POLYNOMIALS THAT DIVIDE INFINITELY MANY TRINOMIALS

Edward C. Posner and Howard Rumsey, Jr.

Summary. This paper extends some recent results on divisibility of trinomials
with rational coefficients. It proves the theorem that a polynomial dividing infinitely
many trinomials divides at most a cubic in some power of the variable. Further-
more, it rules out a large class of cubics, so that certain polynomials dividing in-
finitely many trinomials divide a linear or quadratic in a power of the variable; the
converse, that every polynomial over the rationals dividing at most a quadratic in a
power of the variable divides infinitely many trinomials, is trivial. The methods
used are from elementary number theory, algebraic number theory, and diophantine
approximation.

1. INTRODUCTION

Consider a quadratic or linear polynomial p(x) with rational coefficients. Since
the space of polynomials modulo p(x) is at most two-dimensional with basis 1, x,
any three powers of x are linearly dependent modulo p(x). In other words, for
every pair of distinct positive integers m, n, there exist rational integers a, b, c,
not all zero, such that p(x) divides ax™ - bx™ - c. Such three-termed polynomials
are called frinomials (we stipulate that two trinomials differing by a constant
multiple are not considered different). Thus we have proved that every quadratic
polynomial p(x) divides infinitely many trinomials. Similarly, a quadratic in x*

(r > 1) divides infinitely many trinomials in x*. Thus every divisor of a quadratic
in x* divides infinitely many trinomials (division shall be taken to mean over the
polynomials with rational coefficients). The theorem we should have liked to prove
is the converse of this: if p(x) is a polynomial with rational coefficients that divides
infinitely many trinomials, then p(x) is a divisor of a linear or quadratic polynomial
in x¥, for some integer r > 1.

We have been unable to prove this conjecture. But we have proved that if p(x)
divides infinitely many trinomials, then p(x) divides at most a-cubic polynomial in
xT, and this cubic divides infinitely many trinomials in x*. This reduces the con-
jecture to the consideration of cubics that divide infinitely many trinomials. Fur-
thermore, we have been able to show that a large class of cubics can be ruled out.

2. PRELIMINARY LEMMAS

The lemmas in this section extend several results in [1]. The first lemma con-
siders trinomials with two roots of equal absolute value.

LEMMA 1. Consider a trinomial f(x) = ax™ - bx" - ¢ with real coefficients and
a, c #0, m>n> 0 (conventions we shall aaopt throughout this paper). Let 6, and
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0, be two distinct roots of 1(x), of the same absolute value. Let r be the greatest
common divisor of m and n, but if b = 0, let r equal m. Then either 0] = 05 or

r —T
6,=20,.
Proof. We assume b # 0, since otherwise the proof is trivial. Consider the two

circles in the complex plane centered at the origin and with radii a | 6; |™ and
b | 0; [n , respectively (see Figure 1). It is clear from the figure that either

af] = a6, and b6] = b6, or af]" = abd,” and bO] = bF,.

In the first case, 67" = 65" and 6] = 63, so that 6] = 65 . Similarly, the second
case yields 67 = 63.
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Figure 1.

The next lemma does not rely on Lemma 1.

LEMMA 2. If the polynomial p(x) divides infinitely many trinomials with va-
tional coefficients, then all the roots of p(x) lie on at most two concentric cirvcles
with centers at the origin.

Proof. Assume to the contrary that 63, 6,, 63 are roots of p(x) such that
| 0, | > 6, > | 65 ]|. We may assume, without loss of generality, that p(x) divides
infinitely many trinomials ax™ - bx™ - ¢ such that m - n increases without bound

(if p(x) does not meet this requirement, consider xnp(%), where n is the degree

of p). I is obvious that p divides a trinomial with exponents m, n if and only if

But a simple computation shows that

D~0me"(1- %3 i
1 2 92'
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as m - n— *°, Hence D = 0 does not occur infinitely often, contrary to our original
assumption.

LEMMA 3. Let 01, 0, be voots of infinitely many trinomials ax™ - bx™ - c,
and let |01| # |62|. Then either 07" and 6% ave veal infinitely often, or 0% and
65 arve veal infinitely often.

Proof. We may assume that m - n <n for infinitely many of the trinomials
ax™ - bx™ - ¢ of which 0; and 6, are roots (otherwise, consider Gil, 951, and

the corresponding trinomials). We also assume that | 01 I > | 0, I . Then a simple
computation shows that

m m
p_ 01 -0z
E" n _,n

61 92

This implies that

(1) |sin((m - n)arg Gl)l < AN

in other words,

|(m - n)log 6; - (m -n)log|6;]| < e™ME

for some € > 0. Now, by [2 , Theorem IV, p. 34], we conclude that 6; and |9 1 | are
not multiplicatively independent. Thus 9‘11 is real for some integer power d. In-
equality (1) thus shows that 67" " must be real for infinitely many trinomials

ax™ - bx™ - ¢c. But since

0] =——-—— and 6] =6y 67 "

both 9’1'“ and 9111 are real for infinitely many trinomials. Similarly, if we assume
| 0, | > | 6, |, then we see that 63" and 65 are real infinitely often.

3. REDUCTION TO THE CUBIC CASE

THEOREM 1. Let p(x) be a polynomial that divides ixfinitely many trinomials
with rational coefficients. Then theve exists a polynomial q ovey the vationals, of
degrvee at most 3, dividing infinitely many trvinomials over the rationals, and such
that p(x) divides q(x®) for some integer e.

Proof. We shall give the proof in two parts, depending on whether p has any
multiple roots. First assume that p has a multiple root ¢, and let 6 be any other
root of p. Let T(x) = ax™ - bx™ - ¢ be any of the trinomials divisible by p(x); then
T(0) = T(¢) = T'(¢) = 0. But these equations imply that
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Thus

where y = 0/¢. But a simple argument shows that this equation can hold for infinite-
ly m, n.only if |y| = 1. We conclude that |6| = |¢|. Since 6 was arbitrary, all the
roots of p must have the same modulus. On the other hand, T'(¢) = 0 implies that
¢™ -2 = R for some rational number R. But this implies that ¢™ and ¢" are ra-
tional, and hence ¢¢ is rational if d is the greatest common divisor of m and n.
Now let 6 be any other root of p(x); then, by Lemma 1, 63 = ¢4, Thus if e is the
greatest common divisor of all the exponents m and n that appear in trinomials
divisible by p, then allthe roots of p are also roots of some polynomial x© - h,
where h is a rational number.

Observe that trinomials can have double roots at most; since p has a multiple
root and divides some trinomials, p(x) must divide (x - h)%2. Moreover, (x - h)?2
clearly divides infinitely many trinomials. Therefore the proof is complete if p has
a multiple root.

Now assume that p has only the simple roots 6;, 8, -+, 8, and that p has
rational coefficients. There are two cases to consider, depending on whether these
roots lie on one or two circles (Lemma 2). The proof in the one-circle case is es-
sentially a simplified version of the proof in the two-circle case, and we omit it.

Thus we assume that |6,| # |6,|, and we appeal to Lemma 3 to conclude that
p(x) divides an infinite number of trinomials ax™ - bx™ - ¢ such that 6" and 67,
say, are real. Let e be the greatest common divisor of the exponents appearing in
these trinomials. Let 6;, 0,, ---, 6, have the same modulus, and let 04;, -*-, 6
have the same modulus. The argument used to show that all the roots of p satisfy
the equation x® - h = 0 when p has a multiple root can be applied to this case to
show that 6;, ---, 6, satisfy an equation of the form x® - h = 0, where h is some
fixed real number.

Now we must see what happens to the numbers 68.;, ***, 6, when we raise them
to the power e. Let ax™ - bx" - ¢ be a trinomial divisible by p(x), and let d be the
greatest common divisor of m and n. Then, by Lemma 1, 64, ,, ---, 62 are all
equal or assume one or the other of two mutually conjugate values. If there exists a
trinomial such that the greatest common divisor of its exponents m and n is e, then
the numbers 6,43, ***, 6, are all roots of a polynomial x® - k with k a fixed real
number, or else they are roots of a polynomial (x* - k)(x® - k) for some complex
number k. Even if e is not the greatest common divisor of the exponents of some
trinomial, one can easily show that either one of the above alternatives holds, or
else there is some power d such that 9$+1 A 03 are all real and have the same
value.

Thus essentially only two cases remain: p(x) divides a polynomial qa(x€), where
either

a(x®) = (x®-h)(x®-k) or q(x°% = (x°-h)(x®- k)(x°-k).



POLYNOMIALS THAT DIVIDE INFINITELY MANY TRINOMIALS 343

It is clear from our derivation that in either case q(x) divides infinitely many tri-
nomials; hence, to complete the proof of the theorem, we need only show that q(x)
has rational coefficients.

To this end, define
Q) = I (x - 69).
1

Then Q(x) has rational coefficients, since p(x) = Hii (x - 6;) does. But it is appar-
ent that

- Q(x)
1) = Feara), @)

. Therefore q(x) has rational coefficients and the proof is complete.

4. THE CUBIC CASE

The significance of the preceding theorem is that it reduces the problem of find-
ing polynomials that divide infinitely many trinomials to finding cubic polynomials
that divide infinitely many trinomials. Furthermore, by using the transformations
x — 1/x, x — ¢x (c rational), we may restrict our search to cubics q(x) satisfying
the following conditions:

(i) a(x) =x>+Ax%2+Bx+C (A, B, C rational integers);
(ii) q has three distinct roots 6, s, t such that s =t and 6 > ls[ ;
(iii) There is no rational integer that divides 0, s, and t.

The following theorem summarizes the results we have obtained regarding cubics
that divide infinitely many trinomials.

THEOREM 2. Let q(x) be.a cubic polynomial, satisfying conditions (1), (2), (3)
above and such that s #t Jor all integevs d. The following arve necessary condi-
tions that q(x) divide infinitely many trinomials:

(1) Theve exist mutually velatively-prime ideals P, Pg, Py, P in the splitting
field of o(x) such that

(6) = PP,P;, (s)= PP;Py, (t)=PPyP,,

wheve (B) denotes the principal ideal genevated by B.
(2) P3 = (c), wheve ¢ is a positive vational integev such that cl/3 < Isl < 0.

Remarks. The first condition and the condition that P> be a rational ideal can
be expressed directly in terms of the coefficients of q(x). However, the resulting
conditions are somewhat uninformative and throw no new light on the problem. As a
second remark, we point out that these results can be slightly refined in case q(x) is
reducible (in other words, if 6 is a rational integer). These refinements do not
make the problem significantly easier, and we shall omit all of them except to re-
mark that in the reducible case ¢ = 1. Finally, we observe that, by the inequality on
¢, cubic Salem numbers cannot be roots of infinitely many trinomials. (The Salem
(or PV) numbers are real algebraic integers greater than 1 all of whose algebraic
conjugates are less than 1 in absolute value. Thus, since cubic units are Salem
numbers, condition (2) proves the conjecture for algebraic units.)
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The proof of Theorem 2 depends on a number of lemmas. In all the lemmas,
8, s, t refer to the three roots of a cubic q(x) satisfying conditions (i), (ii), (iii).
LEMMA 4. Either s¢ =4 Jor some vational integer 4, or
m tmll / m _

lim |s
Im— oo

|s|.

P]'roof. This is merely a special case of the theorem in Gelfond [2, Theorem IV,
p. 34].

LEMMA 5. Assume that sd # td Jor all positive 4, and let m and n be the ex-
ponents in some trinomial divisible by q(x). Ther m - n = o(m).

Proof. Observe that if m and n are exponents in a trinomial ax™ - bx™ - c,
then

oM - _ g7 -t b
2"

6" - s® s™ -t
But
1
— m-n
em - Sm m L
en _ sn ~ 0 4
while
1
—— m-n -
s - m “m
o ~ [sl by Lemma 1.
s -t
Hence
m-n m-n
6 ™ ~ |s] .

Since 8 # |s|, we conclude that m - n = o(m).
LEMMA 6. 6 divides st; s divides t0; t divides 0s.
Proof. E m and n are exponents in a trinomial divisible by 6, s, t, then
1 1 1
" s* t" | =0.
o s

— I Jpproaches 0

In particular, 6@ must divide s* & t™ ™ - s™2), But since —

as n approaches infinity, 6 divides st for n sufficiently large. The other results
follow by symmetry.

LEMMA 7. Let Q be a prime ideal in the splitting field of q(x), and let sd =44,
Let Q%|| 0; that is, let Q| 0 but Q™'Y 0. Similarly, let QF||s and QY || t. Then
one of the following possibilities must occur:
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a=8>y, B=ry>a, vy=a2>4.

Proof. I all three of the inequalities are false, we may without loss of generality
assume that @ > 8> v. Then the fact that D = 0 in the last lemma implies that if
k = m - n, then Qontrn | s™ 2 (&% - sK); hence

(F) Q(@-A | & - s*.

But k = o(n) by Lemma 5. Therefore, condition (F) implies that s and t are mulfi-
plicatively dependent [2, Theorem V, p. 35]. But s and t are conjugates of each
other; therefore sd = td for some positive integer d.

We are now able to prove Theorem 2. Before giving the proof we point out that
if sd =td for some integer d, then q(x) divides infinitely many trinomials auto-
matically. This is true because s = td imglies that g(x) divides some quadratic
in x9 with rational coefficients (namely, (x9 - 69)(xd - s9)).

Proof of Theorem 2. Lemma T implies that if Q is some prime ideal that
divides one of the three roots of the cubic, then Q divides at least two of the roots.
Therefore, if p is some rational prime that divides 6st, then p divides the dis-
criminant A = (0 - s)® (s - t)2 (t - 0)%, since each ideal in p divides at least one of
the factors in A. It follows that each rational prime that divides 6st must ramify
(see [3, Satz 115]).

Now there are only four distinct ways in which a prime p can ramify and still
satisfy the conditions imposed by Lemma 7. These ways are listed below (we use
Q, Qg, etc. as prime ideals in the splitting field of q(x)):

(1) ) = Q°,

(2) ® =Q°,

(3) ®) = °Q,Q,.Q,,
(4) (@) = Q5Q2Q;.

The third way of ramifying can not occur under the conditions of Theorem 2.
To see this, let p?|| 6st. Then, by symmetry, Q|| 0, Q®|| s, and Q|| t. But this
implies that Q divides the rational integer 6 + s +t. Therefore p divides 6 +s + t.
It follows that Qg divides 6 + s + t; hence, by Lemma 7, Qg divides 0, s, and t.
Thus h > 3 (since QS divides 0st). All of these results together imply that
(p) = Q& Qg Qs Q; divides 0, s, and t. But this contradicts the assumption that 0,
s, and t are not all divisible by a rational prime. Therefore the third way (3) of
ramifying does not occur.

By symmetry and arguments similar to the one just given, the three other types
of ramification lead to the ideal factorizations listed below, where pt|| ost; (- - -
means other ideal factors).

(1) (6) = - - -, (s) = P~ - -, ) = "~ - -,
(2) (6) = Q- - -, (s) = Q*- - -, t) = Q- - -,
(3) 0 =Q%Qt- - -, (8=QrQh---, ® =QpQL- - -
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If we now combine these factorizations for all the primes p that divide 0st, we
obtain the ideal decomposition given in Theorem 2, namely

(G) (6) = PP, P, (s) = PP; Py, . t) = PPyP,,
and P> = (c), where P, P., Py, P, are relatively prime, and where c is the largest

divisor of Ost that consists solely of powers of primes p such that (p) = Q3 or Q6 .
This completes the proof of the first part of the theorem.

The proof of the second part relies heavily on the factorization (G). We begin
the proof by defining the linear recurrving sequences {a,}, {B,} , 1vat
(n=0,1, 2, ---) by means of the equations

2
" = o, 0 +8,0 +vy,,
Sn=ansz+ﬁns+')’n, (n=0, +1, +2,---).
= t?+8, t+y,

The following facts are elementary consequences of this definition:

1) a,, B,,and ¥y, (n=0, 1, ---) are rational integers;

b

& - o
(2) anpy - 0oy = 5~

(3) lim a,/6" = B for some nonzero constant B;
n—-+co

(4) q(x) divides a trinomial with positive exponents m and n if and only if

ap Opil
= 0;

U %m+l
(5) Py, P, P, are relatively prime to all a, (n>0).
(6) Let P() pe defined for n = 0, 1, --- as the part of the prime factorization of
a,, that contains exactly those primes p that divide c. Then
lim [P(I,l)]l/n = 01/3 = |p|.
n— o

(Actually this result (6) is not quite elementary, since it depends on [2, Theorem VI,
p. 35].)

Define Q as the greatest common divisor of «, /P(n) and an.,.l/P(nH) (n > 0).
We should like to show that Q satisfies an inequality of the form

(E) QSAgn/ZIPI—n/z

for some constant A. To prove this, we observe that since Q divides @, and «,41,
it also divides the three numbers
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(s -t)/(s -t) (=, 4 - 000), (6™ - t™)/(6 -t), and (0™ -s™)/(6 - s).

It also follows from (5) above that

QPP |s” -7, QPPY|{" -7, QP P]|6"-s".
Therefore

Q3| p|37/2(p3 P2 P2 P2)/2 | (s* - ) (™ - 6™) (0™ - 7,
which is to say that

Q31137 2(gst)™/2| (5™ - ) (* - 6™) (6™ - 7).

The rational integer [(s® - %) (t® - 67)(6™ - s™)]? is less than some constant times
|s|?™ 64 . Thus

Q3|P|3n/z (ast)“/z < Als|®e?® = A(Bst)n/z g3n/2

for some constant A; inequality (E) follows.

I is also possible to prove the similar result
(EY) R < A' 8%/2 |p| /2

for sozn% constant A, where R is the greatest common divisor of «,/ P(®) ang
am/ P\ | We omit this proof, since it is similar to the one just given.

We are now in a position to complete the proof of Theorem 2. We observe that if
m and n are exponents in a trinomial divisible by q(x) then, since

dn  dntl
= O’

O %mitl

any integer that divides o, must divide a,, an+1 . Hence, for n sufficiently large
and for B'= lim |, /26"|,

B' 6" |o,| SP(H)QR.

By combining this inequality with inequalities (E) and (E') and property (6) above, we
conclude that as n tends to infinity,

Ql/n - 61/2 |P|-1/2 .

n _in
Now we apply Roth’s theorem to a,4; - 8a, = SS - E to obtain the inequalities
n s -7 _ 1
cls|® > I—S—_—t—l = |apty - 0on| > ay (o /P QEFEm (C constant),

where &(n) = o(n). Therefore, by extracting nth roots, we deduce that
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2+£(n) 2+&(n)
|s| > lim (e * [ *®

= ai/n

= |p].

Thus, the proof would be complete if we could only show that the absolute values
of s and P are distinct. But were the two absolute values equal, it would follow
easily that s® = t6. Thus, p would divide a quadratic in x®. Therefore, |s| > |P|
and the proof of Theorem 2 is complete.

5. CONCLUDING REMARKS

We conjectured at the beginning of this paper that polynomials over the rationals
dividing infinitely many trinomials divide a quadratic in x* with rational coefficients,
for some r > 1. We then should like to know what the divisors of quadratics in x*
can look like. In the linear case, we know these divisors quite well, from Capelli’s
Theorem; see Nagell’s book ([4, Chapter VIII]) for this and related results otherwise
hard to find in one place. A similar class of results should exist for quadratics in

T but we have not pursued this matter.

Finally, we mention a generalization of our conjecture, which we state as a con-
jecture even though the present conjecture has not been settled: I a polynomial with
rational coefficients divides infinitely many i-nomials (i or fewer nonzero coeffi-
cients), it divides a polynomial of degree less than i in xT for some r > 1. (The
converse of this is true here as in the trinomial case.)
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