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AN UPCROSSING INEQUALITY WITH APPLICATIONS
Errett Bishop

The theorem of Lebesgue that a function of bounded variation has a derivative
almost everywhere, the ergodic theorem of Birkhoff, and the martingale theorem
have the common property of being nonconstructive; they are not true in intuitionist
mathematics. (See Brouwer [1] for an example of a function of bounded variation
that does not have a derivative almost everywhere.) This paper developed from an
attempt to save the phenomena. ’

The martingale theorem has in fact already been saved: the upcrossing inequal-
ity of Doob [2, p. 314], which almost trivially implies the martingale theorem, is
(with slight modifications) constructively valid. Moreover, Doob’s inequality con-
tains important information that can’t be gotten from the martingale theorem itself.
Thus to a formalist Doob’s inequality is interesting because it improves the martin-
gale theorem, and to a constructivist it has the additional merit of making empirical
sense.

In this paper we prove an upcrossing inequality (Theorem 1) that stands in the
same relation to Lebesgue’s theorem as Doob’s inequality stands to the martingale
theorem: it is a constructively valid inequality which in the formal system consti-
tutes a generalization of Lebesgue’s theorem. By a very simple argument, Theorem
1 leads to another constructively valid inequality (Theorem 2), which in turn consti-
tutes in the formal system a generalization of Birkhoff’s ergodic theorem. Finally,
by an argument unfortunately not so simple, we derive Doob’s upcrossing inequality
from Theorem 1.

The theorem of Lebesgue, Birkhoff’s ergodic theorem, and the martingale theo-
rem are thus consequences of a single inequality (Theorem 1); regarded in this way,
these theorems gain both depth and empirical validity.

Although, as we have indicated, it is possible to develop our results within a
strictly constructive framework, at present this would lead too far afield; therefore
we stay within the formal system.

Definition 1, For each x in R?2 we let X1 be the abscissa and x, the ordinate
of x, so that x = (x;, x3). For each « in R and x in R?, we define

o0u(x) = x5 - axy.

Definition 2. If x € R2, @, 8 € R, and a < g, then points ul, v1, «-- uk, vk in
RZ2 are said to have property P(x, «, 8) if

x,<up<vi<ud <vi <o <uf <oy,

o)) <ogx), opglv)>opx) (1<i<k).

Definition 3. Let x € R%, a,Be€ R, a <8, TCR?, t e R. Then
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2 ERRETT BISHOP
wx, @, B, T) = sup{k: Tul, vl - uk, vk in I" with property P(x, @, 8)},
and
wlt, @, B, T) = sup{wx, @, B, T): x; = t}.

Definition 4. A finite subset T = {xl, yl, eee, xn, yo} of R2 is elementary
relative to o if

x} = vl <x = yf< o <xp = vh

x<yb (1<i<n), o,&")<ouy) @<i<n-1).

The integer n is called the power of T'.
The following combinatorial lemma underlies our upcrossing inequality.
LEMMA 1. If T is elementary and a < 8, then

() Jot opma <@ -07 23,

Proof. Notice first that the integral exists, because w(t, @, 8, I') as a function
of t is a finite linear combination of the characteristic functions of finite intervals.

If ul, vl, -+, uk, vk are points in T havmg property P(x, a, 8), there is no
loss of generahty in assuming that ul € {x oo, xn}, since, if u1 yJ for some j,
we can replace ul by xJ. Similarly, we may assume that v1 e {y! , e, Y2

We prove Lemma 1 by induction on the length n of I'. In case n=1,
w(x, o, B, T') is either 0 or 1. Consider a value of x for which w(x, a, 8, T') =1,
There exist ul, v! in I' with property P(x, o, 8). By default, ul = x! and v! =y!
Therefore x; < xi . Also, oa(x) > oa(xl), or

X, - axy >x%-ax%.

Similarly
1
- Bx; < y3 - By]-

Subtraction gives the inequality

i 1
B - a)x; > x5 —y%%—(ﬁ—a)xl.
Therefore
1 -1 1 1
0<x1-%x1 < B-a) (yz-x3).
It follows that 0 < x -t< (B - o)l (y2 - Xz) whenever w(t, o, 8, T') = 1. Since

otherwise w(t, o, B, 1") = 0, the integral of w(t, @, B, I') is at most (8 - a)-l (y.Z - x%)
and the 1nequal1ty (*) is valid.

Next assume that n > 1 and (*) is valid for all elementary sets of power at most
n - 1, There are three cases to consider. In case 1,

Taxl) > 0 > 0,(x™) and oyl < v < opgly™).
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For each x, choose points ul, vl, «-« uX, vK in T having property P(x, a, B) for
which w(x, @, 8, I') =k. For 13] < n, write Tj={xJ, yJ}, so that T'j is an ele-
mentary set of power 1. For each i (1 <i<Kk), there exists a unique mteger j=ij(i)
with vl = yJ, and the integers j(1), ---, j(k) are distinct. Because

og(yd) = ogv)) > 0p(x)  and  0ux) < ol < ou®),

the points xi(1) and yJ(l) have property P(x, a, 8), so that w(x, «, 8, ;) > 1 for
1 <i <k. Therefore

wx, a, B, T)=k< Ew(x o, B,l“)
j=1

Taking maxima, we obtain the inequality

wlt, @, B, T) < Ew(taB,I‘)
j=1

Now (*) is valid for I'y, because the power of I'y is 1. Therefore integration gives

(%) Sw(taﬁl‘)dt< Z)Sw(taﬁ,l‘)dt< E(B-a)l(yz-xz)
j=1

In the remaining cases, there exists m (1 <m <n - 1) such that
0a(x™) > 0o(x™¥2) s > 0g(x") and og(y ™Y < op(y™tE) < v < 0p(sR)

but either 0 4(x™) < 0 u(x™"!) or o gly™) > oﬁ(ymﬂf. The case og(y )> o (ymH)
will be called case 2, and the case oa(xm) < 0oExTTY), OB(y ) < O’B(ym +1 w111 be
called case 3.

Consider next case 2. We define @ =T - {:n:m+I , ym+1}. Since I is elementary,
to verify that Q@ is elementary we need only note that

qa(xm+2) S Ua(xm-i-l) —<_ Ua(ym)-

The power of £ is n - 1. By the inductive hypothesis,

m+l m+1)

Sw(t, a, B, Q)dt < B -a)! Z) (yz-xz)-(y - X2

We wish to compare w(x, ¢, 8, I') with w(x, a, B, Q). To this end, choose elements
ul ) vl, «.. uX, vk in T having property P(x, o, 8) with wx, a, B, T =k

(a) If w = x™+l and vi # y™+l for all j, then w(x, o, B, Q) =k

~ () If uwl # x™*L for all j but vi=y™*! for some value of j, replace vi by
¥l =y™m_, Then

b

uj1 < le < ulerl and UB(FJ.) = oﬁ(ym) > Gﬁ(ymﬂ) = oﬁ(vj) > oB(x).
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Thus the points ul , vl, eee, \75, oo vk in © have property P(x, o, 8). Therefore
w(x, a, B, ) =k.

(c) If vi#ymtl for all j, but ulJ = x™*! for some value of j, replace ul by
) = x™*2 | Then

visl <@ <vi and  0,@@) = 0,(x™12) < 0, x™HL) = 04(ud) < 0y(x).

Thus the points ul, v1, ---, §J, ---, v¥ in © have property P(x, @, 8). Therefore
w(x, o, B, ) =k.

(d) If ud =xmtl  yi=ymtl for some j, then w(x, o, B, Q) >k - 1,
w(x, @, 8, T, ,1) = 1. Therefore

wx, a,8,T) =k <wx a B Q)+wkx, a,B, T' 1)
This last inequality therefore holds in all cases. Taking maxima, we see that
w(t, o, B, T) < wlt, a, B, Q) +olt, e, B, T4

Integration now gives the inequality (*):

+@-ayt Gyt -y = -t 2 (v3 - x3).

In the final case, case 3, we obtain © from I' by leavmg out the points x™ and
y™ and replacing xm+1 by the point ¥ = (xm+l x50+ a(x]" o x]")). Since T
is elementary, to verify that @ is elementary we need only note that

m+l ~m+l _ m+l _  om _ m+1 _
Yo, ~% TV, X, - alx) x1)
= yr2n+1 x5 m+l +0 (Xm-l-l) -c (xm) > ym+1 _ x’r2n+1 > 0

and

oo™ ) - 0o @) > 04E&™) - 0o @)

= xP - axP - {xP+ =P - xP) - exP} = 0.

By the inductive hypothesis,
m+l m+l

(ot 0,8,0da<@-0" D 65-x) - 67 -xD+x5 " -5
i=1

= (B - a)_l E (yié - Xiz) - (ylé'n - XZ - XZ m+l1 +X2 +Ol(xm+l Xlin'))
i=1
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n
=@-a) 2 l-xb)- (- ) (0g(r™) - onx™).
i=1
Consider any x in R%. To compare w(x, o, 8, I') with w(x, a, 8, ), choose points
ul, v1, ... uk, vk in I with property P(x, @, B) such that w(x, a, B, I') =k. De-

fine

ul whenever ul # x™ and ui # xmtl,

=1}
I

m+1

Fmtl whenever ul = x™ or ul = x .

m+l1

Define ¥!= v! whenever vl y™, and v!= whenever v = y™, The points u?
y o,

and vi are all in © and satisfy the inequalities
0o < 0y)) < ogx), ogEd) >0 p(vY > opx).
Now Ui < Vil for all i, and ?il < ﬁilﬂ for 1<i<n -1, except when vi=y™ and
uitl = xm+1, In this exceptional case, x; < xJ* and

0ux) = x5 - axy > oa(xm+1) = xrzn+1 - ozxinﬂ,

m)=

og(x) = x, - Bx; < ogly y5 - By .
Subtraction gives the inequality

(B-a)x; > By - axPtlyxptl_ym

m m m+l m+1 m
B-a)x +alx]”-x17 ) +x -y

m+1) -G m).

(B - a)x]"+0,(x oy

Therefore
0< xP-x < (B-0a) og(y™ - og(x™").

Thus, unless x; satisfies this inequality, the points @1, ¥1, .-, ik, ¥k have prop-
erty P(x, ¢, B), so that w(x, @, 8, 2) > w(x, @, 8, I'). Therefore

w(t, a, g, Q) > ok, o, 8, T),

except possibly when 0 < x7* -t < (8 - a)-1 (0 o(y™) = oa(xm+1)), and in any case
wl(t, o, B, 2)> w(t, a, B, T') - 1. Integration gives

Sw(t, a, B, T)dt < (B - a)“l(oa(ym) - oa(xm+l))+ 'Sw(t, a, B, Q)dt

<@B-a)! ?_?1 (y3 - X5).

The inequality (*) has been shown to hold in all cases, and the lemma is proved.

Definition 5. If f is of bounded variation on [a, b], we define
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n
vie) = sup{ 2 (f(yi) - f(xi)): a<x1 <y1 <x2<y2< " <xpn<yn<hb
i=1
The following upcrossing inequality is our main result.

THEOREM 1. If f is of bounded variation and o < B, then the function
w(t, o, B, f) of t is integrable, and

Sw(t, a, B, dt < (8 - @) ' v - aid),

where id is the identity function Xx — X from R to R.

Proof. First consider the case where f is a continuous and piecewise linear
function of bounded variation on a finite interval [a, b]. Here there exist real num-
bers a<r <s gr <s <K oo <r <s < b such that f - a¢id is linear and in-
creasing on each of the 1ntervals [r s; | and is nonincreasing on each of the inter-
vals [s;, r;y1], [a, ry], [s,, b]. For 1 _g i < n we define

xi= (s;, f(ry) +als; - ry), yl=(s;, f(sy).
Write
r = {Xls yl; '"’Xn; yn}-
To see that I' is elementary, note that

(a) yé - X; = f(s;) - f(r;) - a(s; - ry) = £(s;) - @id(s;) - (f(r;) - @id(r;)) > 0

and

) = #(sy) - as; - ((rgr) + @iy - Tipp) - @S541)

(b) 0 ,(5") - 04(x

f(Si) - aid(si) - (f(ri-i-l) - O!id(l‘i_l_l)) Z 0.

Lemma 1 implies that

Sw(t a, B, T)dt < (8- o)™ E(yz-xz)
i=1

n
_ -1 .
= (B-a)t I (is) - £(r5) - als; - r1)) = (B - @) VI - @id).
i=1
To compare w(x, o, 8, I') with w(x, a, 8, f), choose points ul, vl, - uk vk
in the graph of f having property P(x, @, 8) and such that w(x, @, 8, f) = k. The set
of points z' in the graph of f for which

ul <zi <vi and o,(z) < oy@)

is closed. Therefore there exists such a point z1 for which z1 is a maximum, and
o (z) > oa(ul} whenever z is on the graph of f and 21 <z, < vy . If we replace
each u' by the point z', we reduce the argument to the case where o ,(z) > o, (ul)



AN UPCROSSING INEQUALITY WITH APPLICATIONS 1

whenever z is on the graph of f and uil <z;< vil . Similarly, we reduce the argu-
ment further to the case where

og(z) > 04(!) and  oglz) < og(vh)

whenever z is on the graph of f and ui1 <z; < v% . Thus the derivative from the

right of f at ul1 is greater than «, and the derivative from the left of f at vi1 is
greater than 8. It follows that there exist integers j = j(i) and m = m(i) with

u) € [rj, sj), vie ,s_ L
Clearly, sj; < sm . Write e Exj, #1 =y™, Then 1'1'11 < ¥ . Since f'(t) > B> a for
all t € (vi, s ), we have the relations
0 q(2) - 04(x) > 0o(v') - 0g(x) = og(v') - op(x) + (B - @) (v} - x1) > 0
whenever z is in the graph of f and z; € (vil , Sm(i))' Therefore uil+l > Sm(i)» SO
that

~itl i+l _ oo

Also, x; <uj < {1, so that
~1 ~1 ~2 ~2 ~k ~k
x <U; <V <Ay < vy < e <y <V
Moreover,

0@ = 0gx)) = Hr)+ a(s; - ry) - as; = £(r) - ar; < calu) < ogx)

and
GB(\'}'i) = oB(yk) > oB(vi) > oB(x).

Therefore the points 4!, ¥!, ..., Gk, ¥k of I" have property P(x, @, ). Thus
w(x, a, B, T') >k = w(x, a, B, £). Since this is true for all x,

Sw(t, a, B, fdt < S w(t, @, B, T)dt < (B - a) 1vH{ - aid).

Next we consider the general case. Let {tn} be a dense sequence of points in
the domain of f that includes all points of discontinuity of f. For each positive inte-
ger n, let £, be the function whose domain is the smallest closed interval that con-
tains the points t,, -+, t, agrees with f at these points, and is linear on each com-
plimentary interval. By the case already considered,

S w(t, a, B, f)dt < (B - ) Vi, - @id) < (B - a) vt - aid).

For each x in Rz,

w(x, @, B, ;) < = < wlx, @, B 1,) < -
and

lim w(x, o, 8,{ ) = w(x, a, 8, 1).
n-— oo
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Taking suprema, we see that the same inequalities hold for each real number t.
Lebesgue’s monotone convergence theorem now gives the desired inequality:

S wl(t, a, 8, f)dt = lim S wlt, @, B, f)dat < (8 - @)-1 V( - aid).

n-— oo

COROLLARY 1. Let f be a function of bounded variation on R, andlet o and B
be real numbers (o < B). For each t in R, let v(t, a, B, f) be the supremum of all
positive integers k such that therve exist points v1, w2, v2, ««. uk, vk in the graph
of £ with

t<vi <u%§vi‘h< <u11<5v11‘
and
ooul) < oglt, £(t), o g(v}) > oglt, £(t)).

Then

§ v(x, @, B, f)dx < (B - )" VI - aid).
Proof. It is clear that if & is a sufficiently small positive constant, then

vit, @, B, ) < w((t - 6%, £t)+6), @, B, 1) < wlt-62, @, B, ).

The inequality now follows from Theorem 1.

COROLLARY 2. Let f be a function of bounded variation, and let o and B
(@ < B) be real numbers. Then

(ot 1, a, 8, Dat < (8- a1 v(@),

where V(f) is the total variation of f.
Proof. If a > 0, Theorem 1 implies that

S wlt, @, B, Hdt < (B - )l VI - ¢id) < (8 - @)-1vH(H).

If 3<0, then @ <0 also, and w((t, £(t)), o, B, £) = v(t, - B, - @, - ), and there-
fore, by Theorem 1,

§ ottt 1), @, 8, Dat < (B - V-4 @id) < B - ) VH-D KB - ) V).
There remains the case a < 0 < g. Clearly,

w(t, @, B, 1) < w(t, 0,8, and ol o 8, ) < o, @, 0, f).

From the above cases we also see that

g S 0,8 0a < v, -o (o 1), a0, Ha < V1.
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Therefore

B - a) S w((t, £(t)), a, B, f)dt < B S w(t, 0, B, f)dt - a 5 w((t, £(t)), a, 0, f)dt

< V) + vi-1) = v).

As our first application of Theorem 1, we show that a function of bounded varia-
tion has a derivative almost everywhere. Indeed, Theorem 1 and its corollaries can
be regarded as a strong generalization of this fact. They assert that the difference
quotient of a function of bounded variation cannot oscillate too much.

THEOREM (Lebesgue). A function f of bounded variation on a closed intevval
{a, b] has a finite devivative at almost all points x of [a, b].

Proof. Let S be the subset of [a, b] on which the derivative of f from the right
does not exist. Then

U {x € [a, b]: w(x, @, B, f) = =},
a,B

where the union is taken over all pairs «, 8 of rational numbers with @ <. By
Theorem 1, w(x, a, B, f) < «» almost everywhere, so that S has measure 0. Thus
the derivative g of f from the right exists almost everywhere. Let T be the set of
all x for which g(x) =+, Then v(x, 0, n, f) > 1 for all x in T and all positive
integers n. Thus the measure of T is at most

S v(x, 0, n, fldx < n"1V+(f),

and this tends to 0 as n — «. Replacing f by -f, we see that the set of all x for
which g(x) = - also has measure 0. It follows that g is finite almost everywhere.
Similarly, f has a finite derivative h from the left almost everywhere. Thus to each
g€ > 0 there corresponds a 6 > 0 and a measurable set U C [a, b] of measure at
most ¢ with the property that when x € [a, b] - U, then

|f(y)-f(X) g(x)l <eg fx<y<x+26,

|f(y) - f(x)

_— -h(x)|<s if x-26 <y <x.

Thus, if x € [a, b] - U and x+ 6 € [a, b] - U, then

gt - h(x+ 0)] < |gbo - HETOL=I@| |y 5y - 1) - Hxd 6), < 2.

On the other hand,

|h(x) - h(x + 8)| < If(x) —-;(x - 8) (2 f(x + '0‘)2—6f(x -6) flx+ %) - f(x)>l+48 .

Thus |h(x) - g(x)l < 6¢. Since ¢ is arbitrary, it follows that h(x) = g(x) almost
everywhere, as desired.
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Next we apply Theorem 1 to establish an ergodic theorem that gives a precise
bound for the integral of the number of upcrossings of the relevant average.

THEOREM 2. Le! {Tt}t>0 be a one-parameter semigroup of measure-

preserving transformations on a measure space X of total measure 1, and let £ be
an integrable function on X. Let o and B be veal numbers with a < B, and for each

t
x in X let h, be the function h(t) = 5) f(Ttx)dt defined for t > 0. Write

w(x) = w((0, 0), @, B, hy)

for each x in X. Then
foman <@- o § @-artau.

Proof. Let r be any positive constant, and let lgr( be the restriction of h, to
the interval (0, r). By Theorem 1,

Srw((t, hy(t)), @, B, hE)dt < (B - @) ! VI(hi - @id) = (8 - @)~} Sr (f(Ttx) - o) adt.
4] 0
Therefore
S Srw((t, h,(t)), @, B, hy)dtdu(x) < (B - ) lr S(f - a)fdu.
X 0

It is clear that
w((t, h(t)), @, B, hl) = w((0, 0), a, B, h5™Y),

where u = T'x. Therefore

S ! jrw((o, 0), @, B, hi)dtdu(x) = S ot Sr w((0, 0), @, B, hX~t)dtdp(x)
X 0 X 0
-1 i r-t
= ((0, 0), @, B, hy"")du(x)dt
r S\O 'S‘X w X

=1 (70 o, he(), @, 8, WD) du(xat
5,

<@-or! {@-aran.

Now, since w((0, 0), a, B, h;c{) —w(x) as t — o,
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1 (CF t
r- S w((0, 0), o, B, h)dt — w(x) as r — o ,
0

Therefore, passing to the limit in the last equation, we obtain the desired inequality
~ -1 -+
(L omam <@-ot § - o,
X

It is possible to establish variants of Theorem 2, based on Corollaries 1 and 2
of Theorem 1. Thus from Corollary 2 it follows easily that

(wmapt < G- |1l an.

As it stands, Theorem 2 is not constructive, because w(x), and therefore the

quantity S w(x)du(x), is not computable. The correct constructive statement is al-
most, but not quite, that S w(x)du(x) is the least upper bound of a bounded set S of

real numbers, that (8 - oz)'1 S (f - a)+du is the greatest lower bound of a bounded
set T of real numbers, and that s <t for all s in S and t in T.

We conclude with the sketch of a derivation of the upcrossing inequality of Doob
[2] that is fundamental to martingale theory. Our motivation is not to give a better
proof of Doob’s result (we don’t), but to establish the relationship of his result to
Theorem 1.

THEOREM (Doob). Let f1, -, I, be a semimartingale, that is, a finite se-
quence of integrable functions on a measurve space X of total mass 1, such that

( faw< ( faw a<i<i<w,
S S

wheve S is any measuvable subsel of X of the form
S={x1a; <£;(x) <bj, ,a; <fix) <b;}.
Let a < B be real numbers, and for each x in X let w(X) be the number of upcvoss-

ings of the intevval [a, B] by the sequence £,(x), «--, £ (%), that is, the maximum
value of K for which there exist integers

1§u1<v1<°"<uk<vk§n

with fui(x) < o, fvi(x) >B (1<i<Kk). Then
Swdu < @B- a)'l‘g (f, - @) du.

Proof. We first consider the case where each f; assumes only finitely many
values. We show by induction on n that there exists a function g on [0, 1] with the
following four properties:



12 ERRETT BISHOP

(a) g is piecewise linear and continuous on the right, but not necessarily con-
tinuous on the left;

(b) g decreases at each of its finitely many points of discontinuity;

(c) if X =X43 U -+ U Xy is the decomposition of X into the sets on each of which
each of the functions f;, -+, f, is constant, then [0, 1] can be partitioned into dis-
joint subsets I;, -+, Iy, each being a finite union of intervals, such that
n(Xy) = ]Ik| and such that g' is constant on I with g'(t) = {,(x) for all t in § and
all x in Xy;

(d) for all points t of I, except for a subset of arbitrarily small measure,
there exist t <t, < --- <t; <1 such that the numbers

(t; - t) (gl -gt)) (@A <i<n)

are arbitrarily near to the numbers fl(x), .-, f,(x), respectively, where x is any
point in X1.

We first construct g for n = 1. For this it suffices to let g be any continuous
piecewise linear function on [0, 1] such that g' assumes the same values as fj,
with the same probabilities.

Assume next that we have constructed a function g satisfying (a), (b), (c¢), and
(d) relative to the semimartingale f;, -+, f,. We wish to construct a function G
that satisfies (a), (b), (c), and (@) relative to the semimartingale f;, **-, f,4+1. To
this end, we decompose each of the sets I into very many small subintervals. Let
[a, b] be such a subinterval of I),. We obtain G by modifying g on each of the in-
tervals [a, b] as follows. First, G is piecewise linear on [a, b] and continuous on
[a, b), with G(a) = g(a) and G(b) = g(b). Second, the values that G' assumes on
[a, b] are the same as those that f,,;; assumes on Xy, and if f,;] assumes the
value v on Xy with probability p, then G' assumes the value v on [a, b] with
probability p. It is clear that G satisfies requirements (a) and (c). To verify (b),
consider the behavior of G at the possible discontinuity b.

We have the relation

b
lim G() = G+ | G'xax = g@)+ b -a) (Dt |
t—b a Xk

1 b
> g(a) + (b - 2) (L))" fX fodu =gl + | g'G)dx > g(b) = Gb).
k a

Thus (b) is satisfied by G.

To verify that G satisfies (d), note first that by making the intervals [a, b] small
enough, we bring G uniformly close to g. Thus to verify (d) we need only note that
for all except finitely many points t of [a, b], the derivative G'(t) exists and equals
f.+1(x), where x is any point in X, at which f ,;(x) = G'(t).

This completes the construction of g. By (b) and (c),

ve - aid) = 51 (e'(x) - @)t dx = S @ - oy au .
0

Also, by (d), for all t in I, except on a set of arbitrarily small measure,
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V(t’ o, B, g) Z Q)(X),

where x is any point in X;.. Therefore, by Corollary 1,
Swdu < (8- o) vt - aid) = S £, - o)au .

Now, in the general case, it is easy to approximate the given semimartingale
fi, =--, £, by a semimartingale hy, ***, h,, on the same space X, in which each of
the functions h; assumes only finitely many values, in the sense that for every x in
X either hj(x) and f;(x) are very close together or are both very large with
|hi(x)| < |fi(x)| . Thus the general result follows by approximation from the special
case already obtained.
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