COVERING THEOREMS FOR UNIVALENT FUNCTIONS
E. P. Merkes and W. T. Scott

1. INTRODUCTION

Let M, denote the class of univalent meromorphic functions f(z) in the unit disc
|z| < 1, hereafter called D, such that

(1) f(z) = z+a, 72 + az 73 4 e (az >0)

in a neighborhood of the origin. Any meromorphic univalent function in D can be
transformed into a member of M, by a suitable mapping of D onto itself and a
normalization. Let U; denote the subclass of My containing the functions that are
regular in D, and let S; and C_ denote the starlike and convex subclasses, respec-
tively, of U;. For f € M,, p(¢, f) represents the distance along a fixed ray

arg w = ¢ from w = 0 to the nearest boundary point of the map of D by w = f(z). Put
m(¢) = inf p(¢, f) for f € M, , and similarly define u(¢), s(¢), and c(¢) for the classes
U4, Sy, and C,, respectively. Scott [2] has proved that

u(¢) = 1/2 (0< |¢| <7/2) and uln)=1/4,
and he obtained estimates for u(¢) in the range #/2 < |¢[ < 7. (The class U intro-

duced here is the closure of the class U, used in [2], but it is evident that u(¢) is the
same for U and U;.) In this paper it will be shown that

1/2 = m(¢) = u(p) = s(¢) < c(¢) < n/4 (0 < || <n/2),
0 < m(¢) < u(¢) < s(¢) < c(¢) (/2 < |¢| < m),
0 = m(r) <ul@) = sw) = 1/4 <c(m) = 1/2.

Our principal method of proof is subordination. We use the following elementary
properties of bounded analytic functions: If, in D,

f(z) = byz+byzZ+ -  and |f(z)| <1,
then [1, p. 168]
(2) [bz| < 1-[by]?,
and equality holds if and only if for some real «

b +zeia
(3) f(z) = 2 —— .
1+b;ze?®

If, in addition, f(z) is univalent in D, then [1, p. 224]
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(4) [o2] < 2[b1] (1 - |04,
and equality holds if and only if
(5) i(z) = e K I[|b,| K(zeP)],
where o = 2 arg by - arg b, 8 =arg b, - arg by, and K-! is the inverse of the
Koebe function K(z) = z/(1 - z)2.
2. UNIVALENT FUNCTIONS

If fe My and f(z) # pel? for all z in D, then p > m(¢). Thus the following is a
covering theorem for M,..

THEOREM 1. m(¢) = 1/2 for 0< |¢| < n/2, and m(¢) = |sin ¢| /2 for
/2 <_|¢l < m. For fixed ¢ (0L |¢| <), a function £ € My omits the value
m(¢)ei? if and only if
(0 < |g¢| <m/2),

(6)

(/2 < |¢| <m).

Proof. Suppose f € M; and f omits the value y = pel® . Since (1) holds, the
function

(7) g(Z)=-1_L(f?é—)ﬁ=Z+(az+;}17)z2+m

has a removable singularity at any pole of f(z) in D; that is, it can be defined to be
regular and univalent in D. From the coefficient inequality for such functions [1,
p. 213],

(8) laz + e 1%/p| < 2,

where equality holds if and only if g(z) = z/(1 - el®z)2, Since az > 0,
pl<]az+plei®| <2 (0< |¢| <m/2),
|sin ¢ p~! < [S(az+pte )| <2 (/2L g] <m).

By (7) and (8), equality holds for a fixed ¢ (0 < |¢| < ) if and only if f(z) is the
function (6). Since, for each A > 0, f(z) = z/(1 - Az) is in M;, we conclude that
m(7w) = 0. This completes the proof.

Let M_'|. be the subclass of functions f € My for which (1) holds with a; < 2, and
let m'(¢) = inf p(¢, f) for f € M].

THEOREM 2. m'(¢) = 1/2 for 0< |¢| < 7/2, m'(¢) = |sin ¢|/2 for
7/2 < |¢| < 37/4, and m'(¢) = |sec ¢|/4 for 3u/4 < |¢| < 7. A function f e M}
omits the value m'($)el® if and only if 1(z) is the function (6) when 0 < |¢| < 3w/4
and



COVERING THEOREMS FOR UNIVALENT FUNCTIONS 43

- z 37
®) Hz) = 1 - 2z + e2ipz2 ( z < ol < ﬂ> )

Proof. Since M} C My, m'(¢) > m(¢). Furthermore, for fixed ¢
(0 < |¢| < 3w/4), the function (6) is in M}, which proves that m'(¢) = m(¢) in this
case. An argument like that in Theorem 1 shows that

|2+p’1e'i¢| < |a2+p‘le‘i¢'] < 2

whenever p < -cos ¢/2, since 0<a, < 2 for f € M}.. A simple computation gives
p> 1/4|cos ¢] when 37/4 < Ic,bl < m, and equality holds if and only if f(z) is the
function (9).

Since Uy € M}, u(¢) > m'(¢). When 0 < |¢| < /2, the function (6) is regular in
D, and the same is true for the function (9) when ¢ = 7, so that u(¢) = m'(¢) in these
cases. Since the extremal functions (6) and (9) are not regular in D when
7/2 < |¢| < 7, and since Uy is compact, it follows that u(¢) > m'(¢) in this case.
ThEs]completes the proof of the following corollary, which is contained in the results
of |2]:

COROLLARY 1. u(¢) = m'(¢) for 0< |¢| <u/2, u(¢) > m'(e) for n/2 < |¢| <,
and u(r) = m'(7) = 1/4.
3. SLIT AND STARLIKE FUNCTIONS
THEOREM 3. For fixed veal ¢ (0 < |¢| <) and py > 0, let
(10) f(z)=z+azzz+a3z3+"' (|z|<1, ap > 0)

map the unit disc onto a region that omits pei?® for all p> pg. Then pg > p(d),
where

V3/4 (0< |¢| < 7/2),
(11) p(¢) =

Vi+2[sin¢|/4 (w/2<|¢| < 7).
If, in addition, £(z) is univalent in D, then pg > r(¢), where

1/2 (0< |o| <m/2),
(12) r(¢) =
(1+ |sin ¢|)/4  (@/2<|¢| < 7).

For each ¢ (0L |q5| < 7) theve is a unique function (10) that omits the values on the
slit pei® (p > p(¢)) and a unique univalent function that omits the values on the slit
pei® (p > r(¢)).

Proof. For p # 0 and F(z) = 4pz/(1 + z)%, the inverse function

2
F-Y(w) = 41p+—;v S+
p

maps the complex plane cut along the radial line sgzgment from p to « onto the unit
disc. Thus if f(z) is the function (10) and p = p,e'?,
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-i -i¢ -2i¢
F-lliz)] = 22 1('b+(a?‘& + &2 )z2+---

4 4 2
Po Po 805
maps |z| <1 into itself. By (2) and (4) this implies
14
(13) az+-2—£ < wlpgy),

where p(pg) = 4pg - 1/4p0 or, when f(z) is known to be univalent in D,
p(pg) =2 - 1/2p,. Since a, > 0,

1 _ e‘i¢ e-i¢

200 l“* 2p | S |22 55, | S #eo) (0ol < a/2),
- _i¢

|82120¢| = %(az +zp0 ) < ulpg) (w/2 < | ¢| < m).

This shows that p, > p(¢), where p(¢) is given by (11) and that when £(z) is univa-
lent in D, p, > r(¢), where r(¢) is given by (12).

When the function f(z) of (10) is univalent in D, equality holds in (13) if and only
if F-1[f(z)] has the form prescribed in (5). Then

. . i
(14) i(z) = F{eiaK'l [;1—‘-1)— K(ele)] } = 7+ 2¢1° (1 - I—Z}i—-)zz e,
0

where a + 8 =-¢. For 0 |¢| < 7/2 and py = 1/2, the coefficient of z2 in (14) is
real and nonnegative if and only if

sinB -sin(a+8) = sinB+sin¢ = 0 and cos B-cos¢ >0,

or, equivalently, 8= -¢ and @ = 0. Thus for fixed ¢ (0 < Iqﬁ[ < w/2) we have shown
that py = 1/2 if and only if

(15) f(z) = F{KI[% K(e~i¢z)] } = z/(1 + e~2iP32)

For 7/2 < l¢| <7 and pg =(1+ Isin ¢|)/4, the coefficient of z2 in (14) is real and
nonnegative if and only if

|sin ¢|sin g +sin¢ = 0  and |sin ¢| cos B - cos ¢ > 0O,

or equivalently, 8 = +7/2, where the sign is chosen opposite to that of ¢. Thus
po = (1 + lsin ¢|)/4 for fixed ¢ (w/2 < i¢| < m) if and only if

(16) f(z) = F{tie1?K! [(1 + |sin ¢|)"! K(Fiz)]},

where the upper or lower sign is used according as ¢ is positive or negative.

If univalence is not required for the function f(z) of (10), a similar argument with
the functions (3) replacing (5) yields the extremal functions. We find that p, = v 3/4
for fixed ¢ (0 < |¢| < 7/2) if and only if
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z(1 +V3e-i%z)(1 + e-?z/V3)
(1 +2e1P2/V3 + e-2iP52)2

and that py =v1 + 2 |[sin ¢|/4 = /4 for 7/2 < |¢| < 7 if and only if

f(z) =

b

z(1 +ipz) (1 & iz/p)

f = - . ,
@) = (et Do/nt 1092272

where the upper or lower sign is used according as ¢ is negative or positive.

Since the functions in the second part of Theorem 3 are in U, the following is
obtained from (12):

COROLLARY 2. For 7/2 < |¢| <, u(¢) < (1+ |sin ¢|)/4.

For fixed ¢ (0 < |¢| < w/2), the extremal function (15) and, for ¢ = 7, the extre-
mal function (16) is in S;. When 7/2 < |q5| < m, however, an examination of the map
of D by (16) shows that it is not starlike with respect to the origin. Since S, is
compact, the lower estimate (with strict inequality) in the following result is a con-
sequence of Theorem 3.

COROLLARY 3. For 0< |¢| < /2, s(¢) =1/2;for /2 < |¢| <,
1+ |sin ¢|)/4 < s(¢) < A™M@A-2)N-1/a  (wheve x = |¢| /1),

and s(w) = 1/4.

The upper estimate for s(¢) (7/2 < |¢| < 7) is obtained from the function

z 1+z ) 2r-1
1-z2\1-2z

£(z; A) = (—g<|¢| =m5ﬂ),

which is in S; and maps |z| < 1 onto the complex plane cut along the rays
arg w =+ |¢| from < to the points of modulus 1/4;?»>L (1 - A)l'}‘.

The last two corollaries show that u(¢) < s(¢) for 7/2 < |¢| < 7, but Theorem 2
and Corollary 1 show that u(¢) = s(¢) for all other values of ¢.

Since £(z) and t-1£(tz) (0 <t < 1) are in the same class as f(z) for f(z) in U,
or Si, the curves w = u(¢)ei® and w = s(¢) e'? bound starlike regions that are sym-
metric with respect to the real axis. These regions are not convex in a neighbor-
hood of w = -1/4,

4. HALF-PLANE AND CONVEX FUNCTIONS
Since w = T(z) = 2dz/(1 + e-i?z) maps D onto the half-plane fe-iPw < d, the
method of proof for Theorem 3 can be used to prove the following:
THEOREM 4. [f w=1(z) =z +azz2+ - (ap > 0; |z| < 1) maps the unit disc
into a half-plane Re-idw < d, then d > d(¢), where
V2/2 (0< |¢] <n/2),

d(¢) =
Vi+|sin¢] (@@/2<|¢| <m).

D=
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If, in addition, £(z) is univalent in D, then d > h(¢), where

3/4 (0< |¢] <n/2),
(17) h(¢) =
2+ |sin ¢|)/4  (@/2< |¢| < ).

For each ¢ (0 < |¢| < 7), theve is a unique analytic function (1) that maps D into
N e‘fﬁbw < d(), and a unique analytic univalent function (1) that maps D into
N e-idw < h(e).

The extremal functions in the final statement of the theorem are obtained from
the relation T-![f(z)] = g(z), where d = d(¢) or d = h(¢) in T(z), and the form of
(z) is as specified in (3) or (5), respectively. In the univalent case, except for
‘l"l = 7, the extremal function is not convex, since it maps the unit disc onto a slit
half-plane. However, Theorem 4 applies to all functions of C, and since C_, is
compact, it follows that c(¢) > h(¢) for 0 < |¢| <.

THEOREM 5.
3/4 < cl¢) <m/4  (0< |¢| <n/2),

71|cos¢>l £<| l<ﬁ)
. G 6] -m \2S1P =7 )
Z[|sin¢|+\l3+sin2 o] < c(¢) < .

3m 1
(18) 2 |cos ¢] (T< 4] <77—arcta,n—2-),
1

ol#) = 5 |cos ¢|

('n - arctan% < Iq&l < 71) .

Proof., Computation shows that the lines 9% e-i%w = h(¢), where h(¢) is given by
(17), envelope a region E that is symmetric with respect to the real axis. In the
upper hali-plane, E is bounded

by |w| =3/4 for 0 <argw < 7/2,
by |W - i/4[ =1/2 for m/2 < argw < 7 - arctan 1/2,
and by %tw=-1/2 for 7 - arctan 1/2 < érgw <m.

If fe Cy and Dy denotes the map of D by f, then each finite boundary point of
D¢ has a line of support % e-idw = d, and by Theorem 4, d > h(¢). Since these lines
of support envelope D;, whereas the lines %ie-i¢w = h(¢) envelope E, it follows that
D;f D E. The lower estimates in (18) are now obtained from the polar form for the
boundary of E.

The upper estimates in (18) are obtained from the following functions in C,.:

f(z) = e'i‘i’arctan(ei‘i’z) (0 < l¢| <w/2);

22-1
f(z) = z(ml_ 0 { if:) - 1} (/2 < |¢] = 7™ < 3n/4);
f(z) = z/(1 - z) (3n/4 < |¢| < m).
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The region bounded by w = c(¢) el? is convex, since it is the intersection of a
family of convex regions.

Added in proof. A complete determination of u(¢) has been announced by G. V.
Kuz’mina [ Covering theovems for functions which ave vegular and univalent in the
circle (Russian), Dokl. Akad. Nauk SSSR 160 (1965), 25-28; MR 30, 3204].
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