AN ELEMENTARY PROPERTY OF
CLOSED COVERINGS OF MANIFOLDS

R. L. Wilder

So far as I have been able to determine, the following property of the n-sphere
S™ (n > 1) has not been noticed:

PROPOSITION A. Let W be a finite covering of S® (n > 1) by at least three
(n - 1)-acyclic closed sets A, By, -+, By, each of which is essential to the coveving.
Then at least thvee elements of 1 have a common point. Indeed, every element of 1
has a boundary point lying in two other elements.

[A set on S” is (n - 1)-acyclic if and only if it does not separate S™. The alge-
braic topology used in this paper is Cech homology theory, modulo 2.]

Of course, if it were known that all elements of 1 are sufficiently small, there
would be nothing novel in Proposition A, since dimension-theoretic results showed
some time ago that in this case at least n+ 1 elements of I would have a common
point. But even if all but one of the elements of 11 are small, this does not hold.
For example, on the 2-sphere let A be an equatorial band (“annulus?”) split into two
“rectangular” disks B; and B, by arcs along two different longitudes, and let B3
and B4 be the two polar caps bounded by the respective circles bounding A. At
most three of the sets B;, B,, B3, B4, have a common point, and clearly B,, B,,
and B3 may be deformed into arbitrarily small sets of the same topological charac-
ter while B4 increases in size. And for n > 2, the example may be duplicated. In-
cidentally, this example shows that three is the maximum number for which Proposi-
tion A holds.

Before proving Proposition A, let us note the necessity of the conditions imposed.
In the example given above, the sets A, B3, and B, constitute a covering in which at
most two elements have a common point, but A is not 1-acyclic. If we let
A'=A U B3, then A', B3, and B4 constitute a covering for which Proposition A
fails, but here B3 is not essential to the covering.

k
Proof of Proposition A. Since Uil B; 7 A, there exists x € A - Ui=1 B;.
Let A; denote the component of A that contains x. Then A; is nondegenerate,
since some neighborhood of x must lie in A; also, A; is an (n - 1)-acyclic continu-
um, since n > 1. And since S"™ has the Brouwer property [3, pp. 47, 60], the
boundary F of A; is a continuum.

If any point of F is alsci)c a point of two of the sets B;, then the desired conclusion

follows. Since S" - A C Uizl B; and since the sets B; are closed, every point of F
must lie in some B;. Now F must be nondegenerate, and no continuum is the union
of a finite collection of disjoint, closed sets (at least two in number) each of which is
a proper subset of it. Consequently, if we assume that there exists no triple of ele-
ments of U satisfying the conclusion of Proposition A, then every point of F must
lie in some single B;, say B;.
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In the exact sequence
Hy(A1) — Hy(A), AjnBy) — Hy, (A N By) — Hy 1(A,),

the end-terms are zero, so that the two middle-terms are isomorphic. Also, the
groups H,(A;, A; N B;p) and H,(S™, (S® - A;) UA; N B;) are isomorphic, and the
latter group is not 0, since x is interior to the set S™ - (S® - A;) UA; N B;. Con-
sequently H,_1(A; N B;) #0.

In the Mayer-Vietoris sequence

the sums on the left and right are zero, and consequently the groups H,_;(A; N B;)
and H,(A; U B;) are isomorphic. But since the former group is nontrivial,

H_(A,; U B,) is also nontrivial, which can be the case only if A, U B, =S", But this
is excluded by hypothesis. We infer, then, that there exist i and j (i #j) such that
some point of F —and hence of A; —lies in both B; and B;. It follows that

ANB; NB;# 9.

It is natural to ask whether these propositions hold in case S™ is replaced by an
n-manifold. Examination of the above proof reveals that this would be the case if the
manifold were orientable and a certain analogue of the Brouwer property were avail-
able. The latter can take the following form.

GENERALIZED BROUWER PROPERTY. Let A be a subcontinuum of an ovient-
able n-gcm M such that p,_1(A) = 0. Then M - A is connected, and the boundary of
A is a subcontinuum of A.

[By an n-gcm we mean an n-dimensional generalized closed manifold in the
sense of [3].]

Proof. From the duality qo(M - A) = q,,_1(A) it follows that M - A is connected.
[By q,.(A) we denote the dimension of the vector space of r-cycles of A that bound
in M, reduced modulo the subspace of r-cycles that bound in A. Similar numbers
based on compact cycles and compact homologies of M - A may be defined. For
orientable M, the duality q.(A) =4q,_,..1(M - A) holds (see [4]). Clearly
p.(A) > q.(A).]

Let F denote the common boundary of A and M - A, If A = F, the desired con-
clusion follows. Suppose A # F. The following relations hold.

(1) qp(A) =q,_;(M-A)=0,

(2) qo(M - A)=qn-1(A - F)=0,

(3 ap 1 lM-A)u(A-Pl=q, (M- F),

4) a,_ [(M-AUMB-Fl=q _,(M-A)+q__,(A-F).

Relations (1) and (2) follow from the connectedness of A and M - A, respectively.
Property (3) is obvious.

The relation (4) may actually fail if p,_;(A) # 0, as we can see if we take for M
a torus and for A an annulus bounded by two meridional circles on M. To prove (4)
under our hypothesis, we may argue as follows: In the first place, (4) holds with the
“=» replaced by “>”. For if an (n - 1)-cycle of M - A, say, bounds on M but does
not bound in M - A, then it certainly does not bound in (M - A) U (A - F), since the
sets M - A and A - F are separated. In the second place, (4) holds with “=”
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replaced by “<”. To see this, only two cases need to be considered:

Case 1, Let Z be an {(n - 1)-cycle of M - A that bounds on M but not in
(M - A) U(A - F). Then Z does not bound in M - A, a fortiori.

Case 2., Let Z; and Z; be cycles of M - A and A - F, respectively, such that
Zy+Z, ~0 on M but not in (M - A) U (A - F). By hypothesis, Z, bounds on A
(since p,_;(A) = 0) and hence on M. But then Z; must bound on M. Therefore
either Z; # 0 in M- A or Z, # 0 in A - F.

From (1), (2), (3), and (4) it follows that q,_;(M - F) = 0, and since
do(F) = q,_1(M - F), we conclude that F is connected.

It is well known that every locally orientable n-gcm modulo 2 is orientable
modulo 2 [local orientability is defined in [3, p. 281]; that an n-gcm locally orient-
able mod 2 is orientable mod 2 was shown independently by H. B. Griffiths (unpub-
lished) and F. A. Raymond [1]]. Hence we can make the following assertion.

PROPOSITION B. Proposition A continues to hold if, instead of S™, the space
is either a topological closed n-manifold ov a locally orientable n-gcm.

As an application of Proposition B we can give an extremely simple proof of the
following.

PROPOSITION C. If M™ (n > 1) is a topological closed n-manifold (ov a locally
ovientable n-gcm) that is the union of two finite collections {Ai} and {B;} of dis-
joint, closed, (n - 1)-acyclic sets, then M® = A; U Bj for some pair of indices i
and j.

[This result is also stated in [5], but the proof given there is not intrinsic, being
dependent on imbedding in a euclidean space.

Proof. We may suppose the collections {A;} and {B;} reduced in number, if
necessary, so that each is essential to the covering of M™, If either collection then
contains at least two sets, then by Proposition B, three of them would have a com-
mon point. But this is impossible, since the Aj are disjoint and the Bj are disjoint.

It is natural to ask whether the conclusion of Proposition A continues to hold if in
the hypothesis the word “finite” is replaced by “countable”. In this direction, we
first prove the following result.

PROPOSITION D. Let u be a countable coveving of S™ (n > 1) by at least three
(n - 1)-acyclic closed sets Ay, Ay, **-, Ay, -+, each of which is essential to the
coveving. Then, if no three elements of u have a common point, the set

n._ Ui,j AN Aj is a connected, nonempty set; and if the elements of 1 are con-
tinua, then the set Ui,j A; N Aj is itself a connected, nonempty set.

Proof. Since no three of the elements of 11 have a common point, the sets
A; N A; form a countable collection of disjoint, closed sets. Moreover, every such
set A; NA; is (n - 1)-acyclic. For consider the portion

H, _,(A)+ Hn—l(Aj) — H_ _,(A;N A.) — H (A; U A.)

of the Mayer-Vietoris sequence of the triad (A; U Aj, Ay, A) Since A; U A # s”
and since both A; and A; are (n - 1) -acyclic, the extremes of the above sequence
are zero, so that Hn-l(A N A;j) =
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Now S™ U jAj NA; # #, since by a theorem of Sierpinski [2], no continuum is
the union of a countable collectlon of (at least two) disjoint, closed sets. If

st - i,jAiN A were not connected, then it would be the union of two separated
sets S; and S,. Consequently [3, pp. 50, 60], there would exist a continuum K that

is a subset of U i,j AN AJ and separates a point of S; from a point of S, . But,
again by the theorem of Sierpinski cited above, K could not meet more than one of

the sets A; N A; (since K= U i,j KN A; N Aj and the sets KN A; N A; are dis-
joint). But then the particular sét A; N A that contains K would not be (n - 1)-

acyclic. We conclude, then, that S" - i,j Ai N A; is a nonempty, connected set.

Turning to the set U A n A , We observe first that it is nonempty, since by
Sierpinski’s theorem S" cannot be the union of a countable set of at least two closed
disjoint sets A;. Consequently, we have only to show that if the sets A; are con-

tinua, then the set Ui, j A; N Aj is connected. As in the proof above, if the set were
not connected, there would exist in S™ - Ui ,j Ai N Aj a continuum K separating two

points x and y of U j Aj N Aj. But in this case, K would be a subset of a single
A;; for (K NA;)N (K n A; )= K NA;NA; ) =0, and by the Sierpinski theorem cited
above, K could not be the un10n of two or more sets KN A;. Suppose KC A;.

By the Alexander-Pontrjagin duality, a cycle Z,_; of K is linked with the non-
trivial cycle Z;y carried by x and y., Since A; is (n - 1)-acyclic, Z,_; ~ 0 on Ay,
so that at least one of the points x and y, say x, lies in A;.

For some i #1, the point x lies in A; N A;, and A; is a continuum not meeting
K, since KNA; =(KN A;) N A; =K N(A; N A;) = 0. But since every element of 1
is essential to the covering, some point z of A; lies in 8™ - A; . Similarly, the
point y must lie in an A; (j # 1) containing a point w of S” - A;. The set S™ - A,
is an open connected subset of 8", since A; is (n - 1)-acyclic, and consequently the
set A, UA; U AJ- is a connected subset of S™ - K containing both x and y, contrary

to the fact that K separates x and y in S®. We conclude that Ui’ j A; N AJ- is con-
nected.

That the conclusion of Proposition D is realizable is shown by an example. [For
this example I am indebted to Messrs. Andrew C. Connor and William Transue of the
University of Georgia. My original example was more complicated, and its extension
to higher dimensions led to covering elements not (n - 2)-acyclic, while the obvious
extension of the present example yields sets that are acyclic in all dimensions.] We
cover S2 by an infinite collection of closed sets, as we shall describe with the help
of Figure 1. Both the front half (at the left) and the back are shown. The sets
Ay, Ay, A3, -~ are topological disks converging to the arc K; likewise, B;, B;,
B3, +-- are disks converging to the arc L, and K U L forms the 1l-sphere separat-
ing the front and back halves of S2. The elements of the covering U are the Aj,
the B;j, and the individual points p and gq. Analogous decompositions of St for
n > 2 are obvious.

We observe that the above examples establish the following conclusion, in con-
trast to Proposition C.

PROPOSITION E. Every S™ (n> 1) is the union of two countably infinite collec-
tions {A } and {B } of disjoint, closed, r-acyclic sets (r = 0, 1, 2, ++) such that
every A; and every Bj is essential to the covering of sn formed by the combined
collectzon {A }u {B I
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Figure 1.

[ For example, in Figure 1, we may let the sets A; of Proposition E be the sets
A; and Bj of Figure 1 having even subscripts, together with the arc K, while the
sets Bj of Proposition E are the sets A; and B; of Figure 1 having odd subscripts,
together with the arc L.]

Remavrk. Proposition E forms an interesting contrast to the theorem of Sier-
pinski cited in the proof of Proposition D. For whereas no continuum whatsoever can
be the union of a countable collection of (at least two) disjoint closed sets, the eucli-
dean n-sphere S™ (n > 1) is the union of two collections of disjoint, closed sets each
of which is acyclic in all dimensions.

In conclusion, we may ask whether such decompositions are possible for other
manifolds than S™. That such is the case is exemplified by Figure 2. The part
labelled 2a represents the front half of a torus T, and 2b the back half of T. The
sets K; UK, and L; U Ly form meridional circles of T, and Hy UH,, J; U J,
form equatorial circles. The points a and b are endpoints of both arcs K; and K,,
while ¢ and d are endpoints of arcs L; and L;; the endpoints of H; and H; are a
and d, while those of J; and J, are b and c. In 2a, the sets A; are topological
disks; those with subscripts of the form 4n+ 1 (n > 0) converge to K;, those of the
form 4n+ 2 converge to L, those of the form 4n—+ 3 to H;, and those of the form
4n to J,;. In 2b, an analogous decomposition by disks B; is indicated; however,
those with subscripts 4n + 1 converge to J,, those with subscripts 4n+ 2 to H;,
and so forth. The covering of T whose elements are the disks A; and B; together
with the sets {a}, {b}, {c}, {d} has the property that no three elements have a
common point.

The last example raises the question whether the analogue of Proposition D holds
for manifolds more general than the n-sphere. This is in fact the case; moreover,
the proposition holds even for generalized manifolds.

PROPOSITION F. Proposition D continues to hold if “S™” is replaced by “an
orientable n-gecm M?”,
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Figure 2.

Inspection of the proof of Proposition D reveals that if one attempts to apply to
the present case the argument given there, it breaks down at the point (in the second
paragraph) where it is assumed that points of separated sets S 1 and S, are sepa-
rated by a subcontinuum of the complement of S; U S, . Since not all manifolds have
this property of the n-sphere, we need the following lemma.

LEMMA. If M is an ovientable n-gecm, X and Y ave separvated subsets of M,
and x € X and y € Y, then a finite number [not greater than.p (M) + 1] of subcon-
tinua of M - (X U Y) separate x and y.

Since this lemma is a corollary of a more general theorem in a forthcoming
paper, we omit its proof.

Applying the lemma, we can replace the K of the second paragraph of the proof
of Proposition D with a finite collection of continua K;, K5, ***, K., each of which
lies in some A; N A;. By the duality theorem of [4], an (n - 1)-cycle of

m
U j=1 Kj is linked with the nontrivial 0-cycle carried by x and y; this contradicts
the (n - 1)-acyclicity of the A; N Aj.

The remainder of the proof—that Ui,‘ A; N A; is connected if the A; are con-
nected--is not quite so obvious. The K of the third paragraph in the proof of
Proposition D is again replaced by a finite number of continua K;, K,, -, K., by

virtue of the above lemma, and again each K; lies in a single Aj. Suppose K; C Aj.
m
We may assume that U j=1 Kj= K is an irreducible cut of M between x and y, and
by the duality of [4], an (n - 1)-cycle Z,_; of K is linked with the nontrivial 0-cycle
carried by x and y.
The cycle Z,_; is the sum of cycles Zéi,_-l , Where Z%.l-1 is on Kj. Suppose that
zZl 1 ~0in M-x-y. Then Z,_; - Z1_; is in the same homology class as Z,_;

n-1

in M - x - y, and accordingly it is linked with Z3. But this would imply that K - K;
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is a cut of M between x and y, contrary to the fact that K is an irreducible cut of
M between x and y. [See [3, p. 375, Lemma 3.12]; while the lemma cited assumes
that the manifold is 1-acyclic, a reading of its proof reveals that all that is needed
is that the cycle in question bound--which is the case above, since Aj is (n - 1)-
acyclic.] We conclude, then, that Z1_; # 0 in M - x - y. It follows that K; sepa-
rates x and y in M and that K = K;. The proof may now be concluded as in the

corresponding part of the proof for Proposition D.
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