ON A CLASS OF MINIMAX PROBLEMS IN THE
CALCULUS OF VARIATIONS

J. Warga

1. INTRODUCTION

We shall consider problems of the calculus of variations in which a functional is
defined by a system of n ordinary differential equations containing “control” func-
tions and parameters and satisfying prescribed boundary conditions. We wish to de-
termine the minimax of this functional, the maximum being taken over permissible
values of the parameters, and the minimum being taken over permissible choices of
the control functions and of the boundary conditions. These minimax problems con-
stitute a generalization of the classical problems of the calculus of variations such
as the Bolza problem [1], [4], [5], [6] and of the more recently considered “control”
problems [7], [2], [8], [9], [10], [11], in all of which the minimum (respectively, the
maximum) rather than the minimax is the subject of the investigations. Our results,
however, are restricted to those problems in which either the set of parameter
choices is finite, or the “target” set of permissible endpoints has dimension n.
Whether the results are valid without either of these two assumptions remains for us
an open question.

Minimax (or maximin).problems of this type may arise, in particular, when there
is only incomplete information about certain parameters of the problem, or when one
of the players, in a zero-sum game, must disclose his strategy in advance. We may
consider, as an example, a chemical reaction of fixed duration, used to produce a
particular chemical substance. The reaction is described by a system of ordinary
differential equations involving time-dependent concentrations of reactants and their
derivatives, as well as the time-dependent fuel flow and certain fuel parameters.
The reaction may be “controlled” by varying (with time) the flow of the fuel into the
furnace. The fuel parameters are known within certain limits only. A maximin
problem will arise if a decision is made to control the fuel flow in such a manner as
to maximize the guaranteed yield (for all possible values of fuel parameters) of the
desired chemical substance. )

Our arguments are based on previously obtained results [9], [10], and the method
of proof, resembling somewhat the approach of [11], is by passage to the limit, start-
ing with the case where the set of parameter choices is finite. As in [9], [10], and
[11], and in the spirit of the generalized-curve approach of L. C. Young [12], we re-
place the original problem by a “relaxed” (or generalized) problem. Our main re-
sults are contained in Theorem 3.1, which states that, subject to rather general as-
sumptions, the relaxed problem has a solution, that this solution can be uniformly
approximated with original controls, and that this solution satisfies “constructive”
necessary conditions for minimax which generalize the classical Weierstrass E-
condition and transversality conditions.
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2. DEFINITIONS AND ASSUMPTIONS

Let R be a compact Hausdorff space, E,, the euclidean n-space, T the closed
interval [ty, t;] of the real axis, V an open set in E,, B, and B; compact sets in
V, and P a compact set in some metric space. We are given the function

g(x, t, p, p) = (gl(x, t, p, p), -+, 7%, t, p, P))

from VXT X PXR to E,, and it is continuous on R for every (x,t, p) € VX T X P,

Definition 2.1. We shall refer to a function p(t) from T to R as an original
control, and we shall say that it is an admissible oviginal control if there exist a
point by in Bg and a function x(t, p) from T X P to V that is absolutely continuous
on T for every p in P and such that, for every p in P,

(2.1.1) TP =i p) = g(xtt, p), t, b, A(t)  m.e.in T,

(2.1.2) x(ty, p) = by,
(2.1.3) x(t;, p) € By

(throughout the paper, a.e. in T or measurable on T means with respect to
Lebesgue measure).

We shall say that p(t) isoa minimizing oviginal control if x° = Max, p xl(t1 , P)
exists and p(t) minimizes x° among all admissible original controls.

We next define relaxed (or generalized) controls. This concept, patterned after
Young’s definition of generalized curves [12, p. 231], is introduced to simulate
“limits” of rapidly oscillating original controls.

Let measurable sets in R be the Borel sets, and let S be the class of probability
measures over R. Then o € S if o is a completely additive, nonnegative set func-
tion defined on Borel sets, with 0(R) = 1. Let

f(x, t, p, 0) = S g(x, t, p, p)do  for (x,t,p,0) e VXTXPXS.
R

Definition 2.2. We shall refer to a function o(t) from T to S as a relaxed con-
trol, and we shall say that it is an admissible velaxed control if there exist a point
by in By and a function x(t, p) from T X P to V that is absolutely continuous on T
for every p in P and such that, for every p in P,

(2.2.1) gi(;—":—p—) = x(t, p) & f(x(t, p), t, p, 0(t)) a.e.in T,

(2.2.2) x(tg, p) = by,
(2.2.3) x(t,, p) € B;.
A function o(t) from T to S is a minimizing relaxed control if
x9 = Max xI(t;, p)
peP
exists and o(t) minimizes x° among all admissible relaxed controls.

We observe that every original control is also a relaxed control.
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Assumption 2.3. There exist a finite or denumerable collection of disjoint

|
measurable subsets T, (r=1, 2, --) of T such that T' = U|1. T, has measure
t; - ty, a positive constant c, a function g(h) (h > 0) converging to 0 as h — O+,
and a compact set D C V such that the following six conditions are satisfied.

(2.3.1). The functions g'(x, t, p, p) and 9agi(x, t, p, p)/ox} (i, j=1, *--, n) exist
over VX T' X P X R, and over that set they are continuous functions of (x, t, p) uni-
formly in p, are uniformly continuous in p, and are continuous in p for each
(%, t, p). Furthermore, |g(x, t, p, p) - g(x, t', p, p)| < e(]t - t'|), provided t and t
belong to the same set T, (r=1, 2, ---) (lgl-’frepresents the euclidean length of g).

(2.3.2) |g(x, t, p, p)| <c and |gx(x, t,p, p)| <c on VXT'xPXR (here gy is
. . n . .
the matrix (8g'/8x’) (i, j =1, -+, n), and |g,| = Ei,j=l |agt/axi|).
(2.3.3) There exists at least one admissible relaxed control.

(2.3.4) ¥ x(t) is an absolutely continuous function from T to V such that
x(t) = f(x(t), t, p, 6(t)) a.e.in T, x(ty) € By, x(t;)e€ By,

for some 0(t) from T to S and some p in P, then x(t) € D for t € T.

(2.3.5) By = cy(Cy) and B; =c4(C,), where C, and C; are compact, convex
euclidean sets and c;(§,) and c,(£;) are continuously differentiable homeomorphic
mappings of C; and C; onto B; and B, , respectively.

(2.8.6) The set C; (hence also B;) is of dimension n, and the matrix
A 7 1 1
g = (0cj/e8) (i, =1, *-, n) is nonsingular over C,.

3. EXISTENCE OF MINIMAX. APPROXIMATIONS WITH
ORIGINAL: CONTROLS. NECESSARY CONDITIONS

We now state our principal results.

THEOREM 3.1. Let Assumption 2.3 be salisfied, and let 1(x, t, p, 0) be defined
as in Section 2. Then the following conclusions hold.

(3.1.1) There exist a minimizing velaxed control o(t), an associated point
by € By, and a function x(t, p) satisfying Definition 2.2. The vector function
f(x, t, p, o(t)) and the matvix function £ (x, t, p, o(t)) are measurable on T for
every (x,p) € VXP.

(3.1.2) There exist a sequence p (t), p,(t), -~ of original controls and a sequence
of functions x,(t, p), x,(t, p), *** from T X P to V, absolutely continuous on T for
every p in P, such that

dx 4(t, p) .

——s(it,_ = g(xs(t’ p): t, p, ps(t)) a.e.in T (p € P;s=1,2 "'),
lim x(t, p) = x(t, p) wuniformly on T X P, and
85— ©0

g(x, t, p, p,(t)) is a measurable function of t for all (x,p) € VXP (s=1, 2, ).

(3.1.3) There exist



292 J. WARGA -

a) a measurable subset T* of T of measure t; - t,

b) a nonnegative regulay measure w defined on Borel subsets of P,
¢) w-integrable functions YO(p) and W(p) = Wi (p), -+, ¥ (D)),

d) a continuous function £(p) from P to C,
" e) a point EGCO, ‘

f) continuous functions hJ(t p) (=1, *>*, n) from T X P to E_, absolutely
contmuous on T for each p in P,

such that
(3.1.3.1) w(P) > 0; w(U) = 0, where
={pe P| x(t, , p) € Interior of B; and xl(tl , p) < Max xl(tl, p"};
p'eP
n

2 |zpj(p)| =1 a.e. with respect to w; z,l/O(p) >0 on P and z,DO(p) =0 a.e. in Z
j=0
with respect to w, where

= {p e P| x'(t;, p) < Max x'(t,, p"};

plep .
(3.1.3.2) d_x(;_;zi) - #(x(t, p), t, p, o(t)) on T*X P,
El_l_f;t_p)_ - iy (x(t, p), t, D, o(t)h(t, p) on T*XP (j=1, >, n),

x(tg, p) = cy(E) = by € By, X(tl, p) = c,(((p)) € B, for pe P,
hj(t(), P) = 6J (p € P; j = 1’
1
where f;f is the transpose of the matrix f =(af ) i,j=1, , n) and 6j is the

j-th column of the unit matrix of order- n;
(3.1.3.3) (Weierstrass E-condition)

n

{ Yo p)-1x o), t, p, o (1) do
P

= Min ES IPJ(p)h(t p)-f(x(t, p), t, p, 0)dw  on T*;
cgesS j=1

(3.1.3.4) (Support (transversality) conditions)

§ v@aw-coe®E = min S Y(p)dw - cq £(B)E,
P £eCy



MINIMAX PROBLEMS IN THE CALCULUS OF VARIATIONS 293

and

(wo(p) 8, - 27 Yip)hy(t,, p))°cl,g(§(p)) E(p)

j=1

n

= Min (wo(p) 6, - 2 th(p)hj(tl, p)) 'cl,g(g(p))g a.e. with vespect to w,
§€C1 j=1

aci

ag? (i=1,-,n; j=1, ---, ¢; £ is the dimension
0

(i,j=1, -, n).

where € £ is the matrix (

acil

The above theorem, which we shall prove in Sections 4 to 8, remains valid when
Assumption (2.3.6) is replaced by the assumption that the set P is finite. We can
easily deduce this modified theorem from Lemma 4.1 and from the proof of state-
ment (3.1.2) in Section 8.

We are unable to make any assertions about the validity of Theorem 3.1 when the
set P is infinite and the set B; is of dimension £' <n. The proof of Lemma 6.1
breaks down when ¢' < n, and the possibility remains that the measure w is identi-
cally 0. In that case, the necessary conditions for minimax, described in (3.1.3),
become trivial.

Neither can we shed any light on the following question: under what conditions
does there exist a finite subset P' of P such that a relaxed solution of our minimax
problem with P' replacing P is also a relaxed solution of the original problem? We
can easily verify that P' exists in some rather simple situations, and it seems that
the existence of P' characterizes a large class of minimax problems; but we have
been unable to reach any definite conclusions.

Finally, we observe that several related minimax problems can either be reduced
to the problem described in Definition 2.2 or can be handled by the same methods.
Consider, as an example, the case when condition (2.2.2) is replaced by the condition
x(ty, p) = bo(p) (p € P), where by(p) is a given function from P to By. We may
reduce this new problem to the old one by setting tB =t, - 1,

g(x, t, p, p) =byp) (ty <t <ty; (x,p,p) € VXPXR),

By = {(0, -+, 0)}, and replacing t, and By by t§ and B}, respectively. If condi-
tion (2.2.2) is replaced by the condition x(ty, p) € By (p € P), then a slight modifi-
cation of the arguments in Sections 4 to 8 leads to the conclusion that there exists a
continuous function £(p) from P to Cy such that x(ty, p) = co(£ (p)) and

Y(p) - Co,g(g(p)) E(p) = Min ¥(p)-cq, g(g(p)) £  a.e. with respect to w,
£ecy

and these relations replace the first support condition in (3.1.3.4). Similar remarks
apply to problems of variable duration and to other related problems.
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4. FINITE SETS OF PARAMETER CHOICES

We shall devote the remaining sections of the paper to the proof of Theorem 3.1.
Our approach will be to consider first a minimax problem in which the set P of
parameters is replaced by a finite subset, and then to pass to the limit, letting the
finite subset increase monotonically to a dense subset of P.

Consider a finite set Q = {pl, p2,* Pat CP. We shall call a set of abso-
lutely continuous functions x;(t) (i=1, c)1 from T to V a Q-admissible sheaf

if there exist points e Co and £ € C1 (1 =1, «--, q) and a function o(t) from T
to S such that

%.(t) = f(x,(t), t, p;, O(t)) a.e. in T (i=1,-,q),
(4.0.1)

x(ty) = co(8), =x(t) =c () (=1, -, q).

A Q-minimizing sheaf is a Q-admissible sheaf that minimizes, among all such
sheaves, the value Max xl(t ).

1<iLq

We shall now show that a Q-minimizing sheaf exists for every finite subset Q of
P, and we shall describe some of its properties.

LEMMA 4 1 There exist a Q-minimizing sheaf x;(t) i=1, -+, q), points 3
and ij (i=1, -, q), and a functzon o(t) satisfying relations (4.0.1). Furthermore,
there ‘exist nomzegatwe numbers § (i= ., q) vectors §; (i=1, -, q) in E,

and absolutely continuous ﬁmctums h; J(t) (1 =1, +,q;j=1, ->-,n) from T to E,
such that

(4.1.1) B; 5(t) = -5, (x;(t), t, p;, o(t))hi’.(t) a.e. in T
(i = 1’ ..., q-; j= bl
. 1
where f;f is the transpose of the matrix fx-=(af ) i, ji=1, n),
(4.1.2) hi,j(to) = ﬁj G=1,-,n;i=1, ", q),
where Gj is the j-th column of the unit matyvix of orvder n,
(4.1.3) £2 >0 and &0 =04 x{lt) <x® (=1, -, q),
where x° = Max xil(tl),
1<iLq
' q q
(4.1.4) 2 treg fBE = Min 2 e (e,
i=1 £€eCy i=1

ocy
wheve cg ¢ is the matvix 5(85?) (i=1,,n; j=1, ", 8; £ = dimension of C)
) ,
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ii,j

(4.1.5) (tfa Z)th (tl))-cl,g('éi)éi

= Min ()5, - Z> Cih”(tl)) ci,gE)E (=1, q),
{‘:GCI AN

wheve ¢y, ¢ = (653) i, i=1, n).

(4.1.6) 505 tIh, (0)-£x0), t, p,, 0(t)
i=1 J= ?

q n
= Min 2J 2J th (t) f(x(t), t, p;, 0) a.e. in T,
oE€s i=1 j=1

(4.1.7) E 9 +Z) |c3|

(4.1.8) for all (%, p) € VX P and almost all t in T, i(x, t, p, (7)) is a meas-
urable function of T on T.

Proof. We observe that absolutely continuous functions x;(t) (i=1, -+, q) form
a Q-minimizing sheaf if and only if there exist absolutely contmuous scalar func-
tions xO(t), yi(t) (i=1, -**, q) on T such that x (tl) is minimum subject to condi-
tions (4.0.1) and

x0t) = o a.e. in T,

7' = 'z 0), t, p, ot)) a.e. in T (i=1, -, q),
(4.1.9) .

yit)) < x%;) i=1, -, q)),

yity) = cg () (i=1,-,q.

The problem of minimizing xo(tl) subject to (4.0.1) and (4.1.9) is a relaxed vari-
ational problem [9, p. 111] in (qn + 1)-dimensional euclidean space. By Assumption
(2.3.3), there exists at least one function

°®), y1(©), -+, yUD), x, (1), -, x4(t))

from T to E; X <=« X E; X V X +*- X V satisfying relations (4.0.1) and (4.1.9), and by
Assumptmn (2 3.4) every such function must be contained in the compact set
JXJIX*"XIXDX-++XD, where I= {x1| x € D} and J is a compact interval
containing I in its 1nter10r I follows then from [9, Theorem 3.3, p. 123] that there
exists a minimizing function, hence there exist absolutely contmuous functions x;(t)
(i=1, -, q), points fe Co and £; € Cl (i=1, ---, q), and a function o(t) satlsfy—
ing relatmn (4.0.1) and minimizing x (t
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We next consider statement (4.1.8) that f(x, t, p, 0(7)) is a measurable function
on T for all (x, p) € VX P and almost all t in T. The proof of this statement is
identical with that of [9, Theorem 4.1, p. 124] except that the Banach space # de-
fined in this reference includes now the functions gi(x, t, p, p) for

(x,t,p) e VXT'XP

(where T' is as defined in Assumption 2.3).
By [9, Theorem 4.1, p. 124], the function

1 1
(0: f (xl ’ t’ pl ’ 0)7 °%y f (xq’ t’ pq’ 0); f(x]_; t’ pi, G)’ %y f(Xq, t’ pq, 0))

from VXV X--XVXTXS to Enq+q+1 is a “proper representation,” and we may
therefore apply Theorem 6.1 of [10, p. 142].

Let

B'

0 = 1oy, by, ==, by) €E | by = cg(E)+cg £(E)- (£ - E) for

some £ € Cy}

and

B'l},i = {cl(gi)'l'cl,g(gi)'(& - '§1)| £ e Cl} (=1, -, q).

Then we can easily verify that the set IXJI X e XJIX B(') is bounded and convex,
contains the point

1(tg) = (O(tg), y'(tg), =+, yHUEg), Xy (tg), =, X4(to)),

and can be mapped, by a continuously differentiable transformation with fixed point
Z(ty) and a Jacobian equal to the unit matrix at z(ty), into the set of permissible
initial conditions. Similarly, the set J X J X «-- X J X B} - X B} ,q 1s bounded
and convex, contains %(t;) = (x0(ty), y'&ty), -+, x q(t1), and can be mapped, by a
continuously differentiable transformation W1th f1xed point z(t;) and a Jacobian
equal to the unit matrix at z(t;), into the set of permissible end conditions. Thus

= (XTI X XTI XBY)X(IXTI X XIXB] | X XBj )

adheres at (z(ty), z(t;)) [10, Definition 2.2, p. 131] to the set of permissible boun-
dary conditions. )

Since

xo(tl) = Max xg(tl) and x(t;) € D
1<i<q .

if x(t) is the minimizing curve, we see that x%(t;) € I. Thus x%t;) # Min J. I fol-
lows then from [10, Theorem 6.1, p. 142] that there exists an absolutely continuous
function (y(t), y1(t), *--, YA(t), z,(t), -, z4(t)) (corresponding to the function z(t)
referred to in [10, Theorem 6.1]lsuch that
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y({t) =0 a.e. in T,

Yit) =0 a.e.inT (i=1, -, q),

(4.1.10) 1 .

2;(t) = -fe(x;(t), t, b, oWV - £ (x;(t), ¢, by, 0 () 24(t)

a.e. in T (i=1, -, q),

q

27 ()6, +z,(t) - £(x,(t), t, by, O 1))

i=1
(4.1.11)

q .
= Min 27 (X(t) 6, +z,(t))-f(x,(t), t, p;, ) a.e.in T,
g€es i=1

(4.1.12) Y(tg) x°(ty) = Min ¥(t,)&°

geJ

@113 D (r'(ty) 0y + 2;(ty)) " €o,£(E) E = Min > (r(ty) 6, + 25t ) - e £(B)E,

i=1 tec, i=1
q - -
(" - e N0 - 20 ¥(E) Vi)
i=1
(4.1.14)
= Min (c* - 'y(tl))go -2 'yi(tl)ni for some i;’*z 0,
n <§ i=1
77161 g €3
q q
(4.1.15) - 20 zity)ey p(B) B = Min §- 20 zi(ty) ey g5 65
i=1 £;€Cy i=1
(4.1.16) lyw)|+2 { e+ 2 |zw] )0 @eT).
i=1 j=1

Since xo(t1), being in I, is in the interior of J, (4.1.10) and (4.1.12) yield the
identity y(t) =0 (t € T). Also, by (4.1.10),

7H(t)

Let now EO = 'yi(t ) and § = CO 6, +2z4(ty) (i=1, -, q), and let absolutely con-
tinuous funct1ons h; (t) =1, -, q, j=1, ---, n) from T to E_ be solutions of
equations (4.1.1) and (4.1.2). The latter system is now defineq, smce we have proved
the existence of x;(t) (i=1, *»-, q) and o(t) and have shown that x;(t) €e DC V. It
has a unique solution, since by Assumption (2.3.2) and by the definition of f(x, t, p, 0)
the matrix f (x;(t), t, p;, 0(t)) has a norm not exceeding c and, as an easy conse-
quence of (4.1.8) and of Assumption (2.3.1), this matrix is measurable.

n

Yity) =vit,) (e T;i=1,°, ).
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We easily verify that, by (4.1.10), (4.1.1), and (4.1.2),

z,(t) + &) 6, = Eth ) (teT;i=1, -, q),

i™i,j

and that relation (4.1.13) 1mp11es (4.1.4). Furthermore, by (4.0.1) and (4.1.9),
yi(t) = xI(t) (t € T; i=1, -+, q), and thus, by (4.1.14),

E e () - x](t))) = , Min Z> e2=t,) - 1Y),

1716 J
which yields relation (4.1.3). Since, in (4.1.15), &, &,, , £_ are independent,

relation (4.1.5) follows directly. Relations (4.1. 6) and (4 1. 7) fiow follow from
(4.1.11) and (4.1.16) respectively. This completes the proof of the Lemma.

LEMMA 4. 2 Let x5(t) (i=1, **-, q) be a Q-minimizing sheaf, and let fe Co>
};‘ € C; (i=1, -, q), and the function o(t) from T to S be as in relations (4.0.1).
Let h; (t) be as in Lemma 4.1. Theve exist a positive number A and a compact
subset D 1 of V (both independent of Q) with the property that if the A-neighborhood
of Q contains P, then there exist uniquely defined functions x(t, p) from T-X P to
D, and hj(t, p) (j =1, ***, n) from T X P to E,_, absolutely ¢ontinuous on T fer
every p in P, and satisfying the conditions

x(t, p) = f(x(t, p), t, p, o(t)) a.e. in T (p € P)

(4.2.1) _
x(tg, p) = cy(é),
.ﬁj(t, p) = -fx (x(t, p), t, p, o(t)hjt, p) a.e. in T (pe P; j=1, -, n),
(4.2.2)

hJ(tO! p) = Gj (j = 1, %y n)’
(4.2.3) x(t, p;) = x4(t), hy(t, py) =h; jt) (e T; p;€Q j=1, -, n).

Proof. Let D be the compact set referred to in Assumption 2.3. Since DC V
and V is open, there exists a positive number «@ such that the compact set D; of all
the points within a distance @ of D is contained in V. Let c be the constant refer-
red to in (2.3.2).

By Assumption (2.3.1), there exists a positive A such that

ac

t
expolt; —fg -1 oF (%t p) e VXTI XR,

lg(x’ ta p, p) - g(x’ t’ p” p)l S

provided p and p' are within a A-neighborhood of each other in P.
Let now p € P, and let p; in Q be in a A-neighborhood of p. The system
x(t) = f(x(t), t, p, o(t)) a.e. in T,

x(t,) = c,(E)
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has a unique solution x(t) (as a_consequence of (2.3.1), (2.3.2), and (4.1.8)), and this
solution can be extended to the boundary of VX T. Assume, by way of contradiction,
that it cannot be extended beyond t (t < t;) and that therefore x(t) is on the bound-
ary of V. Then (4.0.1) implies that

x;(t) = f(x,(t), t, p;, o(t)) a.e. in T;
hence, by Assumption (2.3.2),
| 1x®) - 2,0 < =), t, p, 0@®) - £x(t), t, p;, o(b)]

+ |#(x(t), t, p;, o @) - £(x,t), t, p;, o ()]

< S le(x(t), t, p, p) - g(x(t), t, p,, p)| do(t)
(4.2.4) | R

+ .0 lexe), ¢, pg, p) - glx(6), £, by, p)| do ()

ac
exp c(tl - to) -1

< + c|x(t) - xi(t)I a.e. in [t0 , t].

This differential inequality, combined with the initial condition

implies that |x(t) - x4(t) | La (<Lt t), hence x(t) € D; , contrary to the assump-
tion that x(t) is on the boundary of V. Thus t = t; , and the system (4.2.1) has a
unique solution contained in D; for every p in P.

It follows from Assumption (2.3.2) that If (x(t), t, p, o(t))| < c on T' X P, and
from (4.1.8) that this matrix is measurable. Thus system (4.2.2), being Imear in hy,
has a unique solution for every p in P. Relations (4.2.3) can now be derived by
comparing system (4.2.1) with (4.0.1) and comparing system (4.2.2) with (4.1.1) and
(4.1.2).

5. PASSING TO THE LIMIT
Let A be the positive number referred to in Lemma 4.2, and let
A>81>82>"', g, > 0as s — .
Since the set P is compact, we can find, for every positive integer s, a finite subset

P, of P such that the £5-neighborhood of P, contains P. We may also assume that
PS C PS+1 (S = 1, 2, "').

For (t, p) e TXP, s=1,2,--,and j=1, 2, *>, n, let
x(t, p, s), hjlt,p,s), o, s), &)

represent the functions x(t, p), h; (t, p), and o(t) and the point £ defined in Lemma
4.2 for Q=P . By ‘subsequence” we shall henceforth mean “infinite subsequence.”
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LEMMA 5.1. The functions x(t, p, s8) and hj(t,p,s) (i=1, 2, =<, n; s =1, 2, --*)
are uniformly bounded and uniformly continuous on T X P, Over some subsequence
2 of the positive integers, they convevge to functions x*(t, p) and h’_'i‘(t, p)

(G =1, «=-, n) that are uniformly continuous on T X P.

Proof. Since, by Assumption 2.3, |g(x, t, p, p)| <conVXT XPXR, hence
|£(x, t, p, 0)] <c on VX T'x P x 8§, and since x(tg, p, s) = co(£(s)) € By, it easily
follows that the x(t, p, s) are uniformly continuous in t on T X P X {1, 2, .-} and
that they are uniformly bounded. We can also show, using an inequality analogous to
(4.2.4), that the x(t, p, s) are uniformly continuous in p on T X P x {1, 2, ... }.
Thus the x(t, p, s) (s =1, 2, +--) are uniformly bounded and uniformly continuous on
T X P.

We also observe that, as a consequence of (2.3.1), (2.3.2), and (4.1.8), the func-
tions f (x(t, p, s), t, p, o(t, s)) (s =1, 2, ---) are measurable in t for every p in P,
that they are uniformly bounded, and that they are uniformly continuous in p on
T X P, Thus the solutions

hit,p,s) (=1,*,n8=1,2 -;peP)

of the linear system (4.2.2) are uniformly bounded and uniformly continuous in t.
The uniform continuity of h;(t, p, s) (j=1, «*, n; s =1, 2, ---) in p now follows by
the argument that we applied to x(t, p, s). :

The convergence of x(t, p, s) and hs(t, p, s) (j =1, -+, n) over some subse-
quence Z of the integers s now follows from Arzela’s theorem.

LEMMA 5.2, There exist uniformly continuous functions &(p, s) (s =1, 2, **-)
Jrom P to C,; such that

c;(((p, s)) = x(t;, p,s) forpeP, (s=1,2 ).

They converge uniformly to a function E*(p) from P to C,, over some subsequence
Z, of the sequence % defined in Lemma 5.1.

Proof. Since B; is homeomorphic to a compact and convex euclidean set C; of
dimension n (Assumptions (2.3.5) and (2.3.6)), there exists a homeomorphic mapping
o) = (¢ 1(b), ---, ¢™(b)) from B, onto the closed unit cube in E,;. By Lemma 5.1,
by (4.2.3), and by (4.0.1),

x(t; , p;, s) = ¢;(§,(s)) € B, for p; € P,

and the x(t;, p, s) (s =1, 2, ***) are uniformly continuous on P, hence on P_. Thus
the mappings ¢(x(t,, p, s)) (s =1, 2, --) are uniformly continuous mappings of the
sets Pg into the unit cube, and there exists a modulus of continuity 6(g) such that

lim 6(g) =0 and
£—0+

|¢J(x(t s Py S)) - ¢J(x(t1; p', S))I < 5(|p - p'l)
1 —
(j 1! 2, ...}Il; pE Is; p'e Is; S 17 2’ '..)!

where |p - p'I represents the distance in P. Since 0 < ¢J <1 @{G=1, +-,n),it
follows from [3, Theorem 20, p. 117] that we may assume 6&(g) to be concave and
nondecreasing. Then, by a theorem of McShane [3, Theorem 21, p. 117] (the proof
of which remains valid for functions over metric spaces), we can, for each s and j,
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extend the function ¢ (x(tl , D, 8)) from P to the unit interval to a continuous func-
tion xJ(p, s) from P to the unit interval 1n such a manner that 6 (¢) remains the
modulus of continuity.

Now let ¢ 11 and ¢ 1 denote the inverses of the mappings c¢; and ¢, respective-
ly, and let x = (x 1, ---, x®). Then the functions

E(, s) = c;' 7 (x, 8))  (s=1,2 )

have the desired properties.

LEMMA 5.3. Let x(t, p, 8), x*(t, p), hi(t, p, s), h*(t p) be defined as in Lemma
5.1, and let 2| be defined as in Lemma 5.2. There exzst a subsequence X, of Z,,
a measmfable subset T* of T' of measure t 1 - tg, and a function o*(t) from T to S
such that

(5.3.1) i(x, t, p, o*(7)) and £ (x, t, p, 0*(7)) are measurable functions of v on
T for all (x,t,p)e VXT*XP,

}.(*(t, p) = f(X*(t, p)’ tr p: G*(t)) on T* X P,
(5.3.2) 1 . T
Ri(t, p) = -f,(x*(, p), t, p, O*(ENLY(t, p) on T"XP (j=1, -, n).

Proof. Consider first the statement

(5.3.2)! for every p in P there exists a measurable subset T(p) of T', of
measure t; - tj, such that the differential equations of (5.3.2) hold on T(p).

The proof of the Lemma with statement (5.3.2) replaced by (5.3.2)' is almost
identical with that of [9, Theorem 4.1, p. 124], except that the Banach space & of
continuous functions over R now includes the functions

. ’ i
gi(x, t, p, p) and ag(";tjip’p) (i,j=1,, 0 (x,t,p) € VXT'xP)
X

T
and ky(¢; 7) is redefined as S deS #(p)do (6, N). (We observe that
to R

S ¢(p)do (t, N) is measurable and integrable over T, by [9, Theorem 4.1, p. 124].)
R

We now proceed to prove statement (5.3.2). Let P# be a denumerable dense

subset of P, and let T = ﬂ T(p) N T*. Then T¥ is of measure t; -ty
pGP#

Consider an arbitrary t in'T# and an arbitrary p in P. By Lemma 5.1 and
Assumption 2.3, there exists for every € > 0 a point p' in P" such that

(5.3.3) lex*(T, p), 7, p, P) - gx*(7, p"), 7, p', p) < £/3 on T XR.

Let now h1 > 0 be such that

(5.3.4) l}'(*(t, p") - — S f(x*(r, p"), 7, p', 0*(7))d'r| < &/3

for |h| <h;, t+he T.
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Such an h; exists, since by (5.3.2) the left-hand side of (5.3.4) converges to 0
with h.

By (5.3.2)', (5.3.3), and (5.3.4),

| L s+, o) - x5t ) - 26056, B, ¢, b, 0*(0)

1 t+h
< H‘S a S 1e(x*(7, p), 7, p, P) - g(x*(7, p'), 7, p', p) } doX(7)
t R

1 t+h
g S f(x*(7, p'), 7, p', o¥(7))d7 - £(x*(t, p'), t, D', O*(t))
t

<& for |h| <h;.

+ S {g(x*(t, p'), t, p', p) - g(x*(t, p), t, p, p) } do*(t)
R

Since &€ is arbitrary, this proves that x*(t, p) exists and
X*(t, p) = £(x*(t, p), t, p, 0*%(t)) on T¥xP.
The proof that the second equation of (5.3.2) holds on T#X P is entirely analo-
gous. Since T" C T*, the Lemma now holds with T replacing T,
6. CONVERGENCE OF MEASURES

Let Cg(s) and &;(s) (i=1, *>-, q; s =1, 2, ***) be defined as C? and §;, respec-
tively, in Lemma 4.1, for Q = Py, and let

a
d(s) = 2 E IS{OIF
i=1 J 0
For every s and for j =0, , n, we then define the signed measure u.j(s) on Borel

subsets of P as concentrated at the points of Py with the “mass” (not necessarily
positive) CJ(S)/d(s) at the point p;. This definition is permissible, since d(s) # 0
by Lemma 4 1.

LEMMA 6.1. Let Z; be the sequence defined in Lemma 5 3 Then theve exists

a subsequence Xz of T, such that the measures p(s) (j = , n) converge
weakly to regular bounded measures u*i (j =0, +--, n) over 223. (v converges

weakly to vy if, for every continuous ¢(p), S #(p) dy,  converges to o(p)dy as
P P

k — «.) Furtheymove, at least one of the measures p*i (j =0, «--, n) is not identi-
cally 0.

Proof. By their definition, the variations of the measures pi(s) (G =0, -, n;
s =1, 2, ---) are bounded by 1. The existence of a subsequence Z3 of Z, over
which they converge weakly to limit measures follows thus from Helly’s selection
theorem.
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Let now p.J(s A) (= n; s in %3) represent the u (s) measure of the
Borel subset A of P, and 1et IuJI (s, A) be the absolute pJ(s)-measure of A; that
is, let

|| (s, A) = sup (|pi(s, A)| + |pi(s, A - AD]).
AVCA

By the definition of pI(s), we see that
n
27 |uds, P =1 (s=1,2, ).
J=0

It follows easily that there exist a subsequence Z4 of X3 and some index a
(0 < a <n) such that [ual(s P)>1/(n+1) over Z4.

Let K(s, A) = {k| P € P, N A and §’k(s) >0} (s in Z,) for every Borel subset
A of P, and let measures 7 (s) and 1131 (s) be defined by
m(s, A) = 27 §(s)/d(s) (k€ K(s, A); j=0, ==, n; s in Ty),
(6.1.1) k
(s, A) = pl(s, A) -7i(s, A)  (i=0, -, m; s in Zy).
Since the variation of each of the measures 1rJ (s) and 7 J (s) is bounded by 1, the

sequences 713 (s) and 'ITJ (s) (s=1, 2, --) converge weakly to limit measures = oJ and

7}, over some subsequence Zgof Z;. We see that 17*-‘ +ril= M (= , )
and

(6.1.2) 7(s, P) - n3(s, P) = |u®l(s, P) > 1/ +1) (s in Z).

We shall now assume, by way of contradiction, that the measures pL*j
G= , n) are all identically 0. By definition, 7 (s) and -7 (s) are nonnegative.
Smce by assumptlon w%(s, P) converges to 0 over 5, (6.1. 1) and (6.1.2) yield

(6.1.3) ﬂ*a(P) —ﬂ‘*a’(P) = -21%3(P) = Zﬂ*a(P) > 1/(n+1).

By (4 1. 3) Ck(s) > 0 for all k and s, hence 79(s) is identically 0. Thus 7%°
and 7’ =p* 11’]'_‘0 are identically 0. It follows now from (6.1.3) that a # 0.

Let &(p, s) (s =1, 2, ---; p € P) be defined as in Lemma 5.2. Then relation
(4.1.5) implies that

(6.1.4) (tf(s)a1 - :21 E)e)hs(t, , v, s>)-cl,§(z(pi, s) (E(p,, s) - £) < 0,

for every s in X5, every £; € C, every p; € P,. Let now £(p) be an arbitrary
continuous function from P to C;. Then (6.1.4) implies (if summed first over all i
in K(s, P) and then over all the remaining indices i) that
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(6.1.5) SP (dﬂﬁ(S) 6, - 21 dﬂii((s)hj(tl > b S)) -c1,:(E(p,5)) (Ep, ) - &(p)) < O
i=

(k=0,1; s in Zg).

We apply Lemmas 5.1 and 5.2, use the relation 7*0

deduce that

=0, let s — © over Zg, and

Gr0) - E arEIh¥(t, , p)- ey (E* @) E* ) - £@) < 0 (=0, 1)

for every continuous function £(p) from P to C;.

Now mg) + n’l"j =p* (j=0, 1, -, n), and by assumption the p*J are all identi-
cally 0. Thus (6.1.6) yields

(6.1.7) jp 2 ang ey, )y, ¢(E 0D E*(p) - £(p)) =
;-

for every continuous £(p) from P to C;.

n .
Let w(A) = J 0 |u*|(A). Since Ej=0 |uI|(s, P) =1 for all s, we conclude
that w(P) = 1. Since

|7(a, 8)] < Eo luils, A) (G =1, ,n)

for all s in Zg and all Borel subsets A of P, it follows that the 173‘] G=1, -, n)
are absolutely continuous with respect to w. Thus, by the Radon-Nikodym
theorem, there exist finite measurable scalar functions ¢J(p) (G = 1, ---, n)

such that ﬂ:;j(A) = S #J(p)dw. Since 'n:a(P) > 1/(2n+ 2) (see (6.1.3)), ¢2(p) # 0

over some set of positive w-measure. The vectors h t;,p) (=1, n) are
linearly independent for each p € P, since, for each p, the h*(t p) (] *e+ . n)
constitute a fundamental set of solutions of linear d1fferent1a1 equations (the second
system of (5.3.2)). By Assumption (2.3.6), the matrix cl,g(f*(p)) is nonsingular for
every p in P. Thus the vector function

x() = ¢} :(E*(p)) z & () (¢, , p)
-

is nonvanishing over some set 2 of positive w-measure. Furthermore, relation
(6.1.7) yields

(6.1.8) 5 x(p)* (E*(p) - £(p))dw = O
P
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for every continuous £(p) from P to C;.

We now observe that if £(p) is continuous from P to C; and u(p) is a contin-
uous scalar function over P such that 0 < u(p) < 1, then u(p) &(p) + (1 - u(p)) £*(p)
is continuous from P to the convex set C; ; hence, by (6.1.8),

(6.1.9) § Xty & - ee)upaw = 0.
P

-

But every continuous scalar function on P is a linear combination of continuous
functions with range in [0, 1]; hence (6.1.9) holds for all continuous u(p), whence

(6.1.10) x(p) - (*(p) - &(p)) = 0 a.e. with respect to w,

for every continuous £(p) from P to C;.
Since |x(p)| # 0 on some set Q of positive w-measure, it easily follows from
(6.1.10) that there exists a subset Q' of @ of equal w-measure such that

x(@) - (E*(p) -£) =0 on Q'

for all £ in some dense denumerable subset of C;, hence for all £ in C;. This
implies, however, that C; is contained in a supporting hyperplane normal to non-
vanishing x(p) for every p in the nonempty set ', contrary to Assumption (2.3.6),
which states that C; is n-dimensional.

Thus the assumption that the measures u.*j (j =0, +--, n) are all identically 0
leads to a contradiction.

7. THE WEIERSTRASS E-CONDITION

LEMMA 7.1. Let o*(t), u¥, x*(t, p), and h¥(t, p) be as in Section 6, and T* as
in Lemma 5.3. Then

Z) 5 h;k(t, p) 'f(X*(t, p)’ t’ p, o-*(t)) du*‘]
j=1 VP

n
- Min 2 S R¥(t, p)-£x*(t, ), t, p, 0)du*l  on T*.
oes j=1 P

Proof. Let Z 3, x(t, p, s), hj(t, p, s), pd(s), and o(t, s) be defined as in Section 6.
We have, by (4.1.6), for every fixed ¢ in S,

n

Z | njt, p, ) 2(xlt, b, 8), t, b, 0(t, 5))du(s)
j=1 Y P

(7.1.1)

n
< Z { nyt v, 8) 1xt, b, 8), t, b, 0)dk (s)
j=1vYp

a.e. in T for every s in Z3.
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Since x(t, p, s) = f(x(t, p, s), t, p, o(t, 8)) a.e. in T and, by Lemmas 5.1 and 6.1
and Assumption 2.3, hj(t, p, s), £(x, t, p, 0), and p¥(s) (j=1, -, n; s in 2Z3) are
uniformly bounded and continuous on T' X P, (7.1.1) yields

n . t+h
Y S dpJ(s) S hy(7, p, s)-x(7, p, s)dr
j=1 “P t

(7.1.2) n
. t+h
S E 5 duJ(S) S hj(T, p, S)'f(X(T, b, S); T, P, U)dT
j=1 P t

for te€ T, sin Z3,and t+h e T.

Let 6(h) (h> 0) be a common modulus of continuity with respect to t of
hs(t, p, s) (it exists, by Lemma 5.1). Then

t+h
S hj(T, p, S)‘S((’T, p, S)dT Z h_](t, p, S)' (X(t+ h; b, S) - X(t, p, S)) = Cha(h)
t
(i=1,,n; (t,p) e TXP; s in Z3; t+h € T; h> 0),

o : n .
the measures pl(s) converge weakly to u*J, and 27 =1 | uJ(s)|(P) < 1; hence the
limit inferior over Zj3 of the left-hand side of (7.1.2) is at least

n

Z S h3(t, p)- (x*(t + h, p) - x*(t, p)) dp*J - ch6(h).
i=1 YP

Since g(x, t, p, p) is Lipschitz continuous in x with constant ¢, f(x, t, p, o) has
the same property, and the right-hand side of (7.1.2) converges over Zg3 to

- w (ER
2 S dp™ S hi(7, p)-#(x*(7, p), 7, p, 0)dT;
j=1 “P t

hence
2 « (tthg
Z; S du J S Hh?(T’ p)‘f(X*('r, p), T, D, o)dr
i=1 ~ P “t
(7.1.3) n 1y .
> 2 S £ 15, p) - (x*(t + b, p) - x*(t, p))dp™ - c5(h)
j=1 YP

(t, p) e TXP, h>0, t+heT).

Since, by Assumption (2.3.1), g(x, t, p, p) is continuous on V X T' X P, uniformly
in p, it follows that

. 1 (tth * _ ok *
lim + hi(r, p)-£(x"(7, p), 7, p, 0)d7 = hj(t)-{(x"(t, p), t, p, O)
h—0 ‘Y
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on T' X P, hence also on T* X P. By Lemma 5.3,

lim % (x* (t +h, p) - x*(t, p)) = X*(t, p) = £(x*(t, p), t, p, o*(t))
h—0

on T* X P. Furthermore, the integrands in (7.1.3) are uniformly bounded. Letting
h — 0 in (7.1.3), we now derive the conclusion of the Lemma.

8. PROOF OF THEOREM 3.1

We shall continue to use the notation as it appears in the statements of Lemmas
4.2 to 6.1. Let now Z* be a subsequence of =3 over which E(s) converges to some
£* in the compact set C;. We shall prove that Theorem 3.1 holds, with

x(t, p) = x*(t, p), b, p) = h}t,p) (=1, -, n),
o) = o*t), E=F Ep)=Ep), w =20 |p*]
j=0

(where |p*J| is the absolute measure of p*J), and

Y(p) =

Proof of (3.1.1). By Lemma 5.3, ¥*(t, p) = f(x*(t, p), t, p, o*(t)) on T* X P.
Since £(s) — # and co is contmuous we see (taking 11m1ts over X¥*) that

p*
o at p i=0,--,n).

x*(ty, p) = lim x(ty, p, 8) = lim cy(£(s)) = c,(E*) e B, (p € P).

Now, by (4.2.3), x(t, p, s) (p € Pg) is a P ,-minimizing sheaf. Thus
x(tl, p, s) € B, for p € P  and s in =*. Since B, is closed and P_ converges
over =* toa dense subset of P, and since x(t;, p, s) (s in Z*) are umformly con-
tinuous by Lemma 5.1, we conclude that x*(tl, p) € B; for p € P. Furthermore,
since x*(t; , p) is contmuous Max x* (t1 , p) exists. Thus o*(t) is an admissible

peP

relaxed control.

Let now o #(t) be any admissible relaxed control, and let o #(t), x¥(, p), and b#

satisfy Definition 2.2. Then x#(t p) (p € P_) is a P_-admissible sheaf, since it
satisfies relations (4.0.1). Thus

Max xl(tl, p, s) < Max x#l(tl, p) < Max x#l(tl, p),
PEP p€Ps peEP

and, letting s — < over Z*, we see that

Max x*!(t;, p) < Max x"(t;, p).
PEP PEP

Thus o*(t) is a minimizing control.
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The last part of statement (3.1.1) follows now from statement (5.3.1) and As-
sumption 2.3.

Proof of statement (3.1.2). Let s be a fixed element of =*, and let
Q=P_={p,, -, pq}. By its definition, a P_-minimizing sheaf x;(t) = x(t, p; , s)
(i=1, .-, q} satisfies relations (4.0.1). Therefore it follows from [9, Theorem 2.2,
p. 113] that the x(t, p;, s) (i =1, +--, q) are uniform limits of curves yp(t, p; , s)
(N=1, 2, ---) from T to V which, by [9, (2.2.11), p. 116], satisfy the relations

iN(t, pi’ S) = g(YN(t, pi’ S), t, pi’ p(t, S, N)) a.e. in T (i = ]_’ “ee, CI),
YN(toi pi’ S) = X(to, pi’ S) = co(g(s)) (i = 1, ee- q)

for functions p(t, s, N) (N=1, 2, ---) from T to R. Furthermore, by its construc-
tion, p(t, s, N) is for each N a step function over each set T,. (r =1, 2, -**) re-
ferred to in Assumption 2.3; hence g(x, t, p, p(t, s, N)) .is measurable on T for each
(x,p) e VXP (N=1, 2, «=-).

Let N(s) be such that IyN(t, p;, 8) - x(t, p;, s)] <1/s forall N> N(s), t € T,
and p;, € P_. Let p_(t) = p(t, s, st)). For each p in P, we now consider the
system

x,(t, p) = g(xt, p), t, p, p(t)) a.e. in T,
x5(tg, p) = co((s)).

By the argument used in Lemma 4.2, we can prove that this system'has a unique
solution x4(t, p) contained in a compact set D, C V, provided s is large enough,
say, s is in a subsequence Z** of =¥, Furthermore, the argument in Lemma 5.1
shows that the x4(t, p) (s in Z**) are uniformly continuous on T X P. Since the
x(t, p, s) converge uniformly to x*(t, p) over =** it easily follows that the x(t, p)
have the same property.

Proof of (3.1.3.1). By Lemma 6.1, at least one of the measures p*
(i=0,1, .-+, n) is not identically 0, hence w(P)> 0. Since

el = § Wla =0, -, m,

we deduce that E?zo |¥Ip)| = 1 a.e. with respect to w.

Let (s, A) (j=0, --, n; s in =*; A a Borel subset of P) be defined as in
Lemma 6.1. Then, by (4.1.3), p9(s, A) > 0 for every s and every A. I follows that
p*0 | the weak limit of p9(s), is nonnegative.

Assume now that w(Z) > 0, and let x*0 = Max x* 1(tl , P),
pepP

Z, = {p e P| 1/(k+1) < x* - x*(t;, p) < 1/k} (k=0,1,2, )

and L = {¢]| Z, is nonempty}. Let ¢ € L be arbitrary. By Lemma 5.1, the func-

tion x"‘l('c1 , p) is continuous, hence both the sets Z, and

zy = {p € P| x*0 - x*!(t;, p) < 1/(22+2)}
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are closed. Neither set is empty, since Zj} contains the point p that maximizes
x*l(tl , p). The sets are also disjoint. It follows that there exists a continuous
function ¢(p) on P such that 0 < ¢(p) < 1, ¢(p) =1 on Zg and ¢(p) =0 on Zj.

Let now =** be a subsequence of Z* such that

|x*1(t,, p) - x!(t,, p, 8)| < 1/(62+6)
on P and
Max x1(t,, p', 8) - Max x(t,, p', s) < 1/(62+6)
p'eP p'eP

for s in =**. Then the equality x!(t;, p, s) = Max x'(t,, p', s) implies
p'€e Py

x*0 - x*l(tl, p) < Max x"‘l(i:1 , p') - xl(tl, p, s)+ 1/(62 + 6)
p'eP

< Max x'(t,, p', s) - Max x'(t,p', s)+1/(38¢+3) < 1/(20 +2);
p'EP p'€Pg

hence A, = {p € P| x'(t;, p, 5) = Max xl(t,, p', 8)} € Z) (s in Z*¥).
p'er

By (4.1.3) and the definition of pi(s, A), we see that p%s, P - A;) = 0 (s in =*¥)
and p9(s, A)> 0 for all Borel sets A, hence -

&)

Letting s — « over Z*¥, we get the relations 0= S #(p)du*© > ¢(p) dp*0;
P Z
Ji

{ san®e) = § soa’e) < §  smau’e) = o.
P Ag

hence
S ¢(p)dp*0 = p*0(zy) = S YOop)dw = 0.
A

Zy 0
Now Z = U fe1, Zyp, hence S 1l/°(p)dw = 0, and this completes the proof that
Z

v%p) =0 a.e. in Z with respect to .
The proof that w(U) = 0 will follow the proof of statement (3.1.3.4).

Proof of (3.1.3.2). The differential equations have been derived in Lemma 5.3.
Clearly,. x*(ty, p) = lim x(t; , p, 8) = lim cy(&(s)) = cy(¢¥) and

h(ty, p) = lim hyty, p, 8) = 5;
on P, the limits being over =*. By Lemma 5.2,
x(t;, p, 8) = ¢;(E(p, 8)) (s in Z¥; pe P) and lim E(p, s) = £*(p),

hence x*(t,, p) = ¢;(§*(p)) € B; .
Proof of (3.1.3.3). This follows directly from Lemma 7.1.
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Proof of (3 1.3.4). Rewriting (4.1.4) for Q = P, (s in Z*) and letting
u(s) = (ui(s), ---, u™(s)), we get the relation

(s, P)-cg£(E(6)E(s) = Min pu(s, P)-co,£(2(s)) £ .
£€ Co

By Lemma 6.1, the (s, P) converge over Z* to

p*(P) = (u*i(p), ---, p*(P)) = Pw(p)dw.

1

Also, lim co,£(4(s)) = co ,£(E%) (over =*), by the continuity of cg ,£ (Assumption
(2.3. 5)) Th1s proves the first support condition.

Let now £(p) be a continuous function from P to C;. Then, by (4.1.5),

S (du (s) 6, E dp(s)h it P, s)) -c) ¢, 8)) (E(p, s) - £(p)) < O
for every s in Z*. Because of bounded convergence, we may write
fim { = ( 1m  ana  Yiplaw =@t G=0, -, n);
S S

if we let

n

a(p) = ci (& (p»( ¥o%p) 6, - 2 wj<p>hj-‘(t1,p)‘),

j=1

this yields the inequality

{ a@- @& - tenaw < o.
P

Since £(p) is an arbitrary continuous function from P to C; and C; is convex,
we may replace £(p) by E*(p) + a(p) (¢(p) - £*(p)), where o(p) 1s an arbitrary con-
tinuous function, except for the restriction 0 < a(p) < 1. Thus

S a(p) - (E*(p) - £(p)) a(p)dw < O,
P

hence a(p)-(*(p) - £(p)) < 0 a.e. with respect to w for every continuous £(p) from
P to C; . The second support condition now follows directly.

Completion of the proof of (3.1.3.1). I now remains to prove that w(U) =
where U is defined as in (3.1.3.1).

By (3.1.3.4) and Assumption (2.3.6), we can state that, a.e. in P with respect to

w, either £(p) belongs to the boundary of C; or ¥ (p) 6, - E 1 ¥ (p) hj(ty, p)
vanishes. Since x(t;, p) € Interior of B; for p € U, and sincé c; is a homeo-
morphism, it follows that
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E(p) = cil(x(tl, p)) € Interior of C, for p e U.

We have previously shown that ¢%(p) = 0 a.e. in Z with respect to w. Since U C Z,

it follows that Z)}Zl Y3(p) hi(t, , p) vanishes a.e. in U with respect to w. Now the
hj(ty, p) ( =1, +--, n) are linearly independent for every p € P, since hjlt, p)
(=1, ---, n) is a fundamental set of solutions of linear differential equations (in
(3.1.3.2)). It follows that YJ(p) =0 (j=0, 1, ---, n) a.e. in U with respect to w.

Since Z;D |1,Dj(p)| =1 a.e. with respect to w, we conclude that w(U) = 0.

This completes the proof of Theorem 3.1.
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