UNILATERAL VARIATIONAL PROBLEMS
WITH SEVERAL INEQUALITIES

J. Warga

1. INTRODUCTION

~ In a previous paper [6] we have considered nonparametric problems of the

calculus of variations in which the “controls” are chosen from a compact Hausdoriff
space and the admissible curves satisfy given boundary conditions and are restricted
to lie in a closed set A = {x € E, | a(x) < 0}. Here E, denotes euclidean n-space,
and a(x) is a prescribed continuous function on an open subset of E, with continuous
first- and second-order partial derivatives. We shall now extend the results of [6] to
the more general problem in which the set A is defined by the simultaneous inequali-
ties ak(x) < 0 (k = 1, *--, m) and the functions ak(x) (k = 1, -+, m), defined over an
open subset of E, , are twice continuously differentiable.

We shall describe the problem in greater detail and state our assumptions in
Section 2. Our basic results are contained in Theorem 3.1, which generalizes
Theorem 3.1 of [6] and states that, in a large class of unilateral control problems,
there exists a “relaxed” (or generalized) minimizing curve, that this curve can be
approximated by solutions of the differential equations of the original problem, and
that this relaxed curve satisfies “constructive” necessary conditions for a minimum,
including two that are analogous to the Weierstrass E-condition and transversality
conditions.

We carry out the proof of Theorem 3.1 in the remaining sections of the paper.
Large parts of the proof, especially those contained in Sections 4 and 7, differ only
in small details from the arguments of [6].

We refer the reader to [6, Section 1] for a brief discussion of prior work in this
general area by Young [8], McShane [3], Filippov [1], Warga [4], and Gamkrelidze [2].

2. STATEMENT OF THE PROBLEM AND ASSUMPTIONS

Let R be a compact Hausdorff space, E, the euclidean n-space, T the closed
interval [t,, t;] of the real axis, V an open set in E_, and B, and B; closed sets
in V. We are also given a function

g(x, t, p) = (g(x, t, p), -, g"(x, t, p))

from VX T X R to E, and a function a(x) = (al(x), -+-, a™(x)) from V to E_.

Let G(x, t)= {g(x,t, p)| p € R} (x € V, t € T), and let F(x, t) be the convex
closure of G(x, t).

We define an oviginal admissible curvve with rvespect to a(x) as any absolutely
continuous function x(t) from T to V such that, for some function p(t) from T to R,

(2.1.1) dax(t)/dt = x(t) = g(x(t), t, p(t)) a.e. in T,
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or equivalently,

(2.1.1 Orig.) x(t) € G(x(t),t) a.e. in T

and

(2.1.2) x(to) € By, x(tl) € By,
(2.1.3) ak(x(t)) <0 (k=1,2, ', m;teT).

We similarly define a relaxed admissible curve with respect to a(x) except that re-
lation (2.1.1), respectively (2.1.1 Orig.), is replaced by

(2.1.1 Relaxed) x(t) € F(x(t), t) a.e. in T.

An original (respectively, relaxed) minimizing curve with vespect to a(x) is a
curve that minimizes the value xl(tl), among all original (respectively, relaxed) ad-
missible curves with respect to a(x).

We now state our basic assumptions.

Assumption 2.2, There exist a finite or denumerable collection of disjoint
(Lebesgue) measurable subsets T, (r =1, 2, ---) of T whose union T' has measure
|T| =t; - ty, positive constants c; and €, , a function €(h) (h > 0) converging to 0
as h — +0, and a compact set D C V such that the following five conditions are
satisfied.

(2.2.1) The functions gi(x, t, p) and agi(x, t, p)/ax) (i, j =1, +--, n) exist over
V X T' X R, and over that set they are continuocus functions of (x, t), uniformly in p,
and continuous functions of p for each (x, t); furthermore,

letx, t, p) - alx, t', p)|| < e(|t - t'])

pro:ided t and t' belong to the same set T, (where |g| = ||(g!, -, g
= 2 |g*)).
i=1
(2.2.2) |ex, t, p)|| <cp and |ex(x, t, p)|| < c; on VX T'xR; here gy is the
n
matrix (3gl/exd) (i, i=1, -, n), and |g.ll = 27 |agl/oxi].
i,j=1
(2.2.3) The functions
k 2 _k
k), 220 Tal) gy oy y=1, e, )
axt ox'ox’
exist and are continuous on V; furthermore,
la¥] <e;,  fagl <ey,  Jazgl <er =1, -, m);
n k Dok
here af is the gradient of a¥, | ak| = Zi 92 1| and aig = Zi g’ 5{7.
J= J=
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(2.2.4) There exists at least one relaxed admissible curve with respect to a(x).

(2.2.5) All relaxed admissible curves with respect to (al(x) - €y, ", a™(x) - £1)
are contained in D.

As in [5] and [6], we shall replace relation (2.1.1 Relaxed) by an equivalent system
of differential equations. We shall also replace relation (2.1.2) by a relation involv-
ing only convex sets. To do so, we restate the definitions of proper representations
of F(x, t) and of By and B, introduced in [6].

Definition 2.3. A function f(x, t, ) from VX T XS to E, is a proper repre-
sentation of F(x, t) if
(2.3.1) F(x,t) = {f(x,t,0)] 0 €S} (xeV,teT);

(2.3.2) for every absolutely continuous curve x(t) satisfying (2.1.1 Relaxed),
there exists a function o(t) from T to S such that

x(t) = f(x(t), t, o(t)) a.e. in T,

and for all xe V and almost all t e T, £(x, t, 0(7)) is a (Lebesgue) measurable
function of 7 on T

(2.3.3) fi(x, t, o) and afi(x, t, 0)/oxJ (i, j=1, -, n) exist and are continuous
functions of (x,t) on VX T' for every ¢ in S;
(2.3.4) 1£(x, t, o) < ¢ and | £x(x, t, o) < cjyon VXT'XS;
(2.3.5) the set
H(x, t, a) = {({(x, t, 0), f;f(x, t, o)a)| o e s}
in E, X E;, is compact and convex for every (x, t, @) € VX T'X E,, (here f;f is the

transpose of the matrix f,).

Definition 2.4. Let B C E,. We shall say that (C, c(£)) is a proper represen-
tation of B at x if

(2.4.1) C is a compact and convex set in some euclidean space;
(2.4.2) c(£) is a continuous and continuously differentiable function from C to B;
(2.4.3) x=c(&) for some £ € C.

All of the conditions stated in the Definitions 2.3 and 2.4 are directly verifiable,
except for condition (2.3.2). We therefore indicate two methods of constructing
proper representations of F(x, t).

2.5. The Filippov representation. Let S be a compact set in some euclidean
space, and let f(x, t, 0) be continuous on V X T' X S and satisfy conditions (2.3.1),
(2.3.3), (2.3.4), and (2.3.5). Then condition (2.3.2) follows from a lemma of Filippov

[1, p. 78].
2.6. The Young vepresentation. Let S be the class of probability measures

defined on the Borel subsets of R, and let £(x, t, o) =5 g(x, t, p)do. Then condi-
R

tions (2.3.1) to (2.3.4) follow from Assumption 2.2 and from [4, Theorem 4.1, p. 124].
Condition (2.3.5) is easily verified, since S is a convex set and f(x, t, o) is linear
in o.
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3. EXISTENCE OF A MINIMIZING CURVE. NECESSARY CONDITIONS
FOR A MINIMUM,

THEOREM 3.1. Let Assumption 2.2 be satisfied. Then there exists a curve
x(t) that is a velaxed minimizing curve with respect to a(x), and this curve can be
uniformly approximated by solutions of the diffevential equations (2.1.1).

Let f(x, t, 0) be a proper representation of F(x, t), let (C;, c;(£;)) be a proper
representation of B; at x(t;) (i =0, 1), and let

z5 = {teT|a=xw) =0} k=1,-,m), z= Uz
0=1

K(t) = {k[a&x(@) = 0} (¢t eT).
Finally, let 6; = (61 , 67, =+, 67) (i=1, =, n), wheve 6] = 0 (1 #j) and 6% = 1,
Then either

(38.1.1) theve exist a point 51" in C, and numbers v*?, vE (k € K(t,)) such that

cié]) = x(t;), ¥*>0, >0 (keK(), v*+ 2 yl=zo,
2eK(ty)

and

(7a61+ 2J Vﬂaf{(X(tl)))'cl,g(E"l‘)E"{

L€K(t,)

= Min ('ya 6, + 27 'yﬂai(x(tl))> ‘¢ g(ijik) £
£,€Cy LE€K(ty) ’
(where ci’g is the gradient of ci and Cy,t= (ci,g, oo c’f,g)), or

(3.1.2) there exist a function o(t) from T to S, a function
p(t) = (), ==, p™()
Sfrom T to E_,, a function z(t) from T to E,_, a closed subset M of Z, points

g’(‘; € C, and !;’i‘ €C,,anda nonnegative number vyl such that
(3.1.2.1) pk@t)>0 (k=1, *-, m) and |z@®)|| + [|n@) ]| >0 ¢t € T), where
m

lew] = Z |ul®];
2=1

(8.1.2.2) =z(t) is absolutely continuous on every closed subintevval of T - M;

(3.1.2.3) for every k (k =1, ---, m), uK({t) is nonincreasing on every subinter-
val of T - M, pk(t) is constant on every subintevval of T - M - Z¥, and

pk(t, ) a*(x(t)) = 0;
(3.1.2.4) x(t) = £(x(t), t, o(t)) a.e. in T, and

2(t) = -f(x(t), t, o®)zt) - 2 pl@)blxw), t, o) a.e.in T - M,
£=1



UNILATERAL VARIATIONAL PROBLEMS 453

where

b4

k k
K ok x_{ob b
b (xy t, 0) = a-x(x) * f(xy t, G), bx - (axl ) axn )J

f ;:5 denotes the transpose of the matvix f.,

z(t) =0 = (0, -, 0), pME) =0 & ¢K(E) forteM,

zZ(t -0) = lim z(7) =0 and pXt-0)=0 (k¢ K()
T >t

T<t
if t € M and t is the vight endpoint of some open subintevval of T - M;
(3.1.2.5) (the Weiersirass E-condition)

v(t) - £(x(t), t, o(t)) = Min v(t)-£(x(t), t, ) a.e. in T,
o€s

where v(t) = z(t) + 2 pl(t)al(x(t));
2=1

(3.1.2.6) (support (transversality) conditions)
) (£]) = x(t)),  cy(&}) = x(ty);

(3.1.2.6.1) v(tg)-Co,; (E5) 5 = Min v(ty)-cq £(£8) £
‘EOECO

(3.1.2.6.2) (/' 6, - z(t))) c; £(E])EF = gMelg (6, -at))cy,e(ED &
1 1

(3.1.2.7) theve exists a point t§ in T (t§ <t,) such that |v@®)]| #0 (tf <t <t))
and

either t’g = tO’

m
or th € Z and z(t}) = - 27 ')_/ﬂaﬁ (x(t})) for some numbers y* > pk(t§)
2=1
(k € K(t3)) and v* = p*E§) k ¢ K(t)),

or tg € Z and | 2 )—/Qa}% (x(t3)) | =0 for some numbers y% (x € K(t}))
LeK(td)
such that y* > 0 and 27 7% = 1;
LeK(td)

(3.1.2.8) _if theve exists a negative number B such that, for every subset K of
{1, 2, *=-, m}, the relations

xeV, teT, a"x)<0 (k¢K), a*x)=0 (ke K), y5>0 keK), 2 %=1

fLeK
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imply Min 27 'yﬁaf;(x) -f(x, t, 0) < B, then the set M is emply or contains the
0€S feK
single point t .

3.2. We shall complete this section by discussing briefly the meaning and inter-
pretation of some of the statements in Theorem 3.1.

The alternative (3.1.1) applies in all cases where the only true limitations on the
minimization of x! (t;) are imposed by the conditions

x(t;) e By and x(t;))eA={xeE,|a¥x) <0 k=1, -, m}.

If the point x minimizes x! on B; N A and if this point can be “reached” at time
t; by each curve of a large family of curves y(t) such that

y(tg) € By, yit) e A (teT), y(t) € F(y(t),t) a.e. in T,

then clearly no more precise information about the nature of such curves can in
general be expected.

Consider now the case where the alternative (3.1.2) holds. If an interval I is
contained in T - Z, then pu¥(t) (k =1, ---, m) is constant on I, by (3.1.2.3). It fol-
lows then easily from (3.1.2.4) that '

(3.2.1) ¥(t) = -fi(x(t), t, O(t)v(t) a.e. in I,

m
where v(t) = z(t) + 2 p,ﬁ(t) aﬁ(x(t)).
£=1
Let us now designate as an avc of ar extremal any absolutely continuous curve
(y(t), w(t)) in E, , defined over some subinterval J of T, such that, a.e. in J,

wit) 20, J(t) = £y(t), t, o(t), Wlt) = -£.(y(t), t, o) w(t),

w(t) - £(y(t), t, o(t)) = Min w(t)-i(y(t), t, o).
O€ES

It was shown in [5, Theorem 6.1, pp. 142-143] that if x(t), the relaxed minimizing

curve with respect to a(x), is contained in the interior of A, then (x(t), v(t)) is an
arc of an extremal. We now observe, as a consequence of (3.1.2.4), (3.1.2.5), and

(3.2.1), that the curve (x(t), v(t)) is an arc of an extremal over each subinterval of
T - Z, that is, over each subinterval I of T for which x(t} is contained in the in-

terior of A.

Next we make a few remarks about the set M. Assume, for the sake of simpli-

city, that the set T' of Assumption 2.2 is the entire set T, so that f(x, t, 0) is con-
tinuous in t on VX T X S. It will be shown in Lemma 6.5 that

2 ple)alxw)ix®), t, 0) > 0
2 eK(t)

forall 0 e S andallte MNT', t>t;. It follows then that if t>tp and t € M,
then there exists no value of o for which axk(x(t)) f(x(t), t, 0) <0 (k € K(t)) and
af(x(t)) f(x(t), t, 0) < 0 for some ¢ € K(t). Thus no choice of a control @(t) can be
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made in the vicinity of a point t (t € M, t > ty) that would permit the trajectory to
re-enter the interior of A other than tangentially to the boundary of A. In other
words, at any point t of M, t > ty, the conditions (2.1.1 Relaxed) and (2.1.3) are
barely consistent. It follows, however, from statements (3.1.2.8) that such “near
conflicts” between conditions (2.1.1 Relaxed) and (2.1.3) are impossible if the as-
sumption of (3.1.2.8) is satisfied.

Finally, we shall make a brief comment about statement (3.1.2.7). K, at any
point t, the vector g

v®) = 2@ + 2 pi®alex®)
£=1

vanishes, then the functions z(t) = z() and pX(t) = pX@®) o <t<i, k=1, -+, m)
satisfy conditions (3.1.2.4), (3.1.2.5), and (3.1.2.6.1) on [tg, t]. Moreover, the gen-
eralized Weierstrass E-condition (3.1.2.5) and the support condition (3.1.2.6.1) are
then trivially satisfied. This reflects the fact that, in many unilateral problems, a
minimizing unilateral curve may be quite arbitrary within a certain subinterval of
T, but may be uniquely determined over some interval [t"a, t;]. In fact, as we ob-
served in discussing the alternative (3.1.1), the entire unilateral minimizing curve
may, in some cases, be chosen rather arbitrarily.

4. Q-MINIMIZING CURVES

4.1. We now proceed to derive the proof of Theorem 3.1. As in [6], our approach
will be to consider first the problem of minimizing x!(t,) subject to condition (2.1.1
Relaxed), to a slightly modified form of condition (2.1.2), and with condition (2.1.3)
(a¥(x(t)) <0 for k=1, ---, m; t € T) replaced by the weaker condition

ak(x(t)) < 0 (k=1,-, mteQ),

where Q is a finite subset of T. We next consider a sequence of such problems for
ever denser nested sets Qg (s =1, 2, ---) that converge to a denumerable dense sub-
set of T. The basic statements of Theorem 3.1 are then derived by a passage to the
limit as s — « over appropriate sequences of the positive integers.

It follows from Assumption 2.2 and from [4, Theorem 3.3, p. 123] that there
exists a curve y(t) that is a relaxed minimizing curve with respect to a(x). Let
f(x, t, o) be a proper representation of F(x, t), and let (C;, c;(£;)) be a proper
representation of B; at y(ty) (i=0, 1).

Consider a finite set Q= {7, 7,, **, Tq}, where
tg =T < T <7y <7< Tg =t1, T -7/ (=0, -, 0),

and where €£; and c; are defined as in Assumption 2.2, Let u4(t) (i=1, >, q) be
the characteristic function of the interval [tg, 7;] in T; that is, let uj(t) = 1 for
tg<t< 7 and uy(t) =0 for 7; <t<t) (i=1,2, -, q). Let Tp e T, let .
(Cp, €o(Zp)) be a proper representation of some subset B of V at some point ¥ € B,
and let #(f,) be the set of indices i such that 1 <i<gq and T; € QN (EO, t)). We
shall call an absolutely continuous curve x(t)N(t € ﬁ'o, t,]) a Q-admissible curve

&‘0’ C EO(EO)) if there exist points EO,Q € C, and 'El,Q € C., a function o(t)

0’ 1°
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from [Ty, t;] to S, and absolutely continuous functions n;(t) = (ni(x), -, 7" (t))
(i€ #(,)) from [ty, t;] to E_, such that

() = £(x(t), t, 0(t)) a.e. in [ty, t;],
15(t) = ak(x(t) - £(x(t), t, o (t) u ) = b (x(t), t, o (t)u,t)
(4.1.1) a.e. in [ty,t;] (e #&); k=1, -+, m),
x(ty) = colEp, o), nkltg) =akcyEy o)) (i€ #hy); k=1, -, m),
x(t)=cy6y,q), mE)<0 (e g k=1, -, m),

where bk(x, t,0)= a.i(x) -f(x, t, 0) and afc is the gradient of a¥(x).

We observe that 77?('31) = ak(x(r;)) (G € J(E'o); k=1, *»-, m), hence aX(x(t)) <0
(k=1, -+, m) for t € QN (y, t,).

A Q-minimizing curve (Fo, 60 , 8’0(50)) is a Q-admissible curve (‘E'o, 60, Eo(g-"o))
that minimizes, among all such curves, the value x! (ty).

We can easily verify (see (2.2.3), (2.3.1), (2.3.4), (2.4.2), and (2.4.3)) that any Q-
admissible curve (tg, Cg, co(£g)) is a relaxed admissible curve with respect to
(al(x) - &1, *--, @™ (x) - £1) and that it is therefore contained in the compact set D
(see (2.2.5)). Furthermore, there exists at least one Q-admissible curve
(tg, Co, co(£0)), namely y(t), the previously mentioned relaxed minimizing curve
with respect to a(x). It follows then, by [4, Theorem 3.3, p. 123], that there exists a
Q-minimizing curve (ty, C,, co(£,)).

We may now consider a sequence of successively finer sets Q1 C Q2 C --- that
become everywhere dense on T. Specifically, for s =1, 2, ---, let

-1}3

where s; is sufficiently large so that 2 °1 (t; -tg) <e1/cy. As was just shown, for
each s (s =1, 2, --+) there exists a curve x(t) (t € T) that is a Qg-minimizing
curve (t0 » Co» co(go)), and each of these curves is contained in the compact set D.
Then, by [4, Theorems 3.1 and 3.2, pages 119 and 122], Assumption 2.2, and Defini-
tions 2.3 and 2.4, there exist an infinite sequence P of integers, an absolutely con-
tinuous curve x*(t) (t € T), and a function ¢ (t) from T to S such that the curves
x.(t) (s in P) converge uniformly to x*(t) over T and, furthermore,

-S- +
Qs = {to+k2 "ty -tg) | k=1, 2, -, 27771

x*(t) = f(x*(t), t, o(t)) a.e. in T,
(4.1.2) x*(t) e D (teT),

x*(ty) = co(£F), x*(t;) =c,(&%) for some &} € C, and some £ € C;.
LEMMA 4.2. The curves x4 (t) (s in P) satisfy a uniform Lipschitz condition

on T, and the curve x*(t) is a relaxed minimizing cuvve with vespect to a(x).

Proof. The first part of the lemma follows directly from (4.1.1) and (2.3.4).
Since the sets Qg become everywhere dense on T, it easily follows that a¥(x*(t)) < 0
(teT; k=1, -, m). Thus, by (4.1.2), x*(t) is a relaxed admissible curve with re-
spect to a(x). Furthermore, as previously observed, the curve y(t) (which is a
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relaxed minimizing curve with respect to a(x)) is also a Qs—admlss1b1e curve
(tg, Co, col&p)) for every s, hence xs(tl) <ylt;) (s =1, 2, ---), implying

x*1(t;) < yl(t;). This proves that x*(t) is a relaxed minimizing curve with respect
to a(x).

We now investigate certain properties of Q-minimizing curves.
LEMMA 4.3. Let x.(t) be a Qg-minimizing curve (tg, Cq, co(£)) for a fixed s,
let

= {te Q.| a"x, ) =0} (k=1,--,m),

m

and let Zg = U Zg. Then eithev there exists a point & o in Cy such that
£=1

c1(é1,s) = x,(t))  and  c] p(&, )& = Min cfglE; )&,
£1€C)

(whevre C1,£= (c%,g, oee c’f,g) and cil,g is the gradient of cil(gl) (i=1, >, n)), or
theve exist a nonnegative numbeyr 'yé , points ‘50, s in Co and &y 5 in Cy, a function

og(t) from T to S, a set Lig C Zg, and functions z4(t) and u4(t) from T to Ep and
E_,, vespectively, such that

(4.3.1) x4(tg) = colég,s) and  x4(t1) =ci(é,5);
(4.3.2) pX@) >0 and |z @] + e @[] >0 SforteT andk=1, -, m
(wheve ||z|| = 20 |2} and |u| = 22 [uﬂl);
i=1 =1

(4.3.3) zg(t) is absolutely continuous on any closed subinterval of T - Lg, and
zg(t) is continuous from the left on T;

(4.3.4) for each k (k=1, **-, m), uk(t ) = 0, and on every subinterval of T - Lg,
(t) iS a nonincreasing step functwn continuous from the left, with no discontin-
uztzes except possibly at points of ZS 5

(4.3.5) zg(t)=0=(0, -, 0) (t € Ly) and pit)-akxt)=0 =1, -, m;
t € Lg);
(4.3.6) x4(t) = f(xg(t), t, o4(t)) a.e. in T,

m
24(t) = - £ (x4(t), t, 04(t) zg(t) - 2 .uﬁ(t)bf;(xs(t), t, o04(t) a.e. in T,
2=1
where f;f is the transpose of the matvix f, and bk(x, t, o) = ai(x) -f(x, t, 0)
(k=1, -, m);
(4.3.7) vg(t)-£(x4(t), t, o4(t)) = Min v(t)- £(x.(t), t, o) a.e. in T, where
O €S

vet) = zs®) + 2 plit)alxs@) t e T);
2=1
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(4.3.8) Vs(to)'co,g(go’s)go,s = Min Vs(to)'co,g(io,s)go;
§0€Co
(4.3.9) (16, -z,(6))) ¢ £(E) DE, | = in 0Lo) -z ) ey e(5) ) E,
€C
wheve &, = (6{ , **, 87), 6% =1, and 6f = 01(j =12, s, n).
Proof. Let us write x(t), o(t), z(t), p(t), v(t) instead of xg(t), <+, vg(t). In Sec-

tion 4.1 we showed that x(t), a Qg~-minimizing curve (tg, Co, co(£g)), exists and is
contained in the compact set D. I follows then easily from relations (4.1.1) that

. sy1+s
) (i=1,2,--,q=21"-1;teT; k=1, -, m)

also exist, and that 7;(t) = a(x(t)) on [t,, 7;] and #;(t) = a(x(7;)) on [7;, t;]. Thus
for the problem defined by relations (4.1.1), the curve (x(t), n;(t), -, nq(t)) is a re-
laxed minimizing curve in the sense of [5, Theorem 6.1, p. 142] (where V is re-

placedby V XV, A=DXDy,, Vp =1, XIzX XI5 (q times),

Dy = Ry XR, X+« X R, (q times),

R, is the range of a(x) for x € D, and I, is a bounded open m-dimensional interval
containing R,). After some manipulation, it follows then from [5, Theorem 6.1, p.
142] that either there exists a point £ s in C; such that

. 1
(4.3.10) c;(&;,¢)=x(t;) and C%,g(‘él,s)"él,s = Min cj g(§; ) &1,
or there exist a nonnegative number yg, points &g 5 in Cg and £; 5 in C;, and
absolutely continuous functions z(t), v;(t), -, vg(t) from T to E, E,, -+, E,
respectively, such that

q
4.3.11)  Jz@)] + 2 |y,@®] #0 (e T);
i=1
x(t) = £(x(t), t, o(t)) a.e. in T,

m q
(4.3.12) 2(t) = - £ (x(t), t, o) z(t) - 2 bi(x(t), t, o(t) 2 Vit)u,t) a.e. in T,
* =1 i=1
yt)=0 (i=1,2, ++,q) a.e.in T;
(4.3.13) v(t)-f(x(t), t, o(t)) = Min v(t)-f(x(t), t, 0) a.e. in T,
OES
m q
where v(t) = z(t) + 2 al(x(t)) 2 vl(t)u;t);
£=1 i=1

(4.3.14) 00(50’5) = X(to) and V(to)' CO’g(}SO,S)gO’S = Min V(to) ‘ CO,‘E(&O’S)EO A
£0€C0

: cl(gl’ s) = X(tl),
('}’561 - Z(tl))'cl’g(gl,s)§1,5= Min ('}’551 - Z(tl))'cl,g(é'l,s)&l s
(4.3.15) §1€C1
K(it,)>0 (i=1,2 -, 9; k=1,, m),

VS(E,) = 0 if k() = a¥x(r ) <0 (i=1,-,q; k=1,, m).
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Remavrk. The last (third) 11ne of (6.1.3) in [5, p. 143] should read “for some
§ > 0” instead of “for some £ > 07, The derivation of statements 4.3.10 through
4.3.15 from [5, Theorem 6.1, p. 142] is quite similar to the analogous derivation in
the proof of [7, Lemma 4.1, statements 4.1.10 through 4.1.16].

Assume that (4.3.10) does not hold. Let

q
pE@E) = 22 Eu®) k=1, -, m),

i=1

and let 79 =tg, Tq41 = =1t;. We observe that, by (4.3.12) and (4.3.15), v;(t) = v, is

constant and vk>0 (i=1,2, -, q; k=1, ---, m), and thus pk@) (k=1, =+, m) is
a nonnegative nomncreasmg step functlon continuous from the left, with its discon-
tinuities (if any) restricted to points of Z Furthermore, U (tl) =0 (k=1, -, m).

We shall now show that there exists an integer j (1 < j < q+ 1) such that
lz@®| + le@] >0 on [ty, 7;]1. Indeed, if

,uk(q-.)> 0 for some k and j (j=1, -, q+1; k=1, -=-, m),

then uk(t)> pk(7;) >0 for all t in [ty, 751 X [lu(r;)| =0 for all ]
(j=1, -, g+ 1), then

V=0 (=1, k=1, m),

hence, by (4.3.11), ||z(t)|| # 0 and ||z@)]| + |w@®)] > 0 over [to, tl.

Let now 63 (0) be the largest of the numbers 7; G=1, , 4 + 1) such that
lz®) ] + || (&) || >0 on [tg, 7;]. ¥ 6(0) =t,, we define L to be the empty set,
and the lemma follows easily from relat1ons (4.3.11) to (4. 3 15). I 8(0) =75 <t,,
then ||z('r 2+ llu(T +0 || =0, and this implies that ||| =0 on ['r 1 0 l]

It follows then from (4.3.12) and (4.3.15) that lz@®)]| =0 on [9( t,] and that

pXea (e =0 @=1, -, m).

Furthermore | vj| # 0, hence, by (4.3.15), 9(10) €Z

We observe that, trivially, x(t) is a Q'-minimizing curve
(649, {x(6{°)}, identity),

where Q'=Q_ N (6] (0) ¢ ), where {x(G(O))} is the set with the single element
x(6 (0)) and where the mappmg is the 1dent1ty mapping of {x(6 (0))} into itself. It
follows now, by our previous argument, that there exist a point

o) e {t, Tuz, n(el? ¢ ]

functions z{1)(t) and ,u(l)(t) on [6(0) 9(1)] and a nonnegative number 'y(l) with
the following properties: 1)k(t) (k =1, -, m) is a nonnegative nonincreasing step
function on [0(10) , 0 l(1)], contmuous from the left, and with its only possible discon-

tinuities on (91(0), 9(11)] N Zg; z(1)(t) is absolutely continuous on [01(0), 91(1)];
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=D+ 1Pl >0 on (0, oV
pMe(M)ak@(e(V) =0 (=1, -, m) it o{D<t;

and relations (4.3.6), (4.3.7), and (4.3.9) hold with [6{?), 6{!) ] replacing T and
-ysfl) replacing y_.

I 9&1) < t1 , we continue in this manner. After ¢ steps (where ¢ < q+ 1), we
L » since 8(10‘) €Q, (@=0,1,2,---) and 9(1a) < 9(?“)
(@ =0, 1, 2, ---). We now redefine the functions z(t) and p(t) to equal z(a) (t) and

u(a)(t), respectively, on (9(1a) , 9(1a+1 )] (@=1,2 -, 0-1), welet 'y; = 'y(sﬂ), and
we let

determine a point Ggﬂ) =t

L.o={6@]| s®<t o0<a<y}.

The lemma now follows directly.

(4.3.18). Remark. We shall continue to use the notation introduced in Sections
4.1 to 4.3. If for infinitely many values of s in P there exists a point ‘El,s in C,
such that

ci(€y,g) = x5(t)) and  cf g(5; J&; = Min el g (g )&,
£1€Cy

then, since C; is compact, we may extract an infinite subsequence P' of P such
that & 1 s converges to some 5’{ over P', and we have the relations

c1(¢}) = x*(t;) and  cf gD &F = Min e (£}, .
£1€C)

The alternative (3.1.1) of Theorem 3.1 is then satisfied with y* =1 and 'yk =0
k=1, ---, m).
Henceforth we shall therefore assume, unless it is otherwise specified, that the

second alternative of Lemma 4.3 holds for all sufficiently large values of s in P
that constitute a sequence P; of integers.

LEMMA 4.4. Let s be in Py, and let t and t' belong to a subintervval of
T - Ls. Then there exists a positive constant ¢y, depending only on a(x), t; - tg,
¢y, and D (of Assumption 2.2), such that

tl
Iz, @1 <ep lz 600 + ey § el ar].

t

Proof. As was observed in Section 4.1, the curve x4(t) is contained in the com-
pact set D (of Assumption 2.2). Since a(x) has continuous first- and second-order
partial derivatives on V, and since by (2.3.4) [f(x, t, 0)|| <c; and |f(x, t, o) <c;
on V X T' XS, it follows that there exists a constant c'2 such that -

[b5(x4(t), t, o5(®)] <ch and |bi(xst), t, o ()] <cb a.e. in T (k=1, -+, m).
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It can easily be verified that the second equation of (4.3.6) yields

n

2. (t) = UL, £)zg(t') + St‘Uisr(t, 7) T bk (1), 7, o () ui(r)ar,
t £=1

where the matrix Ug(t, 7) is the solution of the system

d

T Ugtt, 1) = f(xy(7), 7, 0, (1)U, 7)

that reduces to the unit matrix for 7 =t. It follows easily that there exists a con-
stant c, = c,(c; , ¢;) such that
T
||Us(t, t')" <cp and "Us(t, T)bﬁ(xs('r), T, os('r))" <c, (k=1,--,m).

The lemma now ifollows directly.

5. PASSING TO THE LIMIT

5.1. We shall continue to use the notation introduced in Section 4. Let

Iz, ull = llz[ + nll  for z e E, and p € By,

and let Q U Q Since Q is denumerable and C and C are compact, there

exists an 1nf1n1te subsequence P, of Pl such that the sequences {&0 s} and
{£ } converge over P, to points 50 € C, and 51 € C,, the sequences

{lzs®1 /1250, £ @1}, {pf@)/lzs®), e O &=1, -, m),
{llzs®), ps® /2", ng |}

converge over P, to finite limits or to «, for all t and t' in Q, and the sets
Lo N [t, t'] are either all empty or all nonempty for all sufficiently large s in pP,,
provided t e Q_, t' e Q_, t Jt'.

Let now
[> o]
Ao ( U w.)
i=1

s in P
s>12

(where Cl denotes closure) and let opern henceforth mean “open relative to T” when
it refers to a subset of T. Let N be the set of points t in T - L. with the property
that t belongs to an open interval I(t) such that

tim sup [l25(t), no@®)|/ 256", 1o <
2

for all t' e I(t) and t" € I(t). Clearly, L is closed and N is open. Finally, let
M=T - N.
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Since the set N is open, it is a denumerable union of disjoint open intervals,
which we shall call maximal subintervals of N or, briefly, maximal. Let J be
maximal, and let 7(J), 7;(J), and 7*(J) be the left and right endpoints and the
midpoint of J, respectively. Then 7y(J) € J if and only if 75(J) =ty and ty € N,
and 7,(J) € J if and only if 7,(J)=t, and t, € N,

For all maximal J and for all s in P, , let
zk(t) = z,(t)/ [z, (7*@), p (7*@)|| @ € I),

pESE) = pS@)/ |z (7*@), n (@) =1, -, m; te ),

Vi) = 250 + 2 prtm)akex (1) (e ).
£2=1

This defines zX(t), u**(t) (k =1, -, m), and v*(t) on the set N. The definitions

are permissible since the denominator is positive, by (4.3.2). We also observe that,
by (4.3.6),

(5.1.2) 2X(t) = -£,(x (), t, o () 2*@) - 2 p ) plx (1), t, 0 () a.e. in N.
£=1

LEMMA 5.2, Let J be maximal, and let [0¢g, 011 C J. Then, for all sufficiently
large s in P, , the sets L N [0g, 0,] are empty, the functions z%(t) are absolutely
continuous on [0y, 0], and the functions u:k(t) (k =1, ---, m) are nonincveasing on
[60 ’ 91]-

Proof. Since J C NC T - L, the lemma follows from (4.3.3) and (4.3.4).

LEMMA 5.3. For every fixed t in N,

0 < lim inf || z¥(t), p*@®)| < lim sup [|z5@), p*@®)]] < .
PZ PZ

Proof. Let
ul(r, ) = |z25(7), (D /|2s(v"), p(r)|| (s in P,, 7€ T, 7' € T).

We shall prove that if the closed interval I{7, 7') joining 7 and 7' is contained in
N, then lim sup ug(7, 7') < «, which implies the statement of the lemma.
P2

By the definition of N, every point t in X7, 7') belongs to an open interval I(t)
such that

lim sup ug(t', t") < for all t' € It) and t" € I{t).
P .
2

Since X7, 7') is compact, it can be covered by a finite number of such open inter-
vals, say by I;, ---, Iy. Therefore there exist points 79 =7, 71, ***, T9_1, T = T'
such that Xr;, 7;,,)<I;,;, i=0,1, -+, £-1). Since

£-1

ug(r, ) = I1 ug(7, Ti+1) (s in P, ),
i=0
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it follows that lim sup u (7, 7') < .
P2
LEMMA 5.4, Theve exist an infinite subsequence P3 of P, and functions
p*R@E) k=1, -+, m), z*({t), and v*({t) such that pXK(t) (k =1, -+, m), zX(t), and
v"s‘(t) convevge on the set N, as s — «© over P, lo p*5t) k=1, -+, m), z*(t), and

vE@E) = zxt) + 2 prlm)alix* 1),
£=1

respectively. The functions ptK(t) (k =1, ---, m), z*(t), and v¥(t) are uniformly
bounded on every closed subinterval of N for s in P3. On every closed subinterval
of N the functions p*X(t) (k = 1, -+, m) are nonnegative and nonincreasing, and the
Sfunction z*(t) is Lipschitz-continuous. Finally, |z*@), p*()| > o.

Proof. Let 0 <75 <1/2, let P' be an infinite subsequence of P,, and let J be
maximal. Consider the closed interval [0, 6], where

6o = To(@) +n(71(F) - 74(I)) and 6, = 71() - n(7, ) - TO(J))-

By Lemma 5.2 and by (4.3.4), the ,u."s‘k(t) (k =1, ---, m) are nonnegative and nonin-
creasing on [90 , 0 1] for sufficiently large s and, by Lemma 5.3,

W) = 1im sup lex®] <« on[6,, 6,].
2

Thus Y(t) exists and is nonnegative and nonincreasing on [0, 0], hence the
|e*@)| (s in P,) are nonincreasing and uniformly bounded on [64, 0,). By
Lemma 4.4,

[zZ® ] <cy+cy |t - 7% [p¥(Min, 7*)| & €[04, 0,]),
where 7* = 7%(J); hence, the z%(t) are uniformly bounded on [6,, 6,]. Further-
more, by Lemma 5.2, the z’é‘(t) are absolutely continuous on [90 , 0 1]] for sufficient-
ly large s. It was observed in Section 4.1 that the curves xg(t) (t € T) are con-
tained in the compact set D for all s, hence, by Assumption 2.2 and by (2.3.4),

[ £,(xs(t), t, o)) ana |bEx (t), t, o ()] (te T';k=1,, m; s in P,)

are uniformly bounded. By (5.1.2) it follows that the z¥*(t) satisfy a uniform Lip-
schitz condition on [6(,.0;], for all sufficiently large s.

Thus pX(t) and zX*(t) are uniformly bounded and of uniformly bounded variation
on [0g, 0], for all s in P'., Hence, by Helly’s selection theorem, there exists an
infinite subsequence P" = P"(P', J, ) of P' such that {p¥({t)} and {z*(t)} con-
verge on [08g, 1] to limit functions p*(t) and z*(t), respectively, as s — = over
P". The function p*(t) is nonnegative and nonincreasing and z*(t) is Lipschitz-
continuous on [84, 64].

We now consider a sequence {7; };:1 converging to +0. The open set N is a
denumerable union of maximal subintervals J; (i=1, 2, --+). We now let Pi =P
and, recursively,

2
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Pl = P'(P}, 35, m) (G, 5=1,2 ).

By Pi1+1 we denote the diagonal subsequence of Pi1 s Pzi, pl ,  (i=1, 2, ---). Let-
ting P 3 be the diagonal subsequence of P:{ , Pf , P{’ , ***, we conclude that { p.’_';(t)}

and {z"s‘(t)} converge on N, as s — « over P, to limit functions p*(t) and z*(t)
that satisfy the statements of the lemma.

- ‘
Now, vi(t) = z%(t) + E£=1 u’gﬂ(t) af;(xs(t)) for all s in P,, limp x.(t) = x*(t), P,

is a subsequence of P and of P,, x_(t) e D (t € T, s in P), and the a}lg(x)

(k =1, +--, m) are uniformly continuous on the compact set D. It follows that

lim vi(t) = v¥@t) = z*@) + 2 p*l@e)alx*(t)) on N.
P3 £=l

Finally, by Lemma 5.3, lim inf [|z%(t), pX¥t)]| > 0 on N, and this implies that

*k *k PZ
lz*®t), *)|| > 0 on N.

6. CONDITIONS ON THE SET M

Let the sets L, N, and M =T - N and the sequences P, and P; be defined as in
Section 5, and let

ugt, t") = lzs), u @)/ 24", & (' eT, t"eT, s in P,).

We verify, as an immediate consequence of the definition, that 6 € M implies that
either 6 € L or that every neighborhood of 6 contains points t' and t" such that
lim sup ug(t', t") = .

P2

Henceforth, we let
K@) = {k|a“x*@®) = 0}, zF= {t|a*x*@) =0}, z= U =z’
2=1

LEMMA 6.1. Theve exists a positive constant c3 such that ug(t', t") > c,
whenever t' <t", [t',t"]C T - L, and s is in P,.

Proof. By Lemma 4.4, |z,t")]| <c; [|zs@)|| + ¢z (k) - to) [t |, and by
(4.3.4), e | < [ps@)]; hence
lzs )] + st 1

v, t) > =
U ) 2 T + (@2 (6 - )+ DI @) = o3 7 63 -t + 1

Cs3.

LEMMA 6.2. If 8 € M - L, then theve exists a positive € = €(0) such that
limp u (', t") == for 6 -e <t'<t"<6+e. If 0=tg, then limp, u,(ty, t") = =

fO’)" to <t" S_to + &£, cmdif e = t]_ then limp3 us(t', tl) = fO’V tl - £ S_t' < t]_ .

Proof. Let 6 € M- L and tg < 6 <tj, and let € = £€(6) be such that
[6 -&, 6 +e] € (T - L) N (T - Lg) for sufficiently large s in P,, say for s in P'.
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Let 6 -e <t'< 0 <t"< 6 +¢. Since 6§ ¢ M - L, there exist 6' and 6" in

(t', t") € (6 - €, 6 + £) such that lim sup u (6', 6") = «. Lemma 6.1 implies that
Py

6' < 6". Let now

T' € Quw, T" € Qo << <o < T Kt
By Lemma 6.1,
ug(7', 7 = ug(rt, 0)ug(er, oM uy(6", 77 > Gug (6", 6") (s m P).

It follows that lim sup u (7, 7") = <, and since 7' € Qw and 7" € Qw,
P2
lim u (7', 7") = lim u (7', 7") = .
P2 P3
Furthermore, ugt', t") = u (t', 7)ug(7', 7" ug(7", t") > c% ug(7', 7"), hence
limp uy(t', t") = .
The argument is analogous when 6 =ty or 6 =1t,.

LEMMA 6.3. The set M is contained in Z. Furthevmove, for every 06 in M
theve exist a number € = e(0) (0 < e < 1) and an infinite subsequence P'= PY0) of
Pg such that

limsup 2,0/ £ plt) <2c,n  and  lmpXt)y 2 plty=0 (x ¢ K(0))
=3 LEK(O) - P! L€ K(0)

uniformly on [1,, 7,], wheve 7, =17,(6, n) = Max(6 - n, t),
T, = 7,(6,n) = Max (6 -2, ty),

and 0 < n<¢e(0).

Proof. Since the a¥(x*(t)) (k =1, 2, -*, m) are continuous, 6 is in the interior
(relative to T) of an interval [6,, 6,] in T such that K(t) c K(9) for t € [0, 0,].

If 6 € L,let € =1/2 if 6 =ty, and let €(6) = Min(6 - 6;, 1/2) otherwise. Since
P; is a subsequence of P,, it follows easily from the definition of L and of P, that
there exist an infinite subsequence P' = P'(0) of P3 and points 2§ € L, (s in P')
such that 6 = limp, ¢L. Let 0<7n<Le and 7 € [1;, 72]. Then 7, < 0L < 6, for
all sufficiently large s in P', say for s in P" = P"(9, 7).

Let now £, (s in P") be the point in L N [7, £] nearest to 7. By (4.3.4) and
(4.3.5),
lz.(e)] =0 and uX(t) =0 (k¢ K(), t e[, £,], s in P"),

since K(t) € K(6). Furthermore, by (4.3.2), ”zs('r)” + " g (7')” #0 (s in P3). Thus,
by Lemma 4.4 and by (4.3.4),
"QS

Izl <o lzg el +e, § In@lat<e, - 2 k) e,
T L €x(0)



466 J. WARGA
hence

27 p.g('r) + 0, lim sup ||ZS(T)"/ 2 usﬂ(q-) < 02(9 -7)< c,m,
2eK(0) P! LeK(6)

im pX(r)/ X pi(r) =0 (k¢ K()).
P! Le K(8)

Since the sum of u sﬂ('r) over ¢ € K(8) is positive, K(0) is nonempty, hence 6 € Z.

We now consider the case where 6 € M - L. Let ¢' be defined as £(9) in
Lemma 6.2, and let € =£(0) be such that 0< ¢ < 1,

[6 -, 0 +e]lnTC[6,, 6,] n (T - L),

and e <e'. Let 0<n<e¢e, 7e€[71y, 7,],and 7' =Min (8 + 7, t;). Itfollows from
Lemmas 6.1 and 6.2 that limP3 u (7, 7') = uniformly for 7 € [7;, 7,], hence

lim]_:,3 ug(7', 7) = 0 uniformly for 7 € [7, 7,]. For sufficiently large s in P,
(4.3.2), (4.3.4), and Lemma 4.4 imply that

"ZS(T')I[ + "U‘s(T')" *0, “ Zs(T)" <ec; "zs(Tl)" +2¢,n ““‘5(7)”’
and "p.s(T')" < ||u.s('r)||, hence

0 = limu (7', 7) > lim ||u.s(7')"/{c2 ||zs('r')|| +(2c,n + 1) ||us('r)||}
P3 P3

and

0 = limu (7', 7) > lim |z (7")]/{c, [z (7] + (e, n + 1) | (1)} .
P3 Pj

This implies that ||p (7)| # 0 for sufficiently large s in Ps, and

(6.3.1) lim "zs('r')"/" us('r)“ = lim ||u.s('r')“/ ”uS(T)" =0
P3 P3

uniformly in [7,, 7,].

since [z (7)]| <c; |z + 2¢, 1 | 4(7)| for sufficiently large s in P,, we see
that

lim sup "ZS(T)"/“LLS('T)" < 2¢c,n uniformly on [7,, 7,].

P3
Now, by (4.3.4), 27 p,ﬁ(t) is constant on [7, 7']; hence, as an easy consequence
L¢K(0)
of (6.3.1), 27 u’g('r) # 0 for sufficiently large s in P,, 0 € Z,
2ex(0)

limsw |z ()]/ Z i) < 2c,m,
P3 LeK(0)

and
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11m pi(r)/ 22 T Liry = (k ¢ K(6)) uniformly on [7,, 7,].
P3 fek(0)

LEMMA 6.4. Let 0 € Z and to< 71 < 7, < 0, and assume that K(t) C K(6)

and 2 p,f(t) 20 on [7,, 7,] for sufficiently lavge s in P, say for s in P}.
2 €K(6)
Let

o) = pkey/ 2 pl ke k(o) telr, 7,]; s in PY.
LeK(8)
Then

.
2
lim inf g = lim inf | aX®)akx @)% (0)dt > -¢,(0 - 7,) (ke K(o),
P P x\'s s - 1 2
3 3 Ty
wheve ¢, is defined as in Assumption 2.2,
Proof. Let ke K(0), and let s be in P;. Since a.k(xs(t)) is continuous on T

and alg(t) is a step function, we have the relation

‘S' T2y k
; o 5(t) da™(x (t))

7y

(6.4.1) X

T,-0
2
= ozlsf('r2 - 0)ak(x (7,)) - aX(r + 0)a*(x (7,)) - S a¥(x (t)) daX(t).
T +0
1
Now, by (4.3.4), ozls‘(t) is a step function with no discontinuities except at points of
U =z4
LeK(0)
Let 7 in (7, 7,) be a point of discontinuity of a(t). If 7 ¢ Z5 and 7 ¢ L, then

by (4.3.4) p.l_;(t) is constant in some neighborhood of 7, and 27 uf(t) is nonin-
L€K(0)

creasing in that neighborhood of 7; hence dak('r) >0. KE7¢ Zk and 7 € L, then
k(t) = 0 immediately to the left of 7, by (4. 3 5). Hence, by (4. 3 2),

da'(r) = a7 +0) > 0.
Since

T € U Z%cQs,
2€eK(6)

we see that ak(xs('r))g 0. Thus ak(xs(t)) dalg(t) <0 on (7y, 7), and by (6.4.1),

B > (7, - 0)akx (1)) - &X(r, + 0)aMx (7).
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By (4.3.2), pX(t) > 0 (k € K(6)), and it follows that 0 < aX(t) <.1 (k € K(6)). By
(4.3.6) and condition (2.2.3),

lakx @)% ()] = I—;l—tak(xs(t))l <ec; a.e inT.

Now every point of T is within a distance at most 2°° (t; - t) of some point of Qg
and ak(x4(t)) <0 (k =1, --, m) on Q.. Furthermore, llmp3 ak(x (8)) =0

(k € K(6)). It follows that

lim a%(xs(72)) > -1 (6 - 72) (k€ K(6)) and -lim a(x_(7,)) > 0.
Pj - Py =

LEMMA 6.5. Let T'be defined as in Assumption 2.2, There exist scalar func-
tions p*k@t) (k= 1, --, m), defined for each t € M N'T', t > tg, such that

pEE) > 0 (k=1, -, m), p*E@E) =0 (k ¢ K(t)), 2 e =1,
£ € K(t)

and D, u*ﬂ(t)af{(x*(t))-f(x*(t), t, 0)> 0 forall o € 8.
2 € K(t) o

Proof. By (4.3.6) and (4.3.7), we have for every s in P; the relation
(6.5.1) v_(t)-%(t) = Min vs(t)-f(xs(t), t,0) a.e. in T,
0E€S
where

vot) = z )+ 2 pl)alx ).
£=1

Letnow 6 € MNT' and 0 > to, and let € =&(8) and P' = P'(6) be defined as in
Lemma 6.3.

Let 0 be an arbitrary point of S, let 0 < n< Min(g, 6 - tg), let 74 =0 -7,
T, =6 -n?, and let

et =zt 2 ple), Ew=pSty 2 ple) &eKO), telr;,1,]).
Lex(0) 2eK(8)

By (4.3.6) and Assumption 2.2, |a¥(x_(t)k (t)| <ec, (c=1, -, m) and [[x,®)] <¢c,
a.e. in T for all s in P3, and it follows from Lemmas 6.3 and 6.4 and from As-
sumption 2.2 that

STZ €.+ X2 alalx,m) xt)dt| < 2¢; c,n”

lim sup
P! 'y 29K(6)

and

T2
lim inf 2 alwaltx )% (t)dt > -me, n°
P! ,QEK(B) Ty
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Similarly,
T2 . )
lim sup S (i;’s(t) + 2 oz’sz(t)ax(xs(t))f(xs(t), t, oydt| < 2¢c, 02772 .
P! ) 24K(0)

Dividing both sides of (6.5.1) by 2 ug(t), integrating from 7; to 7,, and taking
PeK(0)
lim inf over P', we deduce that

T2
(6.5.2) lim inf 2o al@)al(x () f(x,(t), t, 0)dt > -(dc;c, + me,)n® .
P! gek(0) “1, -

Let now P"= P"(0, ) be an infinite subsequence of P' over which the
T
2
L{ %akwat (ke k(o)
n T

converge to a limit o®(6, 7). Since als‘(t) >0 (k € K(6)) and

22 aﬁ(t) =1 (te[r,, 7,], s sufficiently large and in P'),
2eK(0)

such a sequence P" exists, ak(e, 17)> 0 (k € K(6)), and

2 aﬂ(s,n) =1- 7.
e K(8)

Since 6 € T', Assumption 2.2 and Lemma 4.2 imply that if 6 > 0, then

20 |al(x @) (=, (1), t, o) - al(x*(0))£(x*(0), 6, 0)] < &
2€K(6)

on[6 -n% 6 -q]= [7,, 7,] for all sufficiently large s in P, and all sufficiently
small 7. We now conclude from (6.5.2) that

6.5.3) 2 al(e, n)al(x*(0))£(x*(0), 6, o) > -(4c,c, + me,)n - &
0eK() =

for all 6 and all sufficiently small 7.

We now choose a sequence { nj};il converging to +0 as j — <, and such that
pH (o) = limj 0 ak(e, n;) exists for every k € K(8). Since the choice of p*k(6)
(k € K(0)) is made independently of o, the statement of the lemma follows directly
from (6.5.3).
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7. THE GENERALIZED WEIERSTRASS E-CONDITION

7.1. Let p*(t), z*(t), and v*(t) (t € N) be functions having the properties
described in Lemma 5.4, and let p*(t) (t € M N T' N (tg, t;]) be a function having
the properties described in Lemma 6.5. Let us also set z*(t) = O (t € M) and

o= 1/k() (ke K(b), te (M-T') N (tg, t1]),

where k(t) denotes the number of elements in K(t). Finally, let

vit) = 2 p*@®)alx*t)  on (M- TN (o, ty].
2€K(t)

The function z*(t) is then defined everywhere on T, and the functions p*(t) and
v*(t) are defined everywhere on T - M N {ty}.

LEMMA 17.2. Thevre exists a function o*({t) from T to S such that

X*(t) = £(x*(t), t, o*(t)) a.e.in T,

2*(E) = - (M), t, o* () 2¥®) - 2 p* ) plx*(t), t, o*®) a.e. in N.
2=1

Fuvthermore, for every maximal J, z*(7,(J) - 0) = O and ,U.*k('r J)-0)=
(k € K(7, (J))) if 7,(J) e M.

Proof. Let E be a euclidean space, ¥ a closed interval of the real axis,
2'c 2, |2 =|%|, B anopen setin E, % a compact subset of B, and %(g, t)
(r € B, te g) a compact and convex set in E. Assume that $(r, t) is uniformly
bounded for (z,t) € % X T' and that § (g, t) is quasi-continuous [4, p. 119] (in the
language of Filippov [1, p. 76], upper-semicontinuous with respect to inclusion) at
(g, t) for all (g, t) € a4 X ¢'; that is, corresponding to each positive &, let there
exist a positive n(6, z, t) such that F(z', t') is contained in a 6 -neighborhood of
$(z, t) in B provided

t-t|+fe- 2" <05, 5, t) and (g, t) e u x '

Let {:; j t)} ez, j=1, 2, ->-) be a sequence of curves, all contained in %, such
that

(7.2.1) z;(t) € F(zj(t), ) a.e. inx (=1, 2 ).

Finally, let x(t) be a uniform limit of the curves ¢ j(t) te x)

It was shown in [4, Theorem 3.1, p. 119] and, effectively, in [1, Theorem 1, p. 77]
that then

(7.2.2) z(t) € F(z(),t) a.e.in x.

Now let Fj(z,t) ((z,t) e & X €, j=1, 2, -*-) be convex and compact sets con-
verging umformly, as j — o, to §(g, t) on 91 X I', in the sense that to each positive
6 there corresponds a j(6) such that each of the two sets §;j(z, t) and §(g, t) isin
a 6 -neighborhood of the other provided j > j(5). Furthermore let the assumption
(7.2.1) be replaced by
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(7.2.3) Iz;j(t) € %j(gj(t), t) a.e.inT (j=1,2, ).

Then we can easily show that the conclusion (7.2.2) still holds. Indeed, if € > 0 and
Fe(z, t) is the e-neighborhood of F(z, t), then there exists an 1nteger ](8) such
that 3_,(;-, t) € Felz, t) for (z,t) € A X T' and j > j(¢). Thus zJ(t) € (zJ(t) t)

a.e. in ¢ for j> j(g), whence it follows, by the quoted arguments, that

@) e g(z(t), t) a.e. in T. Since & can be chosen arbitrarily small, relation
(7.2.2) now follows.

We now apply this result as follows. Let the infinite sequence P3 of Lemma 5.4
be 81,82, ***;let E=E, X E,; let € be an arbitrary closed subinterval of N over
which the functions p,:j(t) and z:j(t) (G=1, 2, =) converge uniformly to p*(t) and

z¥(t), respectively; let ¢'= N T', 8 =VXE,,
D, = Cl{z e E, | z = z*(t) or z = z*(t) for some s in P; andsome t € T},

Z

%A =D X D, r = (%, 2),

Sz, t) = {¢ )| & =1xt,0), n=-1.(xt o)z-E * )i, t, o)
=1

for some o in S},

(x,2z,t) e DXD, X T,

Fi(e, ) = {(&, M) | £=1x,t, 0), n= —f;f(x, t, 0)z - 2 u’;f(t)bi(x, t, o)
2=1

for some o in S}.

Furthermore, let g;(t) = (x4 (t) z¥ (t)) te T, j=1,2, =) and z(t) = (x*(t), z*({t)).
Then it easily follows from Assumptlon 2.2, Definition 2.3, Section 4.1, formula
(5.1.2), Lemma 5.4, and our previous argument, that

) e §(x,t) a.e.in T,

or, equivalently, that there exists a function o*(t) from T to S such that

%*(t) = £(x*(t), t, o*(t)) a.e. in T,

2¥E) = -fL(x*M), t, o*®)z*E) - 2 prlR)bix*@), t, o*®) a.e. in T.
£2=1

Since, by an easy consequence of Egoroff’s theorem, N can be covered (except for a
set of measure 0) by a finite or denumerable collection of closed intervals over each
of which p.:j(t) and z’;‘j(t) (=1, 2, +--) converge uniformly to p*(t) and z*(t),

respectively, it follows that these differential equations hold a.e. in N.

We now complete the definition of o*(t) by setting o*(t) = o(t) (t € M), where
o(t) is defined as in (4.1.2).
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Finally, since z%(t) and p¥(t) converge to z*(t) and p*(t) on N, as s — « over

P, , it follows from Lemma 6.3 that

3 2
lz%(71@) - 0)]| = Ju*X(r, @ -0 =0 (k¢ K(r,() if 7,(I) e M.
This completes the proof of the lemma.
LEMMA 7.3. (the genevalized Weievstrass E-condition).
v¥(t) - £(x*(t), t, o*(t)) = Min v¥(t)-f(x*(t), t, 0) a.e. in T
O€S
m
(heve v¥(t) = z%(t) + 20 p*L(t)al(x*(t))).
£=1

Proof. We shall first prove that the relation holds a.e. in N. By (4.3.6) and
(4.3.7),

(7.3.1) vi(t)- f(x (1), t, o (1) = vi(t)-x (t) = Min vi(t)-f(x(t), t, o)
S
a.e. in T for all s in P,. ’c

Let T; be the subset of T' N N over which the above relation is satisfied, over
which v*(t) is continuous, and over which Xx*(t) exists and satisfies the first equation
of Lemma 7.2. Clearly, |T,| = [N]. Let 6 <t;, let 6 € T,, and let h be positive
and sufficiently small so that [8, 6 + h] € N. Then

f+h
X¥(0 +1) - x%(0) = Lim (x,(6 +1h) - x,(0)) = Lim | x(r)ar,
Ps3 P3

0
hence

(7.3.2) %v*(e)- (x*(0 + h) - x*(0))

1 0+h
= lim S [V”s‘('r)ics('r) + (v¥(7) - v;‘('r)) J'KS(T) + (v¥(0) - V*(T))f!s(T)]dT-
P3 0

Now |%4,(7)| <c; a.e. in T, and by Lemma 5.4, the v(7) are uniformly bounded on
[6, 6 +h] for s in P3 and limp, vi(t) = v¥(t) on [6, 6 + h]. It follows thus from
(7.3.1) and (7.8.2) that, for every o in S,

%v*(e). (x*(6 + h) - x*(0))

h g
< % S:+ v¥(7)-£(x*(7), 7, 0)dT +'(;T1 59 - Ivx(o) - v¥(m)| ar.

By (2.3.3) and the definition of T;, v*(t) and f(x*(t), t, o) are continuous at 0,
and x*(t) is differentiable at 6. Letting h — 0, we conclude that

v¥(0)-£(x(6), 0, 0*%(8)) = vk(8)-x*(0) < v¥(0)-f(x*(0), 6, o)
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for every o in S and every 6 in T;. Thus the lemma holds on N.
We must now consider the set M. By Lemma 6.5 and Section 7.1,
(1.3.3) 2 p*@)aler@) - 1xx(t), t, 0) = ve(t) - £x*(t), £, 0) > 0 (0 € §)

L€K(t)
a.e. in M.

Since almost every point in a set is a limit point of the set, Lemma 7.2 implies
that

L a0er(t) = Al IGeH(), £, %) =0 (k € K(t) a.e. in T,
hence

2 p*e)alix+ @) i), t, o*(t) = 0 a.e. in T.
2ex(t)

Thus, by (7.3.3), 0 = v*(t) - f(x*(t), t, o*(t)) = Min v*(t) - f(x*(t), t, o) a.e. in M.
O €S

8. SUPPORT (TRANSVERSALITY) CONDITIONS. COMPLETION
OF THE PROOF OF THEOREM 3.1

LEMMA 8.1, Either altevnative (3.1.1) of Theovem 3.1 is satisfied, ov theve
exists a nonnegative number y' such that

(8.1.1) (16, - z¥(t))-c; (ENEF = Min () 6; - 25 ) ey £ (EDE
§1€Cy
and
(8.1.2) v*(to)-co,g(é’(';)ﬁﬁ = Min v¥(tg)-co,£(£8) & ,
£0€Co
whevre v*(to) is defined as in Lemma 5.4 if t; € N, while othevwise

Vi) = 2 p*lg)al(x* k),  p*R(ty) > 0 (k € K(tp)),
L€K(tg)

and 22 p*l(gy) = 1.
LeK(tq)

Proof. We observed, in Remark (4.3.16), that either the alternative (3.1.1) of
Theorem 3.1 is satisfied or there exists an infinite sequence P; of integers s for
which the second alternative of Lemma 4.3 holds. Consider, in the latter case, the
statement (4.3.9) in Lemma 4.3. If, over some infinite subsequence P3 of P,,

y!#0 and lim |z_(t) ]/l = o,
F3

then it follows from (4.3.9) that

o, e(DEF = Min ¢ gDy,
£,€C)
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P El,s = 111mP' 3,:1’5-

where 5’; = lim
2 3

In this case, therefore, the alternative (3.1.1) of Theorem 3.1 is also satisfied.

In view of the above argument it remains to consider the case where the second
alternative of Lemma 4.3 holds over an infinite sequence P; and where, over some

infinite subsequence P} of P, , ||z (tl)" # 0 and the 'yl/"z ()] are bounded.

If t; € M, then z*(tl) = O and relation (8.1.1) is trivially satisfied if we set
=0. I t; € N, let J be the max1ma1 interval to which t; belongs, and let

ag = lz (r*@)| + |ug(r*@)]| (s in PY).

Since, by (4.3.2), ag # 0, since zg(t1)/ag = z%(t;) — z*(t;) over P}, and since the
1/ ||z (t, )" are bounded we can find an infinite subsequence P3' of P3 and a non-

negatlve vl such that hmP.,, Vs 1y a = v1. Relation (8.1.1) now easily follows from
(4.3.9).

If tg € N, then relation (8.1.2) is derived from (4.3.8) by dividing both sides by
|zs(7*@)]| + |ws(7*(@))]| (where J is the maximal interval containing ty) and
passing to the limit over P.

If tg € M then, by Lemma 6.3, there exists an infinite subsequence P' of Pj
such that

lim |z, o)/ 2 ke = lim 5t/ 2 plg) = 0 (k ¢ K(ty).

ﬂeK(tO) L€ K(ty)

Let now P" be an infinite subsequence of P' such that ulg(to)/ 27 ug(to) con-
L€ K(tg)
verges to a limit *k(t ) over P" for every k in K(ty). We now derive relation

(8.1.2) from (4.3.8) by dividing both sides by 27 ﬁ(to) and passing to the limit
LeK(ty)
over P".

8.2. Completion of the Proof of Theovem 3.1. Let x(t) = x*(t) (t € T). In Sec-
tion 4.1 and Lemma 4.2, we showed that x(t) exists and is a relaxed minimizing
curve with respect to a(x) By Assumption 2.2 and by [6, Theorem 2.2, p. 113], x(t)
can be uniformly approximated by solutions of the differential equatlons (2.1.1). We
shall now show that if alternative (3.1.1) of Theorem 3.1 does not hold, then alterna-
tive (3.1.2) is satisfied if we set o(t) = o*(t), p(t) = p*(t), z(t) = z*(t),

v(t) = vk(t) = zx(t) + 27 prp)al(xx(t) (te T),
£2=1

where, for ty € M, p*X(ty) =0 (k ¢ K(ty)) and p*K(tg) (k € K(tg)) is defined as in
Lemma 8.1.

By Lemma 6.3, M C Z. Statements (3.1.2.1) and (3.1.2.2) follow directly from
Lemma 5.4 and from the definition of u*(t) and z*(t) on M (see Section 7.1). By
statement (4.3.4) in Lemma 4.3, the p§ (t) (k=1, --, m) are, for all s in P, con-
stant over every subinterval of T - Zk Lg, and ,u.k(t 1) = 0. We easily verify that
every closed subinterval of N - 7K is contained in T - Zk - L, for all sufficiently
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large s in P3. Thus, p*<(t) (k =1, -, m) is constant on every closed subinterval
of N - ZK, Statement (3.1.2.3) now follows from Lemma 5.4.

Statements (3.1.2.4), (3.1.2.5), and (3.1.2.6) follow from Lemmas 7.2, 7.3, and
8.1, respectively, and from (4.1.2).

8.2.1. Proof of Statement (3.1.2.7). We have just shown that either alternative
(3.1.1) of Theorem 3.1 holds or alternative (3.1.2) is satisfied through (3.1.2.6). As-
sume now that alternative (3.1.1) does not hold.

For every t € Z, let H(t) be the convex hull of the points ajli(x(t)) (k € K(t)) in
E_ , and let

at) = Min |y = Min]| 2 3%alx®)],
y€H(t) LeK(t)

the minimum being taken over all 5% such that &5 >0 (k € K(t)) and 2 dl-1.
LeK(t)
Let a(t) =+« if t € T - Z, that is, if K(t) is empty.

Let U be the set of points 6 in T with the property that «(80) # 0 and

lzt)+ 2 plmalxe)+ 2 7ralx(e)] #o0
26K (6) 2ex(06)

for all y*> uk(0) (k € K(0)).

We show that U contains t;, and that for each 6 (6 € U, 6 > t;) there exists a
positive €(6) such that [0 - €(8), 6] € U. Then, letting ty =ty if U=T and
ta‘ = sup (T - U) if U # T, we can easily verify that statement (3.1.2.7) follows. To
prove our assertion about U, we note first that

(8.2.1.1) lim inf a(7) > aft).

T —t

Since a¥(x(t)) is continuous for every k (k =1, ---, m), we see that K(7) C K(t)

in some neighborhood of t. Thus, since alé(x(t)) (k =1, ---, m) is continuous, for

every € > 0 there exists a 6 -neighborhood of t such that H(7) is contained in an
€ -neighborhood of H(t) if I'r - t| < 8 = 6(¢). In other words, for every &£ and for
IT - tl < 6(e), a(r)> a(t) - ¢ if H(T) is nonempty, and a(7) =+ if H(7) is
empty.

(8.2.1.2) t; € U.
If t; € T - Z, then, by (3.1.2.1) and (3.1.2.3),

|]z(t1)+E1 ptepala )] = Jzt)] = o,

hence t; € U. If t; € Z, then «af(t;) # 0, since otherwise (3.1.1) is satisfied with
72 = 0. Furthermore,

lz,) + 2 v*al(x(t,))]| = 0 for some 7& > uk(t;) (k=1, -, m)
£=1
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implies, by (3.1.2.1) and (3.1.2.6.2), that (3.1.1) is satisfied, contrary to our assump-
tion. Thus t; € U.

(8.2.1.3). Let 6 eNNU = (T-M) NU, 6 >tg. Then [0 - £(6), 61 C U for
some £(6) > 0.

Let J be the maximal interval to which 6 belongs. Since a(x(t)) is continuous
and a(@) # 0, there exists, by (8.2.1.1), an &' = &'(6)> 0 such that a(t) # 0 and
K(t) Cc K(6) on [0 - ¢, 8] € J. Assume now, by way of contradiction, that there

exists an increasing sequence { 6; 17 in [6 - €', 0], converging to 0, and with
9j ¢U. Then

(8.2.1.3.1) lze;) + 20 vlaltx(e )] =0 (=12, )
2=1

for some y}> p*(0;) (k € K(0); j=1, 2, ) and y¥= pX(8;) (k ¢ K(0);
j=1,2, ). By(3.1.2.2) and (3.1.2.3), z(8;) — z(0), 75=puX(6) (k ¢ K(6);
j=1, 2, «-) and 77?2 pk(6) k=1, .-, m; j=1, 2, ---). Let jj, jp, -~ be a se-
quence of positive integers such that the ')_/Jkl approach a finite or an infinite limit

vX for each k (k/ € K(9)). I yX= o for some k € K(6), then by (8.2.1.3.1),

H 27 y*ﬂa}’g(x((?))“ = 0, where the y*k (k € K(6)) are the limits, over some
Lek(6)
appropriate sequence of j’s, of ff;‘_/ 23 '}73£ . This implies that «(6) = 0, contrary
1 gerk(0) 1
to our assumption that 6 € U. It follows that the y¥ (k € K(8)) are finite, hence, by
(8.2.1.3.1), that

lz(e)+ 2 wUo)alx(on+ 2 7Lalx(e)| = o,
2¢K(8) LeK(6)

where oK > pX(0) (k € K(6)). This again contradicts the assumption that 6 € U,

(8.2.1.4) Let 6 e MN U and 6 >t,. Then [6 - £(6), 6] C U for some
e(6)> 0.

Since 6 € U, it follows from (8.2.1.1) that there exists a positive &' = £'(6) such
that a(t) #0 and K(t) c K(6) on [0 - &', #]. Furthermore, by the same argument as
in (8.2.1.1), we can show that

a(f) on[6 -¢en"(8), 6],

B() > 3 B(0) = 1

where

Bty = Min 27 ylal(x(t))
2eK(0)

(the minimum being taken over all y¥ such that ¥¥ > 0, 2> % =1), and where
2eK(8)
e"(0) is sufficiently small. Let

e = €(6) = Min (£'(9), £"(9), ¢(8)/(4cy), 6 - tg),
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where c, is defined as in Lemma 4.4, and let ttelo - g, 6].

¥ t# e M, then |ztH| = p¥tH =0 (k ¢ Kt™) ana 2 p%t* >0, hence
2eK(t#)

lzth+ 2 plehalxaef)+ 2 ylalxwH)| > 2 7l.enh > o
LK (tH) vek(th e K(t?)

for all 75> pk@t# (k € K(t?). Thus t* € U.

If t? e N, let J be the maximal subinterval of N to which t* belongs, and let
71(J) be its right endpoint. Then 7,(J)< 6, hence 7,(J) € M. It follows easily
from (3.1.2.4) (or from Lemma 4.4) and from (3.1.2.2) that

t'
=01 < ¢ )] +e, § lutolar < e, o)) +c, @ -0 fue)]

for t € J, t' € J, t <t'. Furthermore, by (3.1.2.4), |z(r () - 0)|| = 0. Thus
[ < ey(ry@) - tH Tuhl < cpe el < Lseh luehl,
hence, by (3.1.2.1), ",u(t#)” > 0. Since K(t#) C K(6), we see that

I Z yetalxzat)l > 2 7L-pih
2eK(6) LeK (6)
whenever 75> uk(t# (k € K(9)) and pk@i™) = 0 (k ¢ K(0)).
_ Let now Min represent the minimum over all values of X (k € K(6)) such that
'ykz uk@#®. Then

Min | 2 plalxhy+ 2 plehHalx@?)| > min | 2 ylalxt?)|
2eK(tf) ¢ K(tH) tex(8)

> 2 y.sa® > |uwh] sa®) > o.
2eK(6)
since |zt g-;— le@h) Bt and «(t?) #0, we conclude that t¥ ¢ U.

8.2.2. Proof of statement (3.1.2.8). If the assumption of (3.1.2.8) is satisfied,
then it follows directly from Lemma 6.5 that M C (to : tl] - T', hence that M is of
measure 0 and N=T - M is nonempty. Let J be some maximal subinterval of N,
with the right endpoint 7; (J), and assume, by way of contradiction, that
6 =7,(J) € M. Let

gt = zx)/ ux@®)|  and @) = pr@)/|pr@)| @ e ).
By Lemmas 5.4 and 6.3, 8 € Z, K(t) € K(8), and

O] = tim Fo, 01/ InO1 = 13m 12,00/ 2 w0 < 26, @ -0
g

i i
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for all t < @ and sufficiently close to 8, say for t € [6 - €', 8 ]. Similarly,
vik(t) =0 (k ¢ K(0), te [6 - €", 6]), where " > 0.

Now, by Lemma 4.2 and Assumption 2.2,

f(x*(t), 7, 0) and  aK(x*(t)) f(x*(t), T, 0) (k€ K(0))
converge to
f(x*(0), 7, 0) and  aX(x*(0))i(x*(6), 7, o),
respectively, as t— 6 (t< ), uniformly in 7 and o, and ||f(x, 7, o)| and

" a&(x(t)) “ are uniformly bounded. Therefore, let 0 <g < Min(e', £"), and let £ be
sufficiently small so that 7*(J)< 6 - ¢ (where 7*(J) is the midpoint of J),

(8.2.2. 1)( *(t) + Z> v+ (t) aﬁ(x*(t))) - f(x*(t), t, 0)

< 2 valex(0)-1x*(0), t,0) - 5
T gek(8)

and |§*(t)-f(x*(t), t, G)I < -%B for all 0 € S andforall te [0 -¢, 6].

Since K(t) CK(0) on [0 -&, 6], we see that p™ () = v*(t) = 0 (k ¢ K(0)),
hence

27 v¥@E) =1 and ¥R (t) >0 (telo6 -¢ 0], ke K(8)).
1€K(0)

It therefore follows from the assumption of (3.1.2.8) that

Min 2 v*(t)al(x*(0))-£(x*(0),t,0) < B on [0 -¢, 0].
o€es 2eK(6) -

m
Thus, letting w(t) = £*(t) + 27 v*L¢) aﬁ(x(t)), we deduce from (3.1.2.5) and (8.2.2.1)

£2=1
that
w(t) - ((x*(t), t, 0*(t)) = Min w(t) - £(x*(t), t,0) < % a.e. in [6 - ¢, 0],
€S
and from (3.1.2.4) that
(8.2.2.2) 2 v*@)alGx*@)x@E) = 2 v*l)allxeE) 1), t, oX(t)
1eK(0) LeK(0)

rb-l)—l

= w(t) - £(x*(t), t, o*(t)) - £*(t) - £(x*(t), t, o*(t)) <

a.e. in [0 - &, 6].
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Let 0<7<e, 0<9<1, 11 =6 -7, T, =0 - 'nz. Then integration of (8.2.2.2)
from 7; to 7, yields the inequality

(8.2.2.3) ST?‘ 27 vrl(t)alixxt) dx) at < %B (n - 7°).
T, 2€K(0) o

We now observe that Ilu*('rz)" = 2 u*ﬂ('r ,) 2> 0, since otherwise (3.1.2.2),

2eK(06)
(3.1.2.3), and (3.1.2.4) would imply that [|z*@t)]| + ||e*@®)]| = 0 on (7,,0), contrary
to (3.1.2.1). Furthermore, by (3.1.2.3), the p¥X(t) (k € K(6)) are nonnegative and
nonincreasing on [71 , 'rz]. We can then easily deduce that the functions

pR(t) = prk(t)/ 20 pxE) (k€ K(6))
Lex(0)

are of bounded variation on [7,, 7,]. Thus

(6.2.2.4) {7 v@aktere)inear = [ 7 ek daken(s)
T1 T1

= v¥k(7, - 0)ak(x*(7,)) - v*K(7 | + 0)ak(x*(7,))

TZ-O
- S Ak () dy¥5(t)  (k € K(0)).

T1+O

Now, by (3.1.2.3), v*X(t) is nondecreasing on each subinterval of T - Z¥ and, by
Lemma 4.2, ak(x*(t)) < 0 on T. Thus

T,-0
-S 2 ak(x*(t)) dv*k(t) > 0.

Tl+0

Furthermore, 0 < v*k(t) <1 for t € [7;, 7,], and by (8.1.2.4) and Assumption 2.2,
ak(x*('rz)) > - clnz for k € K(6). It follows then from (8.2.2.4) that

.
2

S p*k(E) ak(xF() K () at > -c 7% (k € K(0)),

1

which contradicts (8.2.2.3) for all sufficiently small 7.

Thus the assumption that 6 = 73 (J) € M leads to a contradiction, and this implies
that (ty, t;] < N.

This completes the proof of statement (3.1.2.8) and of Theorem 3.1.
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