‘—z b (1+rt)? g(t)

and it follows from (4) that
(7) |f_(z)] > rk-1{ X l_ig(_t)__ C
T = yadJ, 1T+rt 2

OS‘TSI

|-l=-|cn

T <0<

e

if r>1,

1
We next investigate the integral S dg(t) o in a neighborhood of z = 1. Let

z =1+ pe® (O<p_§%,%§¢_§ﬂ . We have the relation
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1 gg(t) 1 1-t-ptcos ¢
= dg(t)
5;) 1 -2zt .S;) (1 _t)z_ 2pt(1 - t)cos <l>+(.p1:)2 ¢

|
1 .
. pt sin ¢
+ de(t),
' So (1~ 0% — 2pt(1 - Doos o1 (02 ED

and since |a + ib)| ?_% (la] + b)),

| 51 dg(t)
A 1 - zt)

1 - s _
1 S 1 -t+ pt(sin ¢ - cos ¢) dg(t)
(1

=2 - t)2 - 2pt(1 - t)cos ¢ + (pt) 2
_1 (' _1-t+vVaptsin(e-@/4) g4y L (1 L-tdet oo
o (1-t)%- 2pt(1 - t) cos ¢ + (pt)? B(t) 2 So (1 - t+ pt) g(t).

It follows that

1
®) £ > lzl“( L 03)

—

for some C; > 0 that is independent of p, ¢, and 7, as long as p <5 g— <¢< —32—1T, in

2’
z=1+pel® and 0< 7 < 1.

Since g(t) has the property (ii), we can choose an R > 1 such that

R S dg(t) R (! _dg(t)
= > 2C — > 2C
2J, T+Rt = “71» 5 1T+Rt= 7727

Next we choose 6y with 0 < 6 <% such that

-

1 Cos 5T

. -2
1 1 \lsm 90|a S 201 ( 3
2’7(rﬁ/ -1 <=7 8

for 1 <r <R (this is possible because of (i) and because a < 2; observe that 7(x)

is an increasing function of x) and such that

1

It follows from (5), (6), (7), and (8) that

(9) |£:(z)] > R*"2|sin 6, | C; for z = Re'’ (90 < |o| 5.43:,,),

(10) |£.(z)] > R*"1c, for z = Relf (sa<0<27),
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(11) |£,(z)| > r*-2|sin 69| Cy for z= ret 190 (1<r<R),

: 3
(112) l£,()| > |z|*C; for z=1+e'?tan ¢, (%5 <35

From (9), (10), (11), and (12) we see that there exists a closed curve C, containing
the origin in its interior, such that f,(z) #0 for z € C and 0 < 7 < 1. By virtue of
the latter property, f,(z) and f,(z) have the same number of zeros inside of C. By
Lemma 1, fo(z) has exactly k zeros inside of C. Theorem 2 now follows from
Theorem 1.

Remavrks. 1. The first condition in (ii) is satisfied if
1
gt0) > g0 o ([ LYo o)
1/r
The second condition in (ii) is satisfied if

g(1) > g(1-0) or 56%’%—»00 511.
0

For a =1, a simple calculation shows that the second condition in (ii) also follows
from (i). Condition (i) is satisfied for @ =1 if g'(t) exists and

inf g'(t) = n(6) > 0.

6<LtL1
2. For 7 = 0 the function
k-1 1
- v,k ( dg(t)
f(z) =171 Esz +z Tt
V=0 0

has k zeros at the origin. The proof of Theorem 2 shows that these zeros cannot
move to « or to a point on the real axis to the right of z =1, as 7 moves from 0
to 1. It turns out that the first condition in (ii) prevents movement to «; the second
condition in (ii) prevents an approach to z = 1, while condition (i) prevents a zero
from approaching the real axis to the right of z = 1. Theorem 2 is no longer true
for a step-function g(t), even if (ii) is satisfied. We mention the following example:

0 (t=0),
> ! as() 3 <t<)
f(z) = 2-2z+z2 S l%zt’ gl(t) = 16 ’
4]
3 _
§ (t“‘l),

that is, 16(1 - z)f(z) = (2 - z)(3z% - 16z + 16); here f(z) has the zeros 4, 2, 4/3 (by
Remark 1, condition (ii) is satisfied). In order to obtain a result similar to that
of Theorem 2 for step functions, we must find another condition instead of (i),
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whereas (ii) (that is, (6), (7), and (8)) can again be used. The following theorem is of
this type. We use the notation Ch = {x+iy| if x> o, then y #0}.

THEOREM 3. Let £(z) be a real entive function of ovder p < 1 with infinitely

many zevos {a;} (i=1 -+ ), and assume that for some nonnegative integevr Kk,

(a) a; € C"& i=1, 2, -, k),
(b) 0<L A1 +1 < Ar 42 < -
Let g(z) = Af(z) + zf'(z) (A real), and assume that g(z) has exactly one real zevo

between two zevos ay , ayy (v=k+1,k+2, «-+). Then g(z) has exactly k+1
2evos in C . e remark that all zeros of f(z) are real if k = 0; the zeros in

(b) are all simple.)
Proof. X we write F(z) = f(ayq2), G(z) = glay412), then G(z) = AF(z) + zF '(z),
and this shows that we may assume that a;; =1. We write

#(z) = @ P(z) H (1--—) = o P(z)h(z),
vV =k+1

where P(z) is a real polynomial of degree k and P(z) > 0 for z > 0. It follows that

g(z) = ah(z) (AP(Z) +zPYz) + z P(z) 1111'((:)))

and (for |z| small)

oo [oe] 0 1
h(z) m=1  p=k+l p m=1 0
-1
g(t) = 27 51— € V(0, 1) because 22 a, < .
a,t>1""Y v=ktl
v >kl

(For a similar reasoning, see Kaplan [8].)

k
Let P(z) = Ev=0 b, z” (b > 0); then

h'(z) _ 1 p-1 _ n-k-1 1
zP(z) 3oy = - Z) Z" SO v+f?=nt b, dg(t) —k+l S t" P(t) dg(t),
p=>1

and it follows that

1
g(z) = ah(z)(Q(z) - gkl . ]ti):(tz)t

t
1
where Q(z) is of degree at most k, and where y(t) = S ‘TkP(‘:r") dg(7)T. By
0

Theorem 1, the function g(z) has at most k + 1 zeros in C*.
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We next observe that for n>k+1 and n — o,

n-1

(13) { —d”t(t) - { 2lp(H)ag) = T o,
1/an 1/an v=k+l 2y
. Pay) :
since e b, > 0 for v — «, The function
ay

1
2@ = 2" | U - Rew) - 220 )
0

(R(z) a polynomial of degree at most k) has simple poles for a;,; (=1), aj,,, -
with residues -a;P(a;) <0 (i=k+1,k+2, - ).

We consider next the function

1
- k+l (0 dy(t)
F_(z) = 7Q(2) - SO )

Since the residues of &(z) are negative, the function ¥ (z) has at least one zero in
every (open) interval (a;, a;;7) (i=k+ 1, k+ 2, -=-). The function Fy(z) has k+1
zeros at the origin. The function F (z) satisfies inequalities of the type (6) and (7)
in the proof of Theorem 2 (where k has to be replaced by k + 1), and because of (13)
and the first remark after Theorem 2, we may choose n in such a way that for

a, <r<a,

1 1
r (7 dy(t) r dy(t)
250 220, F) T4t 2 %

This implies that

(14) |F @el®)| > ¢, v 1|sin 0] if |0] _<_§w, 0<7<1,

(15) |F_(rel?)] > C, " f3r<o <3, 0<T<1.

Let 6 > 0 be so small that F(z) #0 for a, <z <a,+6 <ap4 0<7<L1). It
follows by (14) and (15) that F(z) # 0 for ar l =a,+6 and 0 < 7 < 1. Therefore,
the functions F,(z) and F(z) have the same number of zeros for Iz{ <a,+6
(they have the same number of poles). But Fy(z) has at least k+ 1+ (n - k -1)=n
zeros in |zl < a,+ 6, and this is also true for F(z) = g(z)/ah(z). But g(z) has
exactly n - k - 1 zeros between ay 4 and a, + 6, which implies that g(z) has at
least k41 zeros in C*., This proves the theorem.

Remarks. 1. In the proof of Theorem 3 we made use of the inequalities (6) and
(7) in the proof of Theorem 2. The first condition in (ii) of Theorem 2 follows from
the assumption that f(z) has infinitely many real zeros. Condition (i) in Theorem 2
is replaced with the assumption that the zeros of f(z) and g(z) interlace in a certain
way.
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2. Theorem 3 generalizes a special case of the theorem of Borel and Laguerre
(Borel [2, p. 37]; see also Marden [16]). For theorems of a related structure, see
Verzbinskii [29].

3. It is possible to generalize Theorem 3 so that it will give information on the
zeros of functions of the form g(z) = P(z)f(z) + Q(z)f'(z), where P(z) and Q(z) are
polynomials and f(z) is an entire function of finite order. Here we shall not pursue
this question further; the present form of Theorem 3 is sufficient for an application
in Section 5.

3. THE FUNCTIONS f,(z) = 275 (n+1)¥ 2™ (k > 0)

The location of the zeros of f;(z) plays a role in Riesz summability. The most
recent result of Miesner and Wirsing [19] states that f,(z) (which obviously has an
analytic extension into C*) possesses exactly k zeros in |z| <1if 2k <k <2k+2
(k =0, 1, ---), and that these zeros are negative. Furthermore, f2,(-1) =0
(mn=1, 2, --.), and f,(ei?) #0 (0 < ¢ < 27) in all other cases (for k¥ < 0 it has been
shown by LeRoy [14] that fi(z) # 0 for z € C*).

THEOREM 4. The zevos of f,(z) in C* ave all negative and simple, If
k <k <k+1, they are exactly k in number, and for k = 2n and k = 2n + 1, exactly

n of them lie in the interval -1 < x < 0. Moreover, f,(-1) =0 if and only if
K=24,6,- -,

Proof. First we prove, by-an application of Theorem 1, that f;(z) has at most k
zeros. For |z| <1,

1-2)%" (@) = 2 2 T (kjl) -1)Y (u+1)* k<K <k+1),
n=0 y+i=n

and for n >k,
k+1
a,= 2 () O @kt ) = (DR @ -
V=0

(For this notation and the following reasoning, see Remark 1, after Theorem 1.)

But for n >k,
Apan - (_ 1)k+1 Ak+p+l (n _ k)K
= (- )R )P (g - 1) (k - k - p)[n - k + 7 @ + p + 1)] K-(FpHD)

for some 0 <7 <1 (see for example No&rlund [20]). It follows that APa, >0
(n>k, p=0, 1, ---) and

k-1
1
ki1 _ n k+l k ( dg(t)
(l—z)+f,{(z)—nzz>oz V+uE=n( y)(-l)V(U'l'l)K"'Z ‘S; 1-zt

for some increasing g(t). By Theorem 1, this representation implies that f K(z) has
at most k zeros.
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We show next that xfy (x) » 0 as x — -«, From the formula
L= CDFHIARL G ) = k1)1 (k=k+1, n>k)
it follows that

Pk(Z)
fen® = 7 e

where Px(z) denotes a polynomial of degree k (Pdlya and Szegd [23], Truesdell [28],
Lawden [13], Zeitlin [33]). From this representation and the relation

1 -1
m+1)"? =ﬁ5 (1ogt1) at (6 >0)
0

we have, for kK =k +1 - 6, the formula

1 6-1 P, (at)
1 1 k
() = w5 5;) (Ing) (1 - zt)k+2 at,
and it follows that for x > 1 and 0 < 0 <1,

-xf(-x) = O(X)S (Iogl) dt+0( ) Sl/‘/_ (1 og%)e—l%

1/x
+o(2)

-1
PRCHORE

= 0(1) (log %)~ +0(1) (logvx)?~! + o(—é_{- (log v%)° ) = 0(1) (tog x)f-1
Obviously,
xfy 4(-%) = O()—li) ,

which proves that xf,(x) - 0 as x — -«. We shall now use this result to show that
£y (z) has exactly k negatlve zeros. The proof is by induction, and it is based on the
relation (zf,)'=1f,, ;(z). We also use the fact that £,(-1) = (1 21+K) ¢(-«), which
implies that f,(-1) =0 only if k = 2, 4, 6, --- (here § denotes Riemann’s {-func-
tion; see for example, Chapman [3] ). It fK (z) has k negative and simple zeros for
k < k <k + 1 (which is true for k = 0), then it follows from Rolle’s theorem that
fri1(z) = (z£4(2))' has at least k + 1 negative (and distinct) zeros, and this is the
maximum number of zeros for f, ., (z). Furthermore, if 2n < k¥ < 2n + 2

(n=0, 1, 2, :-+), then the integral

1 =S fK(Z)

C fK(Z)
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where C consists of the curves
z=it (-(1<t<+1) and z = ei? (7—2’5¢<% )

is constant, since all the zeros of f,(z) are real and f,(-1) #0, £,(0)=1. But

P, (z)= zZn P, (1/z); that is, 1s reciprocal (Jonqu1ere s relatlon see Truesdell
[Zé] Lawden [13], Peyerlmhoff [221]) and therefore I, .; = 27min. The proof of Theo-
rem 4 is now complete if we observe that 1, (z) has n - 1 zeros in the interval
-1<x<0 (=1, 2, .--), which follows agam from Jonquiere’s relation.

=]
4. THE FUNCTION g,(z) = 22 (1 - 1)k z0 (0<c <1, x >0)
0

In this section I use remarks by Professor R. E. Chamberlin.

The function g (z) was recently introduced by Kuttner [12] in connection with
some questions of Riesz summability. By expanding (1 - ¢c®t1)K into a binomial
series, Kuttner showed that

o0
g, (z)= 27 A;’H%—:A”T— for |z| <1 (A‘lf:(”*“)),
V=0 ¢c -z C -Zlyz v

and it follows that g (z) is meromorphic (z #1, ¢l ,c2, --). I k =k + 6,
k=0,1,2 -, 0< 0 <1, then

sgn AZK-l = (-1)V (v <k+1), sgnA}f™ = (-1 (» > k+1, 0<0 <),

At =0 (v>k+1, 0=1).

It follows from the fact that sgn A k-1 js constant for v >k +1 that gK(z) has at

least one zero between ¢™¥ and c (V+1) (v >k+1, k not an integer). In what fol-
lows, we shall investigate the zeros of g,(z) for z € C*. For a fixed c, we write

0 o<t<e?),
oy(t) = o
/ATl (¥ <t<)
and
<o
Yo = 20 O 1)
V=n
Observe that
1 Idyn(t)l > -K-1
(Hlam®l 5 et <
0 V=n

LEMMA 4., For Kk >0 and p=0,1, 2, -,
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P 1 Y41 ()
g, (2) Vrzlo (1-c’z) = Pp_l(z)+zPSO — VIIO (t - —ﬁt——,

whevre Pp(z) is a real polynomial of degree at most p (P_; = 0).
Proof. For p =0,

(1-2)ge(z) = 2 (1-cTH¥ - (1-eM)z” = 2 2 2 A e™(e? - 1)

and by induction,

p dy +1(t)
(1-cPlz)g (z) II (1-c¥2) = (@ -cPlz)P_ _ (2)+2P S II (t-cv —-—Pt—
V=0
ptl
II t-c?)
pt1 Sl v=0 aly,, W +0,,,01
+z :
b 1-azt t
but
1 1 P+1 v d0'p+1(t) B 1 H P+l A K-1 _ 0
1 t ) t - 1 (C ) ptl T Yo
0 - Z 1 - ZCP+ V_O

which proves the lemma.

It follows from
sgn A7K-1 = -1k (» > k+1, A =0for v >k+1if 0=1)

that (- l)k“'yk +(®) 1 for t 1. Furthermore, v, ,(t) = constant for ck*! <t < 1,
so that, by Lemma 4 (with p =k)

K 1
(16) gK(Z) H (1 - CV z) = Pk-l(z) + Zk f%(gt
V=0 0
with
i1 ()

t k
g(t)=5 H('r-c

0 v=0

k
(0 <t<cktl g(t) = g(cktl), ektl << 1). Since sgn HV o (t - c?) = (-1)k+1 for
0 < t < cktl | g(t) is an increasing function of t. :

It now follows from Theorem 1 that g, (z) has at most k zeros in C*.
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As another consequence of (16) we obtain information on the behavior of
sgn g, (-x) (x> 0) as x — «. For sufficiently large x,

1 1 x l/x K d t)
(t) 10 Yk+1

k
> % 22 II (c? - cn) |A;LK'1|
cHt<L1/x v=0

k
e 2 a1 >60gn™™ (6>0,0<6<1),
v=0 c“’ﬁl/x

and therefore (x — )

k 1
v oI ik (o) = of LY L1 dg(t)
II (c +x)(1) g X)"O( 2.)+x 1+xt
V=0 X i
-K
_%(—1"%{3‘2—>0 for x> x,.

It follows from the next lemma that (-1)k irl (-x) > 0 for all large x.
LEMMA 5. Ifk=1, 2, -, then
k

g(z) =P, II (7 -2)",
V=0

where P, (z) is a polynomial of degvee k. Fuvthermore,
(-1t ka2 g (z) = g (1/ckz)  (z #1,¢7L, -, c7K).

Proof. We have the formula

(1)” K ) Lk )
g (z) = ( ) ~= I v -a)! 2()(1)HH(CV-Z).
2 e

©=0 V=0
VEL
k
But Il (c7V -2)= (-1)k (zk - zk'l(l +l+ +-— ———) + - ) and so
V=0 ¢
V#UL

« K
g (2z) = II (c? - 2)! ((_(]:: - 1) gk-1 4 ) )
V=0

The functional equation for gy (z) follows from the relations
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k ) k i K -
B () Sl e B (3)

C—V - l/CkZ V=0 C—V - Z

gk(l/ck z)

k
e B (3) e (1) - Copneng,

cV -z
It follows from the funct1ona1 equation that g, (-c” )= - g, (- ¢™™); that is,
g,(-c™)=0 (n=1,2, -), and if g (z) =0, theng(l/cnz 0.

LEMMA 6. gy(-c "/2) £0 for k>0, kK #2, 4, 6,

Proof. We use Poisson’s sum formula in the form

+ 0 +

27 gk) = 22 S+we'2‘mktg(t)dt

- CO - 00 .00

(S+w le()] dx <, g(x) € V(-0 +), g(x) = % (g(x + 0) + g(x - 0))) with

(1-cHe ¥t >0, y>0, k>0,

glt) =
0 (t <0)
and obtain the expansion
> + [o%e) o
eVgeleV) = Dgk) = 2 |~ e M) (1 - ety at.
0 -0 0
But
2mikty
o0 . 1 ———
S e~t2Tik+y) (1 _ ot gt = S wlog 1777 (1 - w)¥ aw
h log 1/c J,
27ik + y)
1 T Tog 1/c I'(k + 1)
log 1/c (2771k+y ) ’
Tog 1/ +k+1

and therefore

+co (27Tik +y

- e¥YT'(k + 1) log 1/c
gK(e Y) = .
log 1/c I,(ka+y+K+1)
log 1/c

This formula obviously furnishes an analytic extension of g K (e~Y), if only

—21%:-{—:/—37- #-n(n=0,1,2, ..-), thatis, e™Y #c¢™®, and for y = - (k/2)1og 1/c + 7i,

the relation I'(z) (1 - z) = 7/sin 7z leads to the formula



210 ALEXANDER PEYERIMHOFF

“+o0

g (- C_K/z) = ﬂCK/fO;'(cK L 27 7(2k+1) k : 7 (2k + 1) K\ |2
- sin 7 —lo_gl_/c_ —2—) IP(1W+1+E) l
It follows from the relation
_ - sin 2K cosh _7%(&251_-/%(“_1)
D e (2 )
that
g, (-c K/2)
7 sin TE ¢k/2 p(x + 1) T2 cosh w2 (2 + 1)
- 2 log 1/c
- log 1/c
; sinm (1 T{gzgk;;:) -3)r (s qf)zgqu;:) +1+3)

which implies that sin T g, (-¢™%/2) >0 (k #2, 4,6, ).

We .are now in a position to discuss the zeros of g, (z).

THEOREM 5. The zevos of g, (z) in C* arve all negative and simple. If
k <k <k+1, they are exactly k in number, and for k = 2n and k = 2n + 1, exacily
n of them lie in the interval -c~K/2 < x < 0. Movreover, gr(-c~K/2) =0 if and
only if k =2, 4, 6,

Proof. We already know from Lemma 4 that g, (z) has at most k zeros in C*.
By induction, we show next that g, (z) has exactly k negative zeros, and in order to
carry out the induction we use the relation g, .,(z) = g, (z) - cgg(cz).

I g,(z) has the zeros §; <¢, << & <0 with e, <& ., (which is true for
k = 0), then

¢
8rer1(8) €k 11 (_1(;:_1_) = —ch(cé’i)gK(g‘z—l) <0 (=12 -,k-1)

because of the inequalities &; <ec{;, &,y /c < ¢4+ - It follows that g, ,(z) has at
least one zero between C and C /c (i=1, 2, -,k - 1; this statement is empty if
k =0, 1); we select one of these zeros and denote 1t by 6., . Since

S+ (&) = ~cgg(eg ) <0 and gx+1(0) =(1-c)ftl >0,

we see that at least one zero exists between {, and 0 (this statement is empty if
k = 0); we select one and denote it by 6, ,; . From the relations

sgng,,, (€, /) = sgng, (¢ /c) = (-1)k

and sgn g, (-x) = (-1)¥*1 (consequence of Lemma 4) for all large x it follows
that at least one zero 6, of gy, exists with 6; < ¢;/c (if k = 0, then gx4;(0) > 0,
gx+1 (-x) <0 when x is large, and gy, (z) has at least one zero 91 <0). It follows
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that g, (z) has exactly k +1 zeros, and this is true for all k if we show that
co; < 91+1 (i=1, 2, --, k). But this is true because 91 < §/fe, € < 0, (that 1s,
cHl < 63), 0;11 < §1+1 /c €41 < 04 for i=1, 2, - 1 (that is, c6; < 6;4
for j=2,3, ---, k). Let Cy be the curve consisting of

K

le

z =it (-c"K/2 <t<c¥/2) and z= e k/2 ¢i (% < ¢ <

then the quantity

_ gk(z) gl (we™</2)
I, = SCK mdz = ¢K/2 Sco—g—x—(wc—"‘/T)dw

is constant for every interval 2n < k¥ < 2n+ 2 (because of Lemma 6 and the fact that
all zeros of g.(z) are negative). But we know from Lemma 5 that I, ,; = 27in, and
this implies that g,(z) (2n < k¥ < 2n + 2) has exactly n zeros in -c~ K/2 < x<0.

The proof of Theorem 5 is now complete if We observe that g, (z) has exactly n - 1
zeros in the interval -¢ 2 <x<0 {(n= --), which also follows from Lemma 5.

For c =1/2, a calculation carried out by R. Yeaman and F. Lether (University of
Utah Computer Center) showed that g,(z) #0 (-1 <z <0) for k < kg = 2.6058

(error less than % 10'4), and g Ko (-1) = 0. The foregoing proof, as well as some

more calculations, indicate that the zeros of g, (z) increase with k. For f,(z), the
situation seems to be similar.

5. HURWITZ’S THEOREM ON THE ZEROS OF BESSEL FUNCTIONS

As an application of Theorem 3, we give a new proof of Hurwitz’s theorem on the
zeros of Bessel functions of negative order (for earlier proofs, see Hille and Szeg8
[7] and the literature quoted there). We begin with some notation and known rela-
tions.

We write

Iy,(@z) % (-1)° 0
7V /2 B n!Tn+v +1)

op(z) = (v #-1, -2, -+ ).

n=0

The (entire and real) function ¢,(z) has order 1/2 and satisfies the relations

(17) ¢y (z) = - ¢,41(2),
(18) ¢,(z) = (v +1) o, ,(z) +2¢,,,(2),
(19) z¢y(z) + (v +1)¢y(2) + ¢, (2) =

It follows from (19) (and the definition of ¢,,(z)) that ¢,(z) has simple zeros only.

LEMMA 7. If k=1,2, - and -k <v<-k+1, then ¢,(z) has exactlyk - 1
zevos that are not positive.

Proof. We proceed by induction, using Theorem 3 and (18), and starting with the
well-known case k =1 (Lommel’s Theorem; see for example Watson [32, p. 482]).
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In order to apply Theorem 3, we must prove that ¢, (z) has infinitely many positive
zeros (by (18), this follows immediately from the case k = 0), and that the zeros of
q’)v(z) and ¢, (z) interlace in the sense of Theorem 3. By (18), there is at least
one zero of ¢,(z) between two zeros of ¢, +1(2), and by (17), there is at most one.

It remains to show that there is no zero of ¢, (z) between 0 and a, where a denotes
the smallest positive zero of ¢,,,(z). But ¢,(0)¢,,,(0) <0 (v <-1), and it fol-
lows from (17) that ¢, (z) #0 for 0 <z < a.

Remark. Most of the arguments of the foregoing proof can be found in Watson
[32, pp. 479-480]. The assumption v < -1 was used only at the end of the foregoing
proof. If v > -1, then ¢,(z) has one zero in the interval (0, a), which accounts for
the fact that J,,(z) has no complex zero.

The following lemma gives more precise information on the location of the zeros
of ¢,(z).

LEMMA 8. Let-k<v <-k+1. The function ¢, (z) has exactly one negative
zevoif k=2n (n=1, 2, --+), no negative zevo if k = 2n - 1.

Proof. For k =1, 2, this follows from Lemma 7 (if k = 2, then by (z) has one
zero, which is not positive). We proceed by induction and observe first (from the
power series representation of ¢,(z)) that ¢,(-x) — = as x — .

(a) Assume that k=2n+1 (n=1, 2, ---). In this case, ¢,,(0) > 0, which implies
that ¢,,(z) has an even number of negative zeros. It follows from (17) that ¢,,(z) has
at most two negative zeros (otherwise P+l (z) would have more than one negative
zero). Assume that ¢, (a) = $,(8) =0 (@ <p <0); then ¢, ,(y) =0 for some y
(@ <y <B), dpy1(@)>0, ¢,,,1(8) <0 (by (17)). It follows from (17) and (18) that
0=¢,0)=(w +1)dy,;(B) - Béy;,(8) > 0, which contradicts our assumption.

(b) Assume that k = 2n (n =2, 3, ---). In this case, ¢,(0) <0, and ¢, (z) has at
least one negative zero (because ¢,(-x) — © as x — *). It also has at most one
negative zero, since ¢},(x) = - ¢,,,,(x) <0. From the definition of ¢,(z) and
Lemmas 7 and 8 we immediately deduce the theorem of Hurwitz:

If-2k<v<-2k+1(k=1,2, ), then J,(z) has (besides its real zevros)
4k - 2 complex zevros, two of which lie on the imaginary axis.

If-2k+1<p<-2k+2 (k=1,2 ), then J,(z) has (besides its real zevos)
4k - 4 complex zeros, and no zevo lies on the imaginary axis.
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