POLYNOMIALS ORTHOGONAL OVER A CURVE

Peter L. Duren

Let p(x) be a non-decreasing function whose moments
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all exist, and let Py(x), P;(x), P,(x), :-- be the unique polynomials for which

Sw P_(x) P (x)du(x) = 6,0,
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and
—— n see
(1) P (x) =k x + -, k >0.

It is well known [3, p. 157] that these orthogonal polynomials satisfy a recursion
relation of the form

(2) a,P, 1(x)+ (b, - x)P(x)+ c P, 1(x) = 0,

where a, >0 (n=1, 2, ---). Conversely, there is a theorem of Favard [2] (see [4,
p. 349]) that any sequence of polynomials P,(x) with the structure (1), generated by
a recursion relation (2) with a, > 0, must be orthogonal with respect to some non-
decreasing function u(x).

It is interesting to ask whether there is any analogous theory for polynomials
orthogonal over a rectifiable Jordan curve in the complex plane. There are some
examples of polynomials that are orthogonal over ellipses and satisfy relations

(3) a, Pn_1(Z)+ B, - 2)p,(2) + ¥ Ppi(2) =0 (=1, 2, ).

The polynomials p,(z) = z™ are of course orthogonal over any circle with center at
the origin. Less trivial examples are provided by the Chebyshev polynomials of the
first and second kinds, which are orthogonal with respect to certain positive contin-
uous weight functions over a family of confocal ellipses [8], [6], [1]. (These are the
Jacobi polynomials with parameters o = 8= -1/2 and «a = 8 = 1/2, respectively.)
Nevertheless, the simultaneous occurrence of orthogonality and a recursion relation
(3) is a very special phenomenon, as the following theorem indicates.

THEOREM. Let C be an analytic Jovdan cuvve in the complex plane, and let
w(z) be a positive continuous function on C. Let p(z), py(2z), - be the ovthogonal
polynomials novmalized so that

S pn(z)pmfz)w(z) ldz| = Onm >
C
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p,(2z) = k z°+--, k,>0.

Suppose furthey that the p,(z) satisfy some vecursion velation of the form (3). Then
C is an ellipse, and the sequences {an}, {Bn}, {'yn} converge to finite limils.

Proof. Let us begin by mentioning a few basic facts about polynomials orthogonal
over a curve. It is readily seen, even if C is merely rectifiable, that all the zeros
of p,(z) must lie inside the convex hull of C. (¥ p,(a) = 0, then p,(z) = (z - a)q(z),
where q(z) is a polynomial of degree n - 1. Thus p,(z) is orthogonal to q(z), which
gives the result.) If C is analytic, it is possible to say more: for sufficiently large
n, all the zeros of p,(z) are exterior to any preassigned closed subdomain of the
exterior of C. This follows from Szegd’s asymptotic formula for p.,(z) as n — o,
valid for z in the exterior of C [5], [6], [7, p. 368]. The asymptotic formula im-
plies, further, that for each z in the exterior of C,

. p +1(Z)
(4) lim __TTn = Y(z),
n—» co an
where
w=t[/(z)=cz+co+clz'1+czz'2‘+"', c>0,

is the (normalized) conformal mapping of the exterior of C onto |w| > 1. The rela-
tion (4) is the basis of our proof.

Suppose first that the sequences {a, }, {B,}, {¥n} are bounded. Choose a sub-
sequence {n,_} such that

as k — «, According to (3),
(5) z = an pn-l(z)/pn(z) + Bn + ann'i'l(z)/pn(z) .

Now let n tend to infinity through the sequence { nk}. In view of (4), we find
z = a/Yy(z) + B +vyz).

In other words,

¢(w) = a/w+p+yw  (lw|>1),
where ¢(w) is the inverse of y/(z). This shows that C is an ellipse. If there were
some other subsequence through which «,, 8, , ¥, tend to different limits «, 8, v,
it would follow by the same argument that

Hw) = a/w+B+yw.
But the coefficients of ¢(w) are unique. Thus
o, 2 a, f,—B, YnTV.

To finish the proof, we now show that unboundedness of any of the sequences
{a,}, {Bn}, {7, } would lead to a contradiction. Suppose first that {a,} is
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unbounded, and select a sequence {n,} such that o, * 0 and @, — . There are
four possibilities:

(1) {8y / oznk} and {-ynk /o nk} both bounded. Here, passing to a further sub-
sequence, we find by (5) that

1/y(z) + B+ Cy(z) = 0,

which is impossible.

(ii) { Bnk / ank} bounded, {'yRk /a nk} unbounded. Here there is a further subse-
quence through which o /v, — 0 and B, /v, — 0. Hence, by (5), ¥(z) = 0.

(iii) {Bnk/ ank} unbounded, {ynk/ oznk} bounded. Here, through some further

subsequence, @, /8, — 0 and 7,/B, — 0. Relation (5) thus leads to the conclusion
0=1.

(iv) {6nk/ ank} and {ynk/ank} both unbounded. We may assume, after pass-

ing to a further subsequence, that
Bnk/ank — oo, ynk/ U =, Bnk /'ynk — B (B finite or infinite).

If B is finite, (5) shows B+ y(z) = 0. K B = «, one concludes that 0 = 1.

We have proved that the sequence {@,} must be bounded. A similar argument
shows the sequence {'yn} is also bounded. Finally, if there were a subsequence
{Bnk} tending to infinity, (5) would imply 0 = 1. Hence {B,} is bounded, and the

proof is complete.

It seems likely that the theorem remains true for an arbitrary rectifiable Jordan
curve. However, the validity of formula (4) in this more general situation appears to
be an open question. For present purposes it would suffice to prove (4) for large z.

Our result bears on the theory of the invariant subspaces of tridiagonal opera-
tors, as presented in [1]. K shows that the class of “regular” tridiagonal operators is
not so general as it might appear. This has no effect, however, on the discussion of
the invariant subspaces of the multiplication operator in H,(D) [1, p. 244].

I am grateful to Professor Szego for having suggested the use of the asymptotic
relation (4).
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