COVERING THEOREMS FOR UNIVALENT FUNCTIONS

E. P. Merkes and W. T. Scott

1. INTRODUCTION

Let M_+ denote the class of univalent meromorphic functions f(z) in the unit disc |z|<1, hereafter called D, such that

(1)
$$f(z) = z + a_2 z^2 + a_3 z^3 + \cdots \quad (a_2 \ge 0)$$

in a neighborhood of the origin. Any meromorphic univalent function in D can be transformed into a member of M_+ by a suitable mapping of D onto itself and a normalization. Let U_+ denote the subclass of M_+ containing the functions that are regular in D, and let S_+ and C_+ denote the starlike and convex subclasses, respectively, of U_+ . For $f \in M_+$, $\rho(\phi, f)$ represents the distance along a fixed ray arg $w = \phi$ from w = 0 to the nearest boundary point of the map of D by w = f(z). Put $m(\phi) = \inf \rho(\phi, f)$ for $f \in M_+$, and similarly define $u(\phi)$, $s(\phi)$, and $c(\phi)$ for the classes U_+ , S_+ , and C_+ , respectively. Scott [2] has proved that

$$u(\phi) = 1/2 \ (0 < |\phi| < \pi/2)$$
 and $u(\pi) = 1/4$,

and he obtained estimates for $u(\phi)$ in the range $\pi/2<|\phi|<\pi$. (The class U introduced here is the closure of the class U_+ used in [2], but it is evident that $u(\phi)$ is the same for U and U_+ .) In this paper it will be shown that

$$1/2 = m(\phi) = u(\phi) = s(\phi) < c(\phi) < \pi/4 \qquad (0 \le |\phi| \le \pi/2),$$

$$0 < m(\phi) < u(\phi) < s(\phi) < c(\phi) \qquad (\pi/2 < |\phi| < \pi),$$

$$0 = m(\pi) < u(\pi) = s(\pi) = 1/4 < c(\pi) = 1/2.$$

Our principal method of proof is subordination. We use the following elementary properties of bounded analytic functions: If, in D,

$$f(z) = b_1 z + b_2 z^2 + \cdots$$
 and $|f(z)| < 1$,

then [1, p. 168]

$$|b_2| < 1 - |b_1|^2,$$

and equality holds if and only if for some real α

(3)
$$f(z) = z \frac{b_1 + z e^{i\alpha}}{1 + \bar{b}_1 z e^{i\alpha}}.$$

If, in addition, f(z) is univalent in D, then [1, p. 224]

Received August 18, 1965.

This research was supported by the United States Air Force under Grant AF-AFOSR 371-63.

$$|b_2| \leq 2|b_1|(1-|b_1|),$$

and equality holds if and only if

(5)
$$f(z) = e^{i\alpha} K^{-1}[|b_1| K(ze^{i\beta})],$$

where $\alpha=2$ arg b_1 - arg b_2 , $\beta=$ arg b_2 - arg b_1 , and K^{-1} is the inverse of the Koebe function $K(z)=z/(1-z)^2$.

2. UNIVALENT FUNCTIONS

If $f \in M_+$ and $f(z) \neq \rho e^{i\phi}$ for all z in D, then $\rho \geq m(\phi)$. Thus the following is a covering theorem for M_+ .

THEOREM 1. $m(\phi) = 1/2$ for $0 \le |\phi| \le \pi/2$, and $m(\phi) = |\sin \phi|/2$ for $\pi/2 < |\phi| \le \pi$. For fixed ϕ ($0 \le |\phi| < \pi$), a function $f \in M_+$ omits the value $m(\phi)e^{i\phi}$ if and only if

(6)
$$f(z) = \frac{z}{1 + e^{-2i\phi}z^2} \qquad (0 \le |\phi| \le \pi/2),$$

$$f(z) = \frac{z}{1 - 2|\cot\phi|z - z^2} \qquad (\pi/2 < |\phi| < \pi).$$

Proof. Suppose $f \in M_+$ and f omits the value $\gamma = \rho e^{i\phi}$. Since (1) holds, the function

(7)
$$g(z) = \frac{f(z)}{1 - f(z)/\gamma} = z + \left(a_2 + \frac{1}{\gamma}\right)z^2 + \cdots$$

has a removable singularity at any pole of f(z) in D; that is, it can be defined to be regular and univalent in D. From the coefficient inequality for such functions [1, p. 213],

(8)
$$\left|a_2 + e^{-i\phi}/\rho\right| \leq 2,$$

where equality holds if and only if $g(z) = z/(1 - e^{i\alpha}z)^2$. Since $a_2 \ge 0$,

$$ho^{-1} \le |a_2 + \rho^{-1} e^{-i\phi}| \le 2$$
 $(0 \le |\phi| \le \pi/2),$
 $|\sin \phi| \rho^{-1} < |\Im(a_2 + \rho^{-1} e^{-i\phi})| < 2$ $(\pi/2 < |\phi| < \pi).$

By (7) and (8), equality holds for a fixed ϕ ($0 \le |\phi| < \pi$) if and only if f(z) is the function (6). Since, for each $\lambda > 0$, f(z) = z/(1 - λ z) is in M₊, we conclude that m(π) = 0. This completes the proof.

Let $M_+^!$ be the subclass of functions $f \in M_+$ for which (1) holds with $a_2 \le 2$, and let $m'(\phi) = \inf \rho(\phi, f)$ for $f \in M_+^!$.

THEOREM 2. $m'(\phi) = 1/2$ for $0 \le |\phi| \le \pi/2$, $m'(\phi) = |\sin \phi|/2$ for $\pi/2 \le |\phi| \le 3\pi/4$, and $m'(\phi) = |\sec \phi|/4$ for $3\pi/4 \le |\phi| \le \pi$. A function $f \in M'_+$ omits the value $m'(\phi) e^{i\phi}$ if and only if f(z) is the function (6) when $0 \le |\phi| \le 3\pi/4$ and

(9)
$$f(z) = \frac{z}{1 - 2z + e^{2i\phi}z^2} \quad \left(\frac{3\pi}{4} < |\phi| \le \pi\right).$$

Proof. Since $M'_+ \subseteq M_+$, $m'(\phi) \ge m(\phi)$. Furthermore, for fixed ϕ $(0 \le |\phi| \le 3\pi/4)$, the function (6) is in M'_+ , which proves that $m'(\phi) = m(\phi)$ in this case. An argument like that in Theorem 1 shows that

$$|2 + \rho^{-1} e^{-i\phi}| < |a_2 + \rho^{-1} e^{-i\phi}| < 2$$

whenever $\rho \le -\cos \phi/2$, since $0 \le a_2 \le 2$ for $f \in M_+'$. A simple computation gives $\rho \ge 1/4 \left|\cos \phi\right|$ when $3\pi/4 < \left|\phi\right| \le \pi$, and equality holds if and only if f(z) is the function (9).

Since $U_+ \subset M_+'$, $u(\phi) \geq m'(\phi)$. When $0 \leq |\phi| \leq \pi/2$, the function (6) is regular in D, and the same is true for the function (9) when $\phi = \pi$, so that $u(\phi) = m'(\phi)$ in these cases. Since the extremal functions (6) and (9) are not regular in D when $\pi/2 < |\phi| < \pi$, and since U_+ is compact, it follows that $u(\phi) > m'(\phi)$ in this case. This completes the proof of the following corollary, which is contained in the results of [2]:

COROLLARY 1. $u(\phi) = m'(\phi)$ for $0 \le |\phi| \le \pi/2$, $u(\phi) > m'(\phi)$ for $\pi/2 < |\phi| < \pi$, and $u(\pi) = m'(\pi) = 1/4$.

3. SLIT AND STARLIKE FUNCTIONS

THEOREM 3. For fixed real ϕ $(0 \le |\phi| \le \pi)$ and $\rho_0 > 0$, let

(10)
$$f(z) = z + a_2 z^2 + a_3 z^3 + \cdots \quad (|z| < 1, a_2 > 0)$$

map the unit disc onto a region that omits $\rho e^{i\phi}$ for all $\rho \geq \rho_0$. Then $\rho_0 \geq \rho(\phi)$, where

(11)
$$\rho(\phi) = \begin{cases} \sqrt{3}/4 & (0 \le |\phi| \le \pi/2), \\ \sqrt{1+2|\sin\phi|}/4 & (\pi/2 < |\phi| < \pi). \end{cases}$$

If, in addition, f(z) is univalent in D, then $\rho_0 \ge r(\phi)$, where

(12)
$$\mathbf{r}(\phi) = \begin{cases} 1/2 & (0 \le |\phi| \le \pi/2), \\ (1 + |\sin \phi|)/4 & (\pi/2 < |\phi| \le \pi). \end{cases}$$

For each ϕ (0 \leq $|\phi| \leq \pi$) there is a unique function (10) that omits the values on the slit $\rho e^{i\phi}$ ($\rho \geq \rho(\phi)$) and a unique univalent function that omits the values on the slit $\rho e^{i\phi}$ ($\rho \geq r(\phi)$).

Proof. For $p \neq 0$ and $F(z) = 4pz/(1+z)^2$, the inverse function

$$F^{-1}(w) = \frac{w}{4p} + \frac{w^2}{8p^2} + \cdots$$

maps the complex plane cut along the radial line segment from p to ∞ onto the unit disc. Thus if f(z) is the function (10) and p = $\rho_0 e^{i\phi}$,

$$\mathbf{F}^{-1}[\mathbf{f}(\mathbf{z})] = \frac{\mathbf{z} e^{-i\phi}}{4\rho_0} + \left(\frac{\mathbf{a}_2 e^{-i\phi}}{4\rho_0} + \frac{e^{-2i\phi}}{8\rho_0^2}\right) \mathbf{z}^2 + \cdots$$

maps |z| < 1 into itself. By (2) and (4) this implies

(13)
$$\left|a_2 + \frac{e^{-i\phi}}{2\rho_0}\right| \leq \mu(\rho_0),$$

where $\mu(\rho_0)=4\rho_0$ - $1/4\rho_0$ or, when f(z) is known to be univalent in D, $\mu(\rho_0)=2$ - $1/2\rho_0$. Since $a_2\geq 0$,

$$\frac{1}{2\rho_0} = \left| 0 + \frac{e^{-i\phi}}{2\rho_0} \right| \leq \left| a_2 + \frac{e^{-i\phi}}{2\rho_0} \right| \leq \mu(\rho_0) \quad (0 \leq |\phi| \leq \pi/2),$$

$$\frac{\left|\sin\phi\right|}{2\rho_0} = \left|\Im\left(a_2 + \frac{e^{-i\phi}}{2\rho_0}\right)\right| \leq \mu(\rho_0) \qquad (\pi/2 < |\phi| \leq \pi).$$

This shows that $\rho_0 \ge \rho(\phi)$, where $\rho(\phi)$ is given by (11) and that when f(z) is univalent in D, $\rho_0 \ge r(\phi)$, where $r(\phi)$ is given by (12).

When the function f(z) of (10) is univalent in D, equality holds in (13) if and only if $F^{-1}[f(z)]$ has the form prescribed in (5). Then

(14)
$$f(z) = F\left\{e^{i\alpha}K^{-1}\left[\frac{1}{4\rho_0}K(e^{i\beta}z)\right]\right\} = z + 2e^{i\beta}\left(1 - \frac{1 + e^{i\alpha}}{4\rho_0}\right)z^2 \cdots,$$

where $\alpha + \beta = -\phi$. For $0 \le |\phi| \le \pi/2$ and $\rho_0 = 1/2$, the coefficient of z^2 in (14) is real and nonnegative if and only if

$$\sin \beta - \sin (\alpha + \beta) = \sin \beta + \sin \phi = 0$$
 and $\cos \beta - \cos \phi > 0$,

or, equivalently, $\beta=-\phi$ and $\alpha=0$. Thus for fixed ϕ $(0 \le |\phi| \le \pi/2)$ we have shown that $\rho_0=1/2$ if and only if

(15)
$$f(z) \equiv F\left\{K^{-1}\left[\frac{1}{2}K(e^{-i\phi}z)\right]\right\} \equiv z/(1+e^{-2i\phi}z^2).$$

For $\pi/2 < |\phi| \le \pi$ and $\rho_0 = (1 + |\sin \phi|)/4$, the coefficient of z^2 in (14) is real and nonnegative if and only if

$$|\sin \phi| \sin \beta + \sin \phi = 0$$
 and $|\sin \phi| \cos \beta - \cos \phi \ge 0$,

or equivalently, $\beta=\pm\pi/2$, where the sign is chosen opposite to that of ϕ . Thus $\rho_0=(1+\left|\sin\phi\right|)/4$ for fixed ϕ $(\pi/2<\left|\phi\right|\leq\pi)$ if and only if

(16)
$$f(z) = F\{\pm i e^{-i\phi} K^{-1} [(1 + |\sin\phi|)^{-1} K(\mp iz)]\},$$

where the upper or lower sign is used according as ϕ is positive or negative.

If univalence is not required for the function f(z) of (10), a similar argument with the functions (3) replacing (5) yields the extremal functions. We find that $\rho_0 = \sqrt{3}/4$ for fixed ϕ (0 \leq $|\phi| \leq \pi/2$) if and only if

$$f(z) = \frac{z(1+\sqrt{3}e^{-i\phi}z)(1+e^{-i\phi}z/\sqrt{3})}{(1+2e^{-i\phi}z/\sqrt{3}+e^{-2i\phi}z^2)^2},$$

and that $\rho_0 = \sqrt{1+2|\sin\phi|}/4 = \mu/4$ for $\pi/2 < |\phi| \le \pi$ if and only if

$$f(z) = \frac{z(1 \pm i\mu z)(1 \pm iz/\mu)}{[1 + (e^{-i\phi} \pm i)z/\mu \pm ie^{-i\phi}z^2]^2},$$

where the upper or lower sign is used according as ϕ is negative or positive.

Since the functions in the second part of Theorem 3 are in U_+ , the following is obtained from (12):

COROLLARY 2. For
$$\pi/2 < |\phi| < \pi$$
, $u(\phi) \le (1 + |\sin \phi|)/4$.

For fixed ϕ ($0 \le |\phi| \le \pi/2$), the extremal function (15) and, for $\phi = \pi$, the extremal function (16) is in S₊. When $\pi/2 < |\phi| < \pi$, however, an examination of the map of D by (16) shows that it is not starlike with respect to the origin. Since S₊ is compact, the lower estimate (with strict inequality) in the following result is a consequence of Theorem 3.

COROLLARY 3. For
$$0 \le |\phi| \le \pi/2$$
, $s(\phi) = 1/2$; for $\pi/2 < |\phi| < \pi$, $(1 + |\sin \phi|)/4 < s(\phi) < \lambda^{-\lambda} (1 - \lambda)^{\lambda - 1}/4$ (where $\lambda = |\phi|/\pi$),

and $s(\pi) = 1/4$.

The upper estimate for $s(\phi)$ $(\pi/2<\left|\phi\right|<\pi)$ is obtained from the function

$$f(z; \lambda) = \frac{z}{1-z^2} \left(\frac{1+z}{1-z}\right)^{2\lambda-1} \qquad \left(\frac{\pi}{2} < |\phi| = \pi\lambda \leq \pi\right),$$

which is in S₊ and maps |z| < 1 onto the complex plane cut along the rays arg $w = \pm |\phi|$ from ∞ to the points of modulus $1/4 \lambda^{\lambda} (1 - \lambda)^{1-\lambda}$.

The last two corollaries show that $u(\phi) < s(\phi)$ for $\pi/2 < |\phi| < \pi$, but Theorem 2 and Corollary 1 show that $u(\phi) = s(\phi)$ for all other values of ϕ .

Since $\overline{f(\bar{z})}$ and $t^{-1}f(tz)$ (0 < t < 1) are in the same class as f(z) for f(z) in U_+ or S_+ , the curves $w = u(\phi) e^{i\phi}$ and $w = s(\phi) e^{i\phi}$ bound starlike regions that are symmetric with respect to the real axis. These regions are not convex in a neighborhood of w = -1/4.

4. HALF-PLANE AND CONVEX FUNCTIONS

Since $w = T(z) = 2dz/(1 + e^{-i\phi}z)$ maps D onto the half-plane $\Re e^{-i\phi}w < d$, the method of proof for Theorem 3 can be used to prove the following:

THEOREM 4. If $w=f(z)=z+a_2\,z^2+\cdots$ $(a_2\geq 0;\ |z|<1)$ maps the unit disc into a half-plane $\Re\,e^{-i\varphi}w< d$, then $d\geq d(\varphi)$, where

$$d(\phi) = \begin{cases} \sqrt{2}/2 & (0 \leq |\phi| \leq \pi/2), \\ \frac{1}{2}\sqrt{1+|\sin\phi|} & (\pi/2 < |\phi| \leq \pi). \end{cases}$$

If, in addition, f(z) is univalent in D, then $d \ge h(\phi)$, where

(17)
$$h(\phi) = \begin{cases} 3/4 & (0 \le |\phi| \le \pi/2), \\ (2 + |\sin \phi|)/4 & (\pi/2 < |\phi| \le \pi). \end{cases}$$

For each ϕ (0 \leq $|\phi| \leq \pi$), there is a unique analytic function (1) that maps D into $\Re e^{-i\phi}w < d(\phi)$, and a unique analytic univalent function (1) that maps D into $\Re e^{-i\phi}w < h(\phi)$.

The extremal functions in the final statement of the theorem are obtained from the relation $T^{-1}[f(z)]=g(z)$, where $d=d(\phi)$ or $d=h(\phi)$ in T(z), and the form of g(z) is as specified in (3) or (5), respectively. In the univalent case, except for $|\phi|=\pi$, the extremal function is not convex, since it maps the unit disc onto a slit half-plane. However, Theorem 4 applies to all functions of C_+ , and since C_+ is compact, it follows that $c(\phi)>h(\phi)$ for $0\leq |\phi|<\pi$.

THEOREM 5.

$$3/4 < c(\phi) \leq \pi/4 \qquad (0 \leq |\phi| \leq \pi/2),$$

$$\frac{1}{4} \left[|\sin \phi| + \sqrt{3 + \sin^2 \phi} \right] \leq c(\phi) \leq \begin{cases} \frac{\pi \left| \cos \phi \right|}{2(2 |\phi| - \pi)} & \left(\frac{\pi}{2} < |\phi| \leq \frac{3\pi}{4} \right), \\ \frac{1}{2 |\cos \phi|} & \left(\frac{3\pi}{4} < |\phi| < \pi - \arctan \frac{1}{2} \right), \end{cases}$$

$$c(\phi) = \frac{1}{2 |\cos \phi|} \qquad \left(\pi - \arctan \frac{1}{2} \leq |\phi| \leq \pi \right).$$

Proof. Computation shows that the lines $\Re e^{-i\phi}w = h(\phi)$, where $h(\phi)$ is given by (17), envelope a region E that is symmetric with respect to the real axis. In the upper half-plane, E is bounded

by
$$|\mathbf{w}|=3/4$$
 for $0\leq\arg\mathbf{w}\leq\pi/2$,
by $|\mathbf{w}-\mathbf{i}/4|=1/2$ for $\pi/2<\arg\mathbf{w}<\pi$ - $\arctan 1/2$,
and by $\Re\mathbf{w}=-1/2$ for π - $\arctan 1/2\leq\arg\mathbf{w}\leq\pi$.

If $f \in C_+$ and D_f denotes the map of D by f, then each finite boundary point of D_f has a line of support $\Re e^{-i\phi}w = d$, and by Theorem 4, $d \geq h(\phi)$. Since these lines of support envelope D_f , whereas the lines $\Re e^{-i\phi}w = h(\phi)$ envelope E, it follows that $D_f \supset E$. The lower estimates in (18) are now obtained from the polar form for the boundary of E.

The upper estimates in (18) are obtained from the following functions in C_+ :

$$\begin{split} f(z) &= e^{-i\phi} \arctan(e^{i\phi} z) & (0 \le |\phi| \le \pi/2); \\ f(z) &= \frac{1}{2(2\lambda - 1)} \left\{ \left(\frac{1 + z}{1 - z} \right)^{2\lambda - 1} - 1 \right\} & (\pi/2 < |\phi| = \pi\lambda < 3\pi/4); \\ f(z) &= z/(1 - z) & (3\pi/4 \le |\phi| \le \pi). \end{split}$$

The region bounded by $w = c(\phi)e^{i\phi}$ is convex, since it is the intersection of a family of convex regions.

Added in proof. A complete determination of $u(\phi)$ has been announced by G. V. Kuz'mina [Covering theorems for functions which are regular and univalent in the circle (Russian), Dokl. Akad. Nauk SSSR 160 (1965), 25-28; MR 30, 3204].

REFERENCES

- 1. Z. Nehari, Conformal mapping, McGraw-Hill, New York, 1952.
- 2. W. T. Scott, A covering theorem for univalent functions, Amer. Math. Monthly 64 (1957), No. 8, Pt. II, 90-94.

University of Cincinnati and Arizona State University