ON POLYNOMIAL RINGS

K. R. Mount

One approach to Serre's conjecture on the freedom of finitely generated projective modules over polynomial rings is to determine which of the sequences (P_0, \cdots, P_n) of polynomials may be written as the sequence of $n \times n$ determinants of an $n \times (n+1)$ matrix. The assertion proved here is that the Serre conjecture is equivalent to the statement that the sequence (P_0, \cdots, P_n) can be written in this form if the ideal generated by the P_i has homological dimension less than or equal to 1.

Throughout this paper we shall use the following conventions: k denotes an algebraically closed field, and A_m denotes the polynomial ring $k[x_1,\cdots,x_m]$ in the indeterminates x_1,\cdots,x_m . If $R=(R_{ij})$ is an $n\times(n+1)$ matrix, $\triangle_j(R)$ denotes the determinant of the $n\times n$ matrix derived from R by deletion of the jth column. If M is a module over A_m , rank (M) denotes the dimension of the vector space $Q(A_m) \otimes M$, where $Q(A_m)$ is the field of fractions of A_m . By A_m^{n+1} we denote the free A_m -module of (n+1)-tuples of elements of A_m .

Definition. If (P_0, \dots, P_n) is an element of A_m^{n+1} , we say that the P_i form a determinantal sequence if there exists an $n \times (n+1)$ matrix $R = (R_{ij})$ such that $\triangle_i(R) = P_i$ for each i.

LEMMA 1. Suppose (P_0, \cdots, P_n) and (Q_0, \cdots, Q_n) are elements of A_m^{n+1} , and assume that T is an elementary transformation of A_m^{n+1} that carries (P_0, \cdots, P_n) into (Q_0, \cdots, Q_n) . The sequence (P_0, \cdots, P_n) is determinantal if and only if (Q_0, \cdots, Q_n) is determinantal. If $\epsilon_i = \pm 1$ and (P_0, \cdots, P_n) is determinantal, then so is $(\epsilon_0 P_0, \cdots, \epsilon_n P_n)$.

Proof. Suppose that $R = (R_{ij})$ is an $n \times (n+1)$ matrix with $\triangle_i(R) = P_i$. If T multiplies (P_0, \cdots, P_n) by an element of A_m or if T interchanges the ith and jth entries of (P_0, \cdots, P_n) , then (Q_0, \cdots, Q_n) is determinantal. If T multiplies P_i by S and adds it to P_j , the assertion is equally clear, since we need only replace the jth column of R by the sum of the jth column and S times the ith column. For the last assertion, it will suffice to consider the case where $\epsilon_i = 1$ for i > 1 and $\epsilon_0 = -1$. Denote by e_i the basis element $(0, \cdots, 1, \cdots, 0)$ of A_m^{n+1} , where 1 occurs only in the ith position, and note that if we replace the row vector $\sum R_{ij} e_j$ in R by $(-w)R_{i0}e_0 + \sum wR_{ij}e_j$, then the assertion follows if we choose w so that $w^n = 1$.

THEOREM. The following two properties are equivalent:

- (1) every finitely generated projective module of rank at least $\, n$ over $\, A_{\rm m} \,$ is free;
- (2) if (P_0, \cdots, P_k) is an element of A_m^{k+1} with $k \geq n$ such that the ideal generated by the P_i has homological dimension less than 2, then (P_0, \cdots, P_k) is a determinantal sequence.

Proof. Assume (1) and suppose (P_0, \dots, P_k) is an ideal of homological dimension less than or equal to 1. If $P_i = GQ_i$ for each i and some G in A_m , then

Received January 13, 1966.

This work was supported in part by NSF Grant No. GP-3182.

 (Q_0,\cdots,Q_k) has homological dimension less than or equal to 1, and it will suffice to prove that the sequence (Q_0,\cdots,Q_k) is determinantal under the assumption that the Q_i have no common nonconstant divisors. We shall first show that we may assume Q_0 and Q_1 to be relatively prime. If Q_0 = 0, then we either have nothing to prove, or we may apply an elementary transformation to move some nonzero entry to the zeroth position. Assume $Q_0 = F_1 \cdots F_u$, where the F_i are the irreducible factors of Q_0 . Since the Q_i have no common nonconstant divisors, either Q_0 is an element of k and all the Q_i are zero for i>0, or there is a Q_j such that F_1 does not divide Q_j . If j is not 1, then we may interchange Q_j and Q_1 by applying an elementary transformation. We now proceed by induction and suppose that Q_1 is not divisible by F_1, \cdots, F_v (v < u); we shall show that by means of an elementary transformation leaving Q_0, Q_2, \cdots, Q_k fixed, we can replace Q_1 by a polynomial Q_1 that is not divisible by any of the factors F_1, \cdots, F_{v+1} . For some t, the factor F_{v+1} does not divide Q_t , and since we have nothing to prove if F_{v+1} does not divide Q_1 , we may suppose it divides Q_1 and not Q_t , for some $t \ne 1$. If we replace Q_1 by $Q_1 + F_1 \cdots F_v Q_i$, the assertion is clear.

Denote by F a free module over A_m with a basis f_0, \dots, f_k , and define a module K by the exact sequence

$$0 \to K \xrightarrow{\phi} F \xrightarrow{\theta} I \to 0,$$

where I is the ideal generated by the elements Q_0 , \cdots , Q_k , and where $\theta(f_j) = Q_j$. Since

rank
$$F = k + 1$$
 and rank $I = 1$,

the rank of K is at least n. The homological dimension of I is at most 1 by assumption, and thus K is free. Suppose that $\phi(K)$ has a basis of elements

 $\mathbf{k_i} = \sum_j \mathbf{R_{ij}} \mathbf{f_j}$. Since rank K = t, we see that $\triangle_j(\mathbf{R}) \neq 0$ for some j, and we form the equations

$$\sum_{w \neq j} R_{iw} Y_w = -R_{ij} Q_j \quad (1 \le i \le t).$$

This system of equations has a unique solution, and we may solve it by Cramer's rule to derive the relations

(1)
$$Q_v = (\varepsilon_v / \triangle_i(R)) \cdot Q_i \triangle_v(R) \quad \text{for } \varepsilon_v = \pm 1 \text{ and } v \neq j.$$

Since $Q_0 \neq 0$, we see that $\triangle_0(R) \neq 0$, and we derive the relations

$$Q_v \triangle_0(R) = \varepsilon_v Q_0 \triangle_v(R)$$
.

The assumption that Q_0 and Q_1 are relatively prime implies that $\Delta_0(R) = H\,P_0$ for some H in A_m , and hence $Q_i^-H = \epsilon_i^-\Delta_i(R)$ for each i. By [2], a maximal ideal p of A_m contains the ideal generated by the $\Delta_j(R)$ if and only if the ideal $(A_m)_p \cdot I$ is not projective, where $(A_m)_p$ denotes the local ring of the prime p. Thus if p contains all the $\Delta_j(R)$, it must also contain all the Q_i , and hence the radical of the ideal generated by the $\Delta_j(R)$ can have no primes of dimension m - 1; thus H must be an element of k. If we assume (2) and if M is a projective module of rank at least n, then by [3] there exists a free module G such that the direct sum M \oplus G is free.

The freedom of M will then follow by induction if we show that a projective module N is free provided its rank is at least n and there exists an exact sequence

$$0 \to L \xrightarrow{\phi} F \xrightarrow{\theta} N \to 0$$

where L is free on one generator. Suppose that F has a basis f_0 , \cdots , f_s and that $\phi(L)$ is generated by $\sum Q_j f_j$. By [2] or [3], there exist polynomials P_i such that $\sum P_i Q_i = 1$. The ideal generated by the P_i is thus projective; hence, the sequence $(P_0$, \cdots , $P_s)$ is determinantal, and thus there exists an $(s+1)\times(s+1)$ matrix with first row (Q_0, \cdots, Q_s) whose determinant is 1. This implies that N is free.

The following conclusion now follows from theorems of Bass [1, p. 58], and Seshadri [4].

COROLLARY. Suppose $k[x_1, \cdots, x_m]$ is a polynomial ring over the field k. If $m \leq 2$, then for each sequence (P_0, \cdots, P_n) there exists an $n \times (n+1)$ matrix R such that $\triangle_i(R) = P_i$ $(0 \leq i \leq n)$. If $m \geq 3$ and $n \geq m+1$, then there exists an $n \times (n+1)$ matrix R such that $\triangle_j(R) = P_j$ for each j, if the homological dimension of the ideal generated by the P_i is less than 2.

REFERENCES

- 1. H. Bass, K-theory and stable algebra, Inst. Hautes Études Sci. Publ. Math. No. 22, 1964, 5-60.
- 2. K. R. Mount, Some remarks on Fitting's invariants, Pacific J. Math. 13 (1963), 1353-1357.
- 3. J.-P. Serre, Modules projectifs et espaces fibrés à fibre vectorielle, Séminaire Dubreil, (1957-58), No. 23; Faculté Sci., Paris, 1960.
- 4. C. S. Seshadri, Triviality of vector bundles over the affine space K², Proc. Nat. Acad. Sci. U.S.A. 44 (1958), 456-458.

Northwestern University