UNIVERSAL £Z-LIKE COMPACTA
Michael C. McCord

1. INTRODUCTION

A compactum is a compact, metrizable space. A continuum is a connected
compactum. By a polyhedron we mean a finitely triangulable space.

If € is a class of spaces, a universal member of % is a member of @ in
which every member of @ can be imbedded. K. Menger [11] described an n-
dimensional continuum which he conjectured (and proved in the case n = 1) to be a
universal n-dimensional compactum. G. Nobeling [12] produced a different space,
which he showed to be a universal n-dimensional, separable, metrizable space.

S. Lefschetz [ 8] (independently of [12]) verified Menger’s conjecture. See Hurewicz
and Wallman [7, p. 64] for a treatment of N&beling’s theorem. R. M. Schori [13],
[14], has shown that there exist universal snake-like continua (see R. H. Bing [1]).

We present a single, rather general theorem (Theorem 1) that implies (see
Theorem 2) both Schori’s result and the existence of universal n-dimensional com-
pacta. The method of proof, involving inverse limit systems, is an extension of
Schori’s method. Lefschetz’s proof of Menger’s conjecture used a version of poly-
hedral inverse limit expansions. The main feature of the present approach is the
additional use of polyhedral inverse limit systems to define the required universal
spaces.

The framework needed for our theorems is the theory of #-like compacta,
where & is a class of polyhedra. See Mardesié and Segal [9]. If o is an open
cover of the compactum X, a map f of X onto a compactum Y is called an a-map
provided that for each y in Y, f-1(y) is contained in some member of @. Let & be
a class of polyhedra. Following [9], we say a compactum X is #-like if for each
open cover a of X there exists an @-map of X onto some member of &.

We are concerned with the following question: For which classes # is there a
universal :&#-like compactum? Theorems 1 and 2 are positive results; Theorems 3
and 4 are negative. Part of the results were announced in [10].

2. STATEMENT OF THEOREMS

Definition 1. The class & of polyhedra is called amalgamable if for each finite
sequence (P,, -+, P ) of members of & and maps ¢;: P; — Q (1 <i <n), where
Q € &, there exists a member P of & with imbeddings p;: P; — P and a map ¢ of

P onto Q such that ¢; = ¢u; for each i. We call (P, ¢, By, p.n) an amalgama-
tion of (¢, **, ¢,).

THEOREM 1. If & is an amalgamable class of polyhedra, then therve exists a
universal #-like compactum,
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THEOREM 2. Let &, be the class of all acyclic polyhedra, #_ the class of all
contractible polyhedrva, and &, the class of all polyhedyra of dimension at most k.
Then each of the following classes is amalgamable: (1) &, (2) #,, (3) &,

(4) 2 0 2, (6) &, N P, (6) the class of trees (the nondegenerate members of
P, NP =2 N '3315:, (7) the class of all k-cells {for fixed k). Thus it follows
Sfrom Theovem 1 that if & is any one of these classes, then theve exists a universal
&P -like compactum.

Remark 1. A compactum X has dimension at most k if and only if X is Py
like. Hence (1) shows that there exists a universal k-dimensional compactum.

Remark 2. Part (7), with k = 1, generalizes Schori’s result.

THEOREM 3. Let#™ be a class of closed, connected, triangulable n- manifolds.
Then theve exists no univevsal A(-like continuum,

THEOREM 4. Let & be a class of 1-dimensional polyhedra whose 1-dimen-
sional Betti numbers ave bounded, but which contains at least one membeyr with posi-
tive l-dimensional Betti number. Then there exists no univevsal &P-like compactum.

I wish to thank R. H. Bing for a suggestion that led to the formulation of Theo-
rem 3.

There is another way of defining “4-like compactum?” that is more in accord
with the original use of snake-like (= arc-like), civcle-like, tree-like of Bing [1], [2]
and others.

Definition 2, If & is a class of polyhedra, a compactum X is weakly £-like if
every open cover of X can be refined by a finite open cover whose nerve is homeo-
morphic to a member of &£,

Part or all of the following theorem may be known (see the remark in Example 1
of [9]), but to my knowledge it is not in the literature; I therefore include it for com-
pleteness.

THEOREM 5. Every &P-like compactum is weakly P-like. The converse is
Jalse; however, if X is a perfect, weakly P-like compactum, then X is P-like.

The proof of the second part, for the case where X is connected, was supplied to
me by the late M. K. Fort, Jr.

I am grateful to the referee for suggestions, in particular for an alternate proof
of Lemma 8 in Section 6.

3. PROOF OF THEOREM 1

Let & be an amalgamable class of polyhedra. We may assume (and do it, for
convenience) that & is closed under homeomorphism, in other words, that every
polyhedron homeomorphic to a member of & is itself a member of &. Since up to
isomorphism there are only a countable number of finite abstract simplicial com-
plexes, and since isomorphic abstract simplicial complexes have homeomorphic
geometric realizations, there exists a sequence

(3.1) (Py, P2, P3, **)

of members of & such that every member of & is homeomorphic to some member
of this sequence.
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For each pair (i, j) of positive integers, the space M(P;, P;) of maps of P; into
P, (with the compact-open topology) is separable. Hence there exists a sequence

1 2 3
P55 = (9ij, ¢15, Bij, =)
such that for each n the tail
+1 +2
(¢%, ¢?j b ¢:I'llj H ...)
is dense in M(Pj , P;). (If (fy, £, , 3, +-+) is dense in M(PJ- , P;), then we can form
the listing
(fl ) fl: fZ: f17 fZ’ f3’ '");

and then each tail is dense.)

LEMMA 1. For each #-like compactum Y, theve exist sequences (ny, np, *-)
and (ml , Mo, s« ) Of positive integers such that Y is homeomovrphic to the inverse
limit of the sequence

mj ma m3
¢n1 n, (‘bnz ns3 ¢n3 n4
(3.2) P P P oo
m n2 13
and such that, fov each i,
(3.3) m; > 1n5, My > Ngyy, Mgy > my+ 2.

Proof. By the proof of Theorem 1 in MardeSié and Segal [9] (see Remark 3, p.
154), Y is homeomorphic to the inverse limit of an inverse sequence of members of
&. Since every member of & is homeomoprhic to one of the P; (in (3.1)), there
exists a sequence (nq, n,, «++) of positive integers such that Y is homeomorphic to
an inverse limit

h
N
N W

H:
T &

(3.4) P

T
1

| PnZ Pn3

Next we appeal to Theorem 2 in M. Brown [3] . This theorem essentially says
the following. We still get the same (homeomorphic) limit in (3.4) if we modify the
bonding maps f::L+1 slightly. (However, the amount by which we are allowed to
modify each f%ﬂ depends partly on how much we have already modified the pre-

vious maps f_l;ﬂ (j < 1i).) In view of the fact that each tail of the sequence &

njnj4l

is dense in M(Pn,+1 , P,.), it is clear how to proceed and complete the proof of the
i i ms

lemma. (Note: The choice of the maps ¢ni;1i+1 is similar to the proof of Brown’s

Theorem 3, but we can not apply this theorem directly, because of the conditions
(3.3) on the integers mj.)

We shall construct an inverse limit sequence
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g2 e g
Xl e—Xz‘—X3(_""
whose limit X, will be our universal & -like compactum. Each X,, will be a mem-
ber of . The idea is outlined in the schematic diagram of Figure 1. The space X3
will be simply Pj. We shall obtain X2 and g%: X, — X by taking an amalgamation
(see Definition 1) of the maps

1 1
1: Pl — Pl’ ¢11: Pl — P].’ ¢12: PZ d Pl'

Then g%: X5 — X, is obtained by taking an amalgamation of a certain twelve-term
sequence of maps. (See Figure 1.)
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In order to be precise, we shall now construct an auxiliary inverse limit
sequence
22 23 24
(3-5) Sl — SZ P S3 — ess

which exactly expresses the combinatorial scheme of Figure 1. (For convenience,
we write A™ instead of the usual 70:1_1 .) Each S, will consist of a certain finite set

of triples.

To construct (3.5) inductively, we let S, consist of a single element
s; = (Py, —, —). (It does not matter what the second and third coordinates are.)
Then we let

SZ = {(Pl ’ 1Pl, Sl), (P]s ¢%1: Sl )3 (PZ ’ 4’%2; sl )}
(please refer to Figure 1), and we let A2 map each member of S, onto s3.
Suppose we have constructed

A2 a3 An
Sp < 8z = < 8y,

where n > 2. We now construct A™"1: S, .7 - S,. Let s = (P;, -, -) be a member
of S,, and let (A\®*1)-1(s) consist of the triples

n
(Pi’ IPi) S)’ (Pl 3 (p?'l, S), (PZ; ¢?2; S); ."s (Pn+1, ¢in+1; S)-

Then let S_,; = U, ¢ s, W) X(s). This determines A" also.

For each n and each s in S,, we let K(s) denote the first coordinate of s (thus
K(s) = Pj for some j < n), and we let ¢(s) denote the second coordinate of s. Thus,
for n > 2, ¢(s): K(s) — K(A™(s)); and if K(s) = P; and K(2\"(s)) = P;j, then

P(s) = ¢Iilj.1 if i#7j and o(s) = ¢ri‘i"1 or lpi ifi=j.
LEMMA 2, Let the sequences of integers (ny, ny, +=+) and (my, my, +--)

satisfy the conditions (3.3) of Lemma 1. Then there is an element (sy, sz, ***) of
the inverse limit S, of (3.5) such that for each 1> 1 the following conditions hold:

ms
(3.8); K(sj) = Pni+1 SJor all j satisfying m; <j<mj,q,
(3.9); ¢(sj) = 1 = identity map on Pni+1

Jor all j satisfying m; +1 <j<mj;;.
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Proof. Since m; >n;, S contains triples s with K(s) = P . .Choose any

mj 1

one of them and call it sml . Then (3.6); holds. Since also m; >n,,

my

is one of the inverse images of Sm, under A Let this be Smy+1- Thus (3.7);

holds. Then we can take succeeding inverse images S; (j= my +2; my + 3, -, mz)
(recall that m, > m; + 2) with K(sj) = Pnz and qb(sj) equal to the identity map on
PnZ . Thus (3.8); and (3.9); hold, as well as (3.6), (which is included in (3.8);).
But since m, = n3, we can continue the process, obtaining s j for all j > m;, with
7\3+1(Sj+1) =8j. The initial segment (s;, --- » Sm; -1) is then uniquely determined by

the requirement that (s;, s,, **+) lie in S . This completes the proof.

The next lemma asserts the existence of an inverse limit sequence (X, g) with
properties that will turn out to guarantee that its limit X is a universal #-like
compactum.

LEMMA 3. There exists an invevse limit sequence

2 3 4
&7 82 B3
Xl — XZ «— X3 «— °°°

satisfying the following conditions: Each X is a member of &#. Each bonding map

gﬁ"‘l is onto. For each n, theve exist imbeddings
(3.10) p(s): K(s) — X, (all s € Sy)

such that for each n > 2 and each s € S, the following diagram commutes:

#(s)
K(x"(s)) K(s)
(3.11), n(x(s)) (s)
€n-1
Xn—l Xn

Proof, Let X = P, and let p(s): P; — X; be the identity, where s is the only
element of S;.

Suppose we have constructed

2
€1

X1

}(2 cee X

and the imbeddings (3.10) for n < m, where for n < m, X, € & and (3.11),, com-
mutes. Consider the finite system of maps

(n(™¥1(s)) o ¢(s): K(s) = Xn)ses_,, -
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Since & is amalgamable, there exist a member X, ; of &, a map gﬁ“ of X, 1+1
onto X, , and imbeddings

p(s) K(s) = Xy (s € Sppyp)

such that gﬁﬂ o i(s) = p.()\mﬂ(s)) o ¢(s) for all s in S ;. In other words, the

diagram (3.11),,,;; commutes. This completes the proof of Lemma 3.

Completion of Proof of Theorem 1. Let (X, g) be an inverse limit sequence with
the properties listed in Lemma 3. We claim that its limit X, is a universal & -like
compactum. First of all, since each X,, € & and the bonding maps gg“ are onto,

X is itself #-like, by Lemma 1 of Marde%ié and Segal [9].

Now let Y be any #-like compactum. Choose sequences of integers (n;, n,, .ee)
and (m;, m,, ---) in accordance with Lemma 1. We may suppose that Y is equal to
the limit of the sequence (3.2) of Lemma 1. Then choose an element (s;, s,, **-) of
S. in accordance with Lemma 2. Since A"(s,) = s,_; for each n > 2, (3.11) implies
that the diagram

#(s5) ¢(s3) d(s4)
K(sy) K(s,) K(s3)
(3.12) w(s1) p(sz) w(ss3)
g2 g3 &3
Xl * Xz X3 see

is commutative. By conditions (3.6) to (3.9), the top row of this diagram starting
with level m;, is equal to

ml ‘ 1
¢nl 1’12 1 1 1 ¢n2n3
P P ~———P P P o e,

Taking the obvious subsequence of this sequence, we see that its limit is homeo-
morphic to Y (see [4, Corollary 3.16, p. 220]). From the commutativity of (3.12)
we see that the imbeddings p(s,) then induce an imbedding of Y into X_ . This
completes the proof.

4. PROOF OF THEOREM 2

The proofs of parts (2) to (6) can essentially be given simultaneously; that is, we
describe a construction that works for all of these cases. Let (P;, :--, P,) and
¢3: P; — Q be given. Let P' be a disjoint union Pj U -** U Py, where P!isa
homeomorphic copy of P;. Let T be an n-od; that is, let T be the union of arcs
Ay, ---, A, with a common endpoint p such that A; N Aj= {p} whenever i #j. Let
the other endpoint of A; be a; . For each i, choose a vertex a! of P], and define a
map f: {aj, -=-, a,f — P' by f(a;) = al. Finally, let P be the adjunction space

P=TU P,

We shall identify P' with its image in P, and T with its image in P. Let p;: P; —» P
be an imbedding such that p;(P;) = P}. Now define gg: P' — Q by
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go(x) = ¢iu{1(x) for x € Pj.

We can extend g, to a map g of P onto Q, provided Q is connected, as it is in each
of the cases (2) to (6). To do this, we first take a segment S in the interior of, say,
the arc A;, and a map g; of S onfo Q (which exists, by the Hahn-Mazurkiewicz
Theorem). Since Q is arcwise connected, we can extend gy U g; toamap g: P — Q.
Since g extends gg, gu; = ¢; for all i.

If each P; is acyclic, it is easy to see from the Mayer-Vietoris sequence that P
is acyclic. If each P; is contractible, it is easy to see that P is contractible. If in
addition to one of these two cases each P; is of dimension k (at most k), then P is
of dimension k (at most k), except in the case k = 0, which is trivial. From these
statements, parts (2) to (6) follow.

To take care of case (1), we modify the above construction as follows: As before,
we take the disjoint union P'= P}] U - U P;,. But instead of adjoining the n-od T,
we obtain P by adding on as many disjoint k-cells as there are components of Q,
and we use these to get the map g of P onto Q. Actually, looking at the proof of
Theorem 1, we see that is is unnecessary to have g onto, since every limit of an
inverse sequence of polyhedra of dimension at most k is a compactum of dimension
at most k. It might also be added that we can use the proof of Theorem 1 and essen-
tially the same construction as in the preceding paragraph to get a connected univer-
sal k-dimensional compactum.

There remains only part (7). Let IX-1 pe the standard (k - 1)-cube. Let P be
the k-cell [1, 2n] X IX-1 and let P! C P be the k-cell [2i - 1, 2i] x Ik-1, Choose

imbeddings p;: P; — P with p,(P;) = P!. Define a map gg: Up;—> Q by
go(x) = o;uil(x) (x e PY.

Using the Tietze Extension Theorem, we easily see that we can extend g to a map
g of P onfo Q. This completes the proof.

5. PROOF OF THEOREM 5

Theorem 5 consists of Lemma 4, Example 1, and Lemma 7 of this section. It is
obvious that if a compactum X is given a specific metric, then X is &-like if and
only if for each € > 0 there exists an £-map of X onto some member of & (the
diameters of all point-inverses are less than €); and X is weakly #-like if and only
if for every & > 0 there exists an open cover of mesh less than &€ whose nerve is
homeomorphic to a member of &#. Here we are thinking of open covers as collec-
tions of subsets rather than indexed systems of subsets as in [4]. ¥ o is a finite
open cover, let N(a) denote the nerve of «, and let |N(a)| denote the standard
underlying polyhedron.

LEMMA 4, For any class &P of polyhedra, every #-like compactum X is
weakly P-like.

Proof. Let the #-like compactum X be given a metric d. Let € be a positive
number. Choose an (¢/2)-map f: X — |K| , where K is a rectilinear Euclidean com-
plex and |Kl is homeomorphic to a member of &. It is easy to see from the com-
pactness of X and lKI that there exists a 6 > 0 such that whenever U C |K| and
diam (U) < 8, then diam £-1(U) < &.
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Let K{n) denote the nth barycentric subdivision of K, and let 3, be the corre-
sponding cover of |K(n)| = IK] by open stars of vertices. We know that N(8,) is
isomorphic to K{n), so that |N(8,)| = |K|. By taking n large enough, we can make
the diameters of the members of B, smaller than 6. Let o, = f-1(8,). Since f is
onto, o, is an open cover of X such that N(a,,) is isomorphic to N(B,). Thus
IN(ozn)r = |K|. By the choice of 6, mesh @, <&. This completes the proof.

Example 1. Let the class & be the same as in Example 5 of Mardesié and Segal
[9] (used there for a different purpose): & = {P,;, P,, ---}, where

P, = [0,1Ju {2,3,4, --,n+1}.

Let X =1{0, 1, 1/2, 1/83, ---}. (These are all subspaces of the real line.) Obviously,
X is not #-like, for since X is countable and each P, is uncountable, X cannot be
mapped onto any P,. However, X is weakly #-like: The open cover

o x {fotrats -} n 3h - fetl]

has nerve homeomorphic to P, , and mesh (o,) — 0. Notice that this X is not per-
fect (it has isolated points).

LEMMA 5. Let X be a pevfect compactum, and o a simplex. Then for every
nonemply open subset U of X there exist a compact set C contained in U and a
map ¢ of C onto o.

Proof. Let V be a nonempty open subset of X such that VCU. Then V is a
perfect compactum. If V is totally disconnected, then V is a Cantor set (see [6, p.
100] ); hence V can be mapped onto o (see [6, p. 127]). Otherwise, let C be a non-
degenerate component of V. Then C can be mapped onto a closed interval of the

real line, which in turn can be mapped onto ¢ by the Hahn~Mazurkiewicz Theorem.

I X is a space and « is a finite open cover of X, a map f: X — IN(a)l is called
canonical if £(x) € A,(x) for each x in X, where Ag4(x) is the simplex of N(a)
spanned by all U € o such that x € U, In case X is normal, there always exist
such canonical maps [4, p. 286].

LEMMA 6. If X is a perfect compactum and o is a finite open cover of X, then
theve exists a canonical map of X onto |N(a)| .

Proof, First we prove that if f: X — IN(a)I is a canonical map and ¢ is any
simplex of N(«), then there exists a canonical map f': X — ]N(a)] such that
f'(X) D £(X) U 0. We may suppose that ¢ is a principal simplex. Let its vertices
be {Up, -, U}, and let U=Ug N ++ N Upy. Observe that 0 = A, (x) for each x
in U, so that f(U) C 0. Hence also f(Bd U) C f(U) C o.

Since U is a nonempty open subset of X, there exist (by Lemma 5) a compact
subset C of U and a map ¢ of C onto 6. Now C and Bd U are disjoint closed
sets in U, and by the Tietze Extension Theorem, there exists a map fg of U onto ¢
that agrees with ¢ on C and with £ on Bd U.

Define f': X — |N(a)| by
f'(x) = f(x) ifxeX-U and fi(x) = fo(x) if x € U.

Notice that f' is well-defined and continuous, since f and f, agree on
(X-U)NU=BdU. Now f'(X)D o, since f' agrees with ¢ on C. Thus
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f'(X) D f(X) U 0, for if y € f(X) - 0, say y = f(x), then x ¢ U; hence y = f'(x).
Finally, f' is canonical. For if x ¢ U, then f'(x) = f(x) € A, (x); and if x € U, then
f'(x) = fp(x) € 0 = Ay (x).

Now it is clear how to complete the proof of the lemma. We begin with a canon-
ical map of X into |N(oz)| . Since N(a) has only a finite number of simplexes, we
can use finite induction, with the preceding argument for the induction step, to get a
canonical map of X onto |N(a)]|.

LEMMA 7. If X is a perfect, weakly #-like compactum, then X is P-like.

Proof. Let o be an open cover of X. Since X is weakly #-like, there exists a
refinement 8 of « such that |N(B)| is homeomorphic to a member Y of &#. By the
preceding lemma, there exists a canonical map f of X onto lN(B)l. Therefore £
isa B-map. (If y € |N(6)[, then y € N {AB(X): x € £-1(y)}, so that the latter set is
a nonempty simplex, of which we take U € 8 to be a vertex. Then f-1(y) c U.)
Hence f is also an a-map, so that there exists an a@-map of X onto Y. This com-
pletes the proof.

6. PROOF OF THEOREM 3

In this section, let .#™ be a class of closed, connected, triangulable n-manifolds.
Hq(X; Z,) will denote the q-dimensional Cech homology group of the space X, with
coefficients in Z, (integers mod 2).

LEMMA 8. If X is an "™-like continuum and A is a proper closed subset of
X, then H,(A; Z) = 0. \

Remark., A result similar to this is in [5], for the case where X is an ANR.

Proof, Choose a metric d for X. Let ¢ be a positive number. Choose a point
X in X - A, and let 6 = d(x, A) > 0. Since X is .« "-like, there exists by Lemma 4
an open cover & of X with mesh @ < min(e, 6) such that |N(a)| is homeomorphic
to a member of .# . Now there exists a member Uy of @ such that x € Uyx. Since
diam Uy < 6, Uy N A = §,

The collection a' = {UNA: U€ @, UN A #p} is an open cover of A of mesh
less than €. We claim that N(a') is isomorphic to a proper subcomplex of N(«).
Select a function ¢: @' — a such that for each V € a', V = ¢(V) N A, Obviously, ¢
is one-to-one. It is easy to see then that ¢ defines a one-to-one simplicial map of
N(a') into N(a), which is not onto, since Ux is not in the image of ¢. Since |N(a)|
is a connected n-manifold and |N(oz')| is homeomorphic to a proper subpolyhedron,
Hn(|N(ae‘)l; Z>) = 0. Since & was arbitrary, it follows from the definition of Cech
homology that Hy(A; Z2) = 0.

Alternate proof. By [9] we may assume that X is the limit of an inverse sequence
(X, f%‘*l), where each X; is in .#™. For each i, let A; = f;(A) C X;. It is easy to
see from the compactness of A that A is the inverse limit of the restricted inverse
sequence (A;, f;H { A;.1). Since A is a proper subset of X, we may assume that
each A; is a proper (closed) subset of X;. Since X; is a closed, connected (tri-
angulable) n-manifold, H,(A;; Z,) = 0. (This follows by taking sufficiently fine
triangulations of M™,) Hence by the continuity theorem for Cech homology [4, p.
261], H,(A; Z,) = 0.

To complete the proof of Theorem 3, we shall assume the following theorem (to
be proved in Section 7).
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THEOREM 6. If M" is a closed, connected n-manifold, then theve exists an
M"-like continuum My that is not locally connected, but such that

H,(MB; Z,) ~ H (M?; Z,).

Now suppose there exists a universal .#™-like continuum X. Choose a member
M™ of .#™, and let M{; be a continuum with the properties described in Theorem 6.

Obviously, M" and My are .#"-like. By universality, X contains subsets A and
Ay homeomorphic to M"™ and M‘a, respectively. Since

H,(M3; Z,) ~ H (M} Z,) ~ Z,,

it follows from Lemma 8 that A = Ay = X, so that M™ = Mg. But this is impossible,
since M is not locally connected.

7. PROOF OF THEOREM 6

By a 7elative n-cell we shall mean a pair consisting of an n-cell and its
boundary.

LEMMA 9. There exists a paiv (D*, S*) such that D* is a continuum which is
not locally connected at some of the points of D* - S* and which has the following
property: for any velative n-cell (D, S) there is a homeomorphism ¢: S* — S such
that for each open cover o« of D* there is an a-map £ of D* onto D with £ I S* = ¢.
(In particular, D* is n-cell-like.)

Proof. For each positive integer q, let R9 denote Euclidean q-space with the
usual norm. If xg € R™ and r > 0, let D"(xg, r) be the n-disk

{x e R™: |x-x¢] <r}.

Let D™ = DO, 1), and let S®-! = Bd D®. We shall specify a certain sequence

(Dg, Dy, D, *+-) of disjoint n-disks in the interior of D™, with respective boundary
(n - 1)-spheres (Sp, Sy, Sz, ***). Let Dg = D™((-1/4, 0, :--, 0), 1/4), and for each
i>1 let

Di = Dn((z—i’ 0’ cee 0), 2—(i+2)).
NOtf tl}m.at the origin O belongs to Sg, and that the sequence (D;, Dz, ) converges
to 10

For each & (0 <g < 1/2), let Dy be the disk D?((g, 0, *:+, 0), €). If 0< 6 <g¢,
it is easy to see that there exists a map z,b of D, onto itself which is the identity
on Bd Dy but which maps Dg onto {O}. Let ‘Ifs be the map of D™ onto itself that
agrees with 1,1/6 on D. and is the identity on D" - D, . Note that \1'5 is a 2e-map.

For each i > 1, choose £ and 6 suchthat 0< 6 <& < 1/2 and

o0
n 1
U p;cps; cp, cp™-'U D;,
j=it1 j=1

and let g; = %% . Then g; is a 27'-map of D" onto itself.
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We shall construct D* as a subset of Rl = R x R!, Let us identify R™ with
R2 x {0} in R™'l, For each i> 0, let C; be the “inverted tin can” (picturing the
case n = 2)

C; = (S;x [0, 1]) U (Dy x {1});

for each i > 1, let

i ;
D;“=<D“-UDj vUc
j=0

j=0

and finally, let
(=] [se]
D" - U D_]) U U Cj .
j=0 j=0

We let S* be simply Sr-1, It is easy to see that D* is an n-cell with boundary S*
and that D* is not locally connected at any point of the segment {0} %[0, 1] c C,.

To complete the proof of the lemma, let (D, S) be any relative n-cell, and
choose a homeomorph1sm ¢: S* — S, For each i > 1, there clearly ex1sts a homeo-
morphism ¢;: (Df, S*) — (D, S) such that ¢; | S* = ¢. Now let £ > 0. Choose i so
that 27* <e, and let g;: D* — D" be as above. Define g¥: (D*, s*) — (D¥, S*) as
follows: If (x t) € D*, where x € D and t e [0, 1], let g;"(x t) = (gl(x) t). It is
easy to see from the cho1ce of g; that gf maps D* onto D¥ and that g¥ is the
identity on S*. Furthermore, g¥ is an g-map. For if g*(x t) = g¥(x', t'), then
gi(x) = gi(x') and t =t', so that ]Ix - x'|| <e. Hence

lx, t) - 1, )] = |x-x1 <e.

Finally, let f = ¢; g¥: (D*, S*) — (D, S). Since ¢; is a homeomorphism, f is an
€-map. Moreover, if x € S*, then f(x) = ¢; g¥(x) = ¢;(x) = ¢(x). This completes the
proof of the lemma.

To prove Theorem 6, let M™ be a closed, connected n-manifold. Select a rela-

tive n-cell (D, S) in M™, and let (D*, S*), ¢: S* — S have the properties described
in Lemma 9. Let E = M" - int D, and let

MIOI= D* U¢E,

(this is the continuum obtained by attaching D* to E by the homeomorphism ¢;
briefly speaking, we have replaced D by D*). Let p: (D* U E) — Mg be the identifi-
cation map, and let

L J— * — = — = k
DO - p(D )’ EO - p(E)’ SO - p(S*) - p(S) - DO N EO .

Obviously, Mo is not locally connected at some points of D0 It is easy to see that
for every open cover o of M there exists an a¢-map F: Mg — M™ that maps the
triad (MO, Df, Eg) onto the triad (M D, E), carrying the pair (Ey, Sg) homeo-
morphically onto the pair (E, S). (Defme F by

F(p(x)) = x (x e E) and F(px)) = {(x) (x € D¥),
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where f: D* — D is obtained from Lemma 9.) In particular, Mg is M™-like.

To complete the proof, choose F as above. (It does not matter how fine « is.)
In the remainder of this section, we write Hq(X) for the reduced group Hq(X; Z2).
By [4, p. 41], F induces a map of the reduced Mayer-Vietoris sequence of the triad

(M§; D}, Eg) into that of the triad (M"; D, E). (These sequences are exact, by [4,
pp. 248 and 266].) Thus, letting F; = F|D§, F, = F|E,, and F3=F | S, we have
for each integer q the following commutative diagram with exact rows:

Hy (D) @ Hy 1(Eg) — Hy_1(Sg) — H(Mp) — H(DF) @ Hy(Eg) — Hy(Sp)
LF®F,, L F3 4 1Fy LF@F,y | Fay

Hq_1(D) @ Hy1(E) — Hy 1 (S) < Hy(M") — Hy(D) @ H(E) — H(S)

Now all the vertical arrows except possibly the middle one represent isomorphisms,
for the following reasons. Since Dg is D"-like, H (D) = 0. Since D =D",

H*(D) = 0. The maps F, and F; are homeomorphisms. Thus by the “five lemma,”
the middle arrow also represents an isomorphism. This completes the proof.

8. PROOF OF THEOREM 4

LEMMA 10. Let (G, ¢) be a direct system of abelian groups ovey a divected set
M, with limit group G (see [4, p. 220]). (1) If G™ is torsion-free for each m € M,
then G™ is torsion-free. (2) If theve exists an integer k such that rank G™ < k for
each m € M, then rank G® <Kk.

The proof is a straightforward application of the definitions, and we omit it. For
the use of rank, see [4, p. 52].

In the following, let H9(X) denote the q-dimensional Cech cohomology group of
X with integer coefficients (Z). Also, if X is a polyhedron, let Rqy(X) be the g-
dimensional Betti number of X (Rq(X) = rank Hq(X) = rank HY(X)).” For each integer
q> 0, let Z9 denote the direct sum of the group Z, taken q times.

Now let & be a class that satisfies the conditions assumed in Theorem 4. Let
k > 0 be the maximum value of R(X) (X € #), and choose a fixed P € £ with
R1(P) = k.

LEMMA 11. If X is any P-like compactum, then H!(X) is a torsion-free group
of rank at most k.

Proof. Applying Lemma 4, the definition of Cech cohomology, and [4, Corollary
4.14, p. 224] (on cofinal subsystems) we see that H1(X) is isomorphic to the limit of
a direct sequence H1(P;) —» H1(P,) — -+, where each P, belongs to #. Now
Lemma 10 is applicable.

LEMMA 12, If X is a #-like compactum and A is a compactum that can be
imbedded in X, then HY(A) is isomorphic to a quotient group of H(X).

Proof. We may suppose that A € X. Since X is 1-dimensional, HZ(X, A) =0,
Hence, by the cohomology exact sequence of (X, A), the homomorphism
H1(X) — H!(A) induced by inclusion is onfo.

Now suppose there does exist a universal #-like compactum Y.
LEMMA 13. H\(Y) = zZk,
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Proof, P itself is &#-like. Hence P can be imbedded in Y. By Lemma 12,
zk ~ H1(P) ~ H(Y)/L, where L is a subgroup of H(Y). By Lemma 11,
rank H1(Y) < k. Hence

k > rank HY(Y) = rank (H}(Y)/L) + rank L. = k + rank L. > k.

Hence rank L = 0. Since HI(Y) is torsion-free, this implies L = 0. Hence
zk ~ H1(Y).

Since Rj(P) > 0, P contains a simple closed curve S. It is easy to see that
there exists a map f of P onto P which is the identity on P - S and which maps S
onto S in such a way that f l S is of degree 2. Let P, be the limit of the inverse
sequence

(8.1) Pipipi---.

Since f is onto, P« is P-like [9, Lemma 1], hence #£-like. Hence P, can be im-
bedded in Y. Now the sequence

fls fls f|s
(8.2) S S S

imbeds in the sequence (8.1), so that its limit S,, imbeds in P, therefore also
imbeds in Y. Then, by Lemmas 12 and 13, H!(S_) is isomorphic to a quotient group
of ZX, hence is finitely generated. On the other hand, since degree (f | s) =2, we
see, by applying the continuity theorem for Cech cohomology to (8.2) that H1(S.,) is
isomorphic to the group of dyadic rationals, which is not finitely generated. This
contradiction completes the proof.
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