MINIMAL VARIETIES AND ALMOST
HERMITIAN SUBMANIFOLDS

Alfred Gray

1. INTRODUCTION

In this paper we discuss the geometry of minimal varieties, using a variant of
the second fundamental form called the configuration tensor. In Section 2 we define
our tensor and prove its basic symmetries; since we use only the properties of af-
fine connections, we are able to deduce the properties of the second fundamental
form more quickly than in the classical approach or in the bundle approach of Am-
brose [1]. In Section 3 we define minimal variety (our definition is equivalent to the
classical one) and give a slight improvement of a theorem of Myers [9] that is use-
ful in Section 7. We then give some formulas (Section 4) for almost Hermitian mani-
folds; they are needed in Section 5, where we discuss almost Hermitian immersions
and prove that an almost Herm1t1an submanifold of a quasi-Kdhlerian manifold
(usually called a *0-manifold; see [7], [15]) is a minimal variety. Our theorem
provides a simple proof of the well-known fact that a Kahler submanifold is a mini-
mal variety (see [14], [15], [16]), but it also shows, for example, that almost Hermi-
tian submanifolds of S6 are minimal varieties. We prove this by means of the con-
figuration tensor and the vector cross product in R7 induced by the Cayley numbers.
We also give a necessary and sufficient condition, in terms of the co-derivative of
the Kahler form, that an almost Hermitian submanifold of an almost Hermitian mani-
fold be a minimal variety. Quaternionic manifolds are discussed in Section 6; it is
shown that a quaternionic submanifold of a quaternionic manifold satisfying a condi-
tion analogous to that of a quasi-Kahlerian manifold must be totally geodesic. In
Section 7 we investigate the definition of minimal surface in R3 (equivalent to ours)
which says that a surface in “conformal representation” is a minimal surface if and
only if the coordinate functions are harmonic. We formulate an analogue for arbi-
trary Riemannian manifolds, and we determine when it is equivalent to our original
definition; this leads us to generalize a theorem of Beckenbach and Bing [2].

This work is a major portion of the author’s thesis at the University of éalifor-
nia, Los Angeles, under Professors Barrett O’Neill and Leo Sario. The author
wishes to thank them for their encouragement.

2. IMMERSIONS

Let M and M be C* Riemannian manifolds, with M immersed in M. Because
we shall describe only local properties, we may assume that M is small enough to
be imbedded in M as a proper submanifold. We may then use the following machin-
ery to describe the geometry of M in M. First we identify M with a subset of M;
therefore the statement M € M shall mean that M is immersed in M., Let §(M) be
the algebra of real-valued differentiable functions on M, and % (M) the Lie algebra
of vector fields on M, which we may take to be the algebra of derivations of g (M).
Let %(M) denote the algebra of restrictions to M of vector fields of M; then we may
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274 ALFRED GRAY
write (M) = (M) @ %(M)L, where X¥(M)' consists of all vector fields perpendic-
ular to M. Let E: Z(M) — Z(M) be the identity map, and let P: £(M) - %(M) be
the orthogonal projection. We use «, as the metric tensor on %(M); that is, if
X, Y € ¥(M), then < X, Y'> € §(M). Let v be the Riemannian connection of M
determined by the induced metric, and vV the Riemannian connection of M restricted
to X(M). The configuration tensor is the function T: (M) X Z(M) — x(M) defined
by the formulas
(2.1) TX(Y) = VX(Y) - VX(Y) for X, Y € x(M),
(2.2) Ty (Z)=PVy(Z) for Xe %(M), Z e £(M)" .

PROPOSITION 2.1. The configuration tensov has the following properties:
(2.3) T is bilinear over F(M).
(2.4) Tx(Y)=Ty(X) for X, Y € £(M).
(2.5) (Ty(Y), 2) = -(Tx(Z), Y) for X € (M) and Y, Z € E(M).
(2.6) Ty (x(M) C 2(M)" and Ty (X(M)™') (M) for X € %(M). -

Proof. (2.3) follows from (2.1) and (2.2) by an easy calculation, and (2.4) follows
from (2.1) and the fact that

V(YY) - V¢(X) = [X, Y] = V(Y) - Vy(X).
Similarly the proofs of (2.5) and (2.6) use the fact that
(T¥), 2) + LY, V()Y = X{¥, 2) = {vx(¥), Z) + {¥, vx(2)),

for X, Y, Z € %(M).
We note that (2.5) implies that Ty is determined by its effect on %(M).
PROPOSITION 2.2. Let X,Y € X(M). Then on X(M) the Gauss equation holds:

(2.7) PRXY = RXY - [TX, TY]’

wheve Ryy and Rxy denote the curvature operators of M and M. On %(M)' the
Codazzi equation holds:

(2.8) PﬁXY = T[X,Y] - P[ﬁx, ‘v‘Y ].

If on an open subset of M, ][X" = "Y" =1 and <X, Y> = 0, so that they span a
field 1 of 2-planes, then we may write (2.7) in the form

(2.9) K@) = { Tx(X), T¢(¥)) - [ To(¥)[* + (W)

Proof. On %(M),
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PRyy = PV[x,v] - P[vx’ vY]
= V[x,v] - VxVy - TxTy +VyVx - Ty Tx

= Ryy - [Ty, Tyl.

Similarly, on %(M)*
PRyy = PV[x,y] - P[Vx, Vyl
=Tk y]- P[Vy, V .

The proof of (2.9) follows easily from (2.7) and the definition of sectional curvature.

If the difference between the dimensions of M and M is 1, we say that M is a
hypersuvface of M. We assume that M is small enough to be orientable so that we
can define a unit normal vector field N € %(M)’ globally on M. In this case we de-
fine the notion of normal curvature. This is a function k that assigns to each vec-
tor field X € X¥(M) a function K(X) e & (M), whenever X is different from zero. &
is given by the formula «(X) = | X" <TX(X) N) . The normal curvatures with
respect to a frame field {E;, ->-, E,} on M are given by «(E;), -+, k(E,). ¥
E; , B, are all eigenvectors of the symmetric transformation X — T X(N) then
K(El) ...’ I{(E ) are called principal curvatures.

The relation of the configuration tensor T to the classical second fundamental
form may be described as follows. Let {x;, ***, x,4; } be a coordinate system in a
neighborhood of p € M such that the 9/9x; are tangent to M for 1 <i<n and the
5] /axa are perpendicular to M for n+ 1 < a <n + k. The second fundamental form
b;jo has three indices i, j, and o, which satisfy the conditions 1 <i<n, 1 <j<n,
and n+ 1 < a <n+k. Ris easy to see that

nt+k

[(8/2x;) = 27 by, 0/0%,

a/a a=n+1 o

It follows from (2.5) that the configuration tensor and the second fundamental form
contain the same information.

3. MINIMAL VARIETIES

The mean curvature vector field H of M C M is defined by

n

H = 2 Tg(E,),
i=1 1

where n =dim M and {E;, ---, E,} is an (orthonormal) frame field tangent to M.
The relative curvature of M ¢ M is the real-valued function G on M given by

n

G= Z |Tg(E)]".
:J_
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It is easily verified that these definitions are independent of the choice of the frame
field. A submanifold is a minimal variety if H = 0, and it is fotally geodesic if

T = 0. We call a two-dimensional minimal variety a minimal surface. Clearly, a
totally geodesic submanifold is a minimal variety, and from (2.5) it follows that a
submanifold is totally geodesic if and only if its relative curvature vanishes, We
may also speak of a submanifold being a minimal variety or being totally geodesic
at a point p; this means that H=0 or G =0 at p.

If M is an orientable hypersurface of M and N is a unit normal vector field on
M, then

(H,N) = 27 «k(E,).
i=1

We may choose K(El) *>+, k(E,) to be the principal curvatures. Thus in the case of
a minimal surface in R3 our deflmtlon reduces to the ordinary one.

For an arbitrary Riemannian manifold M the Ricci curvature and the Ricci
scalar curvature are a (0, 2)-tensor k and a real-valued function R given by the
formulas

k(X,Y) = 2 (Ryz (Y),E;) and R = Z) (REE(E) E;),
. i fim1

where {El, eee En} is any frame field on an open subset of M, and X, Y € Z(M).
Now assume M C M. We define k and R by

n n
k(X, Y) = Z}l (Ryp(¥), E;) and R-= i JZ)1 <REiEj(Ei), E;),
1= =

where X, Y € %¥(M) and {E;, -+, E_} is a frame field on an open subset of M.
These may be interpreted as follows. Let p € M, and let M be the submanifold of
all M geodesics starting at p that are initially tangent to M. Explicitly, we may
take

M = exp,(U),

where U C M, C _I\ZP is a sufficiently small neighborhood of 0 in My and exp de-
notes the exponential map of M. Although M may not be e totally geodes1c every-
where, it is at least totally geodesic at p. Then K and R are respectively the Ricci
curvature and the Ricci scalar curvature of M at p. Our next theorem, which in-
cludes the theorem of Myers [9], relates H and G to k, k, R, and R.

THEOREM 3.1. Let MC Mand X, Y € ¥(M). Then
(3.1) k(X, Y)=k(X, Y)+ {Tx(Y),H) +tr Ty Ty,
(3.2) R=R+ |H|? - G.

(Here tr denotes the trace.)

Proof. We use the Gauss equation to get the relations
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1l

K(X, Y) {(RXE ), £ + [Ty, Ty 1), B §

i=1

KX, Y)+ 2 {- (TEi(Y), Ty (E;) ) +.{ Tx(¥), TEi(Ei)>'}

i=1
= (X, Y) +tr T, Ty + (T4(Y), H) .

If we contract once more, we obtain (3.2).
From Theorem 3.1 we obtain the following corollaries.
COROLLARY 3.2. For a minimal variety, we have the formulas

(3.3) k(X, Y)=k(X, Y)+tr Ty Ty,

(3.4) k(X X) =KX X -2 |T.E)|*<kx X,

i=1
(3.5) R=R-G.

COROLLARY 3.3. For a minimal varielty, R < ﬁ, and equality occurs if and
only if M is totally geodesic.

COROLLARY 3.4. Suppose M C M is a minimal surface. Then the sectional
curvatures satisfy the inequality K < K, with equality occurring if and only if M is
totally geodesic.

COROLLARY 3.5. Suppose R < 0, R> 0, and M C M is a minimal variety.
Then M is tolally geodesic and R=R = 0,

Corollary 3.4 generalizes the fact that a minimal surface in R3 has nonpositive
curvature.

4. COMPLEX STRUCTURE

An almost complex manifold M is a differentiable manifold on which there exists
a (1, 1)-tensor J (which we may regard as an & (M)-linear map J: %(M) — %(M))
satisfying the condition J2 = -E. Such a manifold is orientable and even-dimensional.
M is an almost Hevrmitian mamfold provided it is both almost complex and Rieman-
nian in such a way that (JX JY) (X Y) for all X, Y € %(M). In the description
of the geometry of M, it is important to consider two spec1al tensors defined in terms
of the almost complex structure J. The first is a 2-form F, called the Ké&hler form,
and it is defined for X, Y € %¥(M) by the formula

(4.1) FX,¥)={IX, Y).

Since it is skew-symmetric, it is in fact a differential form. The second, called the
Nijenhuis tensor, is a (1, 2)-tensor S defined by

(4.2) S(X,Y)=[X, Y]+ J[IX, Y]+ J([X, JY] - [IX, JY],
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for X, Y € ¥(M). E is easy to show that
S(X,Y) = -S(Y,X) and S@X, Y) = S(X, JY) = -JS(X, Y).

If we extend the Riemannian connection Vy of M to be a derivation on the tensor
algebra of M, then we have the formulas

(4-3) Vx(J)(Y) = Vx(JY) - va(Y),

(4.4) Vi (FXY, Z) ={Vx(3)Y), Z) .

It will be necessary to have explicit formulas for the exterior derivative and co-
derivative of the differential form F. From standard formulas (see Koszul [6])

these can be computed to be

(4.5) dF(X, Y, Z) = eVx(F)Y, Z),
(4.6) BOF(X)=-2 {V (F)E,, X)+ Vg (F)JE;, X)},
i=1 1 t

where © denotes the cyclic sum over X, Y, Z € %(M) and

{EI’ cee E JE}.’ e, JEm}

is a frame field on an open subset of M.

THEOREM 4.1. LetX, Y, Z € %(M). Then
(4.7)  S(X, Y) = -Vy(@)IY) + Vi3 @NX) - V3 @)(Y) + V3 ()IX),
(4.8) 2V, (FXY, Z) = dF(X, Y, Z) - dF(X, JY, JZ) - (X, S(Y, JZ)),
2V, (F)Y, Z)+ 2V, (F)JY, Z)
@9 = dF(X, Y, Z) - dF(X, JY, JZ) + dF(Z, JX, JY) + dF(Y, JZ, JX),
10 (TR 2) - 2 (P, 2)

= (8(X, IY), 2 ) - {8(X, 2), 3Y) - {8(3Y, Z), X) .

Proof. The proof of (4.7) follows from the identity Vx(Y) - Vy(X) = [X, Y]; (4.8),
(4.9), and (4.10) are consequences of (4.7) and the formula

(4.11) VL(F)JY, 2) = V,(F)(Y, JZ).
Let X, Y € ¥(M). We shall call an almost Hermitian manifold
Kiinlerian if V(J) =0,
almost Kahlerian if dF = 0,

nearly Kahlevian if Vy (INY) +Vy(I)X) =0,
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quasi-Kahlevian if Vyx(INY) + Vix(INIY) =0,

semi-Kahlevian if 6F = 0,

Heymitian if S=0,

Koto [7] uses the terms H-space.for almost Kahlerian, K-space for nearly Kihler-
ian, *0-space for quasi-Kahlerian, and almost semi-Kihlerian for semi-Kahlerian.

As consequences of Theorem 4.1 we get the following corollaries, which show the
relations among the various kinds of almost Hermitian manifolds.

COROLLARY 4.2. Vx(F)Y, 2) = Vix(F)JY, Z) if and only if M is Hermitian.
Vx(F)Y, Z) = -Vix(F)JY, Z) if and only if M is quasi-Kahlerian.

Let of, A K, /A, 2K, § K, and H# denote the classes of Kihler, almost
Kahler, nearly Kihler, quasi-Kihler, semi-K#hler, and Hermitian manifolds, re-
spectively.

COROLLARY 4.3. We have the inclusion velations

8" ‘4
c Q
H @A C PH and K C .
S 1
N A

Furthermore, A= HN LK = AN N NHA.

Proof. The relation A C &K follows from (4.4) and (4.5), #o# C 2 from
(4.4) and (4.9), 24 C Y from (4.4) and (4.6), and o C & from (4.7). K is ob-
vious that o C A4, and A H C 254 is a consequence of (4.11). Furthermore, the
relation &4 C ¢ N 24 is obvious, and the reverse inclusion follows from (4.9) and
(4.10). Finally, if M € & &, then dF(X, Y, Z) = 3Vx(F)(Y, Z) and hence
NHAN AN = A,

Fukami and Ishihara [4] have shown that L is nearly Kahlerian, and by Corol-
lary 4.3 it is quasi-Kdhlerian. Since the second Betti number of st is zero, S° can-
not be Kahlerian. More generally, Calabi [ 3] has shown the existence of an almost
complex structure on an orientable hypersurface of R’ induced by the Cayley num-
bers. We shall now use the configuration tensor to discuss almost complex struc-
tures of this type.

Using the Cayley numbers, we may introduce a vector cross-product X that is
an §(R7)-linear map from %(R7) X Z(R7) to X(R7) with the following properties
(see [3]):

(4.12) AXB=-BXA,

(4.13) {(AxB,c) = (A, BxC),

(4.14) (AxB)xC+Ax(BxC)=2¢A, C)B-{B,C)A-{A B)C,
(4.15) V5 (BXC)=V,(B)XC+ BXV,(C),

for all A, B, C € I(R7); here ¥ is the Riemannian connection of R ’.
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Let M6 be an orientable hypersurface of R7; we may choose a unit normal vec-
tor field N € X (M)L globally on M. We define J: ¥(M) — %(M) by JA = N X A.
By (4.12) and (4.13) we see that if A € % (M), then JA € X(M), and by (4.14) we have
the relation J“A = N X (N X A) = -A. From this, (4.12), and (4.13), it follows that
(JA, JB,> = <A, B') for A, B € ¥(M). Hence M is an almost Hermitian manifold
with the metric induced from R7.

LEMMA 4.4. Let A, B, C € £(M). Then
(4.16) VA(F)B, C)= {TA(N), BxC),
(4.17) VA(F)B, C) + VA(F)JB, C) = (T A(N) +JT;,(N), BXC ),
(4.18) VA(F)B, C) - V;4(FYJIB, C) = (TA(N) - IT;,(N), BXC ).

Let H be the mean curvature vector of M in R7, and let E;, E js Ey be orthonormal
vector fields on an open subset of M such that <Ei, JEj,) =0 and E;j X Ej = Eg,

wheve E;, E;, Ex € X(M). Then {E;, E,, E3, JE}, JE,, JE3} is an orthonormal
Srame field and

(4.19) (H, N.> = @ {"vEl(F)(E_]’ Ek) + vJEl(F)(JEj, Ek)}

i,j,k
= -dF(E;, E;, E\) +dF(E;, JE;, JE) + Vg (F)XE;, By
+V 55,(F)JE;, Ey).
Proof. For (4.16) we first observe that V 5(N) = T 4(N). Hence
VAF)B, C) = { Vo,(Nx B) - NxV,(B), C)
= {TAN)x B, C)
= {TA(N), BXC).

The proofs of (4.17) and (4.18) are obvious consequences of (4.16). For (4.19), we
note that

(H,N) ={ & {TR(E)+ Tz GEY}, N)
1,], 1 1

o {(Ta 0, 1D + (T 9, 35y,
=8 {-in(F)(Ej, Ey) +V ;g (F)JE;, E)}.

We now state Lemma 4.4 in the following form, due to Calabi [3]:

THEOREM 4.5. Let M® be an orientable hypevsurface of R7 with the almost
complex structure induced by the Cayley numbevs. Then

(4.20) M is Kahlevian if and only if it is totally geodesic;

(4.21) M is quasi-Kahlevian if and only if T, (N) +JT;,(N) =0 for all A € £(M);
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(4.22) M is Hermitian if and only if Tp(N) - JT;,(N) =0;
(4.23) if M is either almost Kahlerian or Hevmitian, it is a minimal variety of R7.

We may now prove very simply that S® (imbedded as the unit sphere in R7) is
nearly Kihlerian; we merely observe that T,(N) = A for A € %(S®), and use (4.13).
Similarly, S X R* is quasi-Kihlerian but not almost Ki#hlerian or nearly Kihlerian.
This follows from the fact that T,(N) = A; for A € %(S%> x R%), where A, is the
component of A tangent to SZ . A calculation then shows that Si x R* has the stated
properties. Note that the almost complex structure on SZ x R* under consideration
is not the usual one.

As Calabi [3] has remarked, the problem of finding an almost Kihler manifold
that is not Kahlerian seems difficult. The present author has been unable to find an
example.

5. ALMOST HERMITIAN IMMERSIONS

Let M and M be almost Hermitian manifolds with M Cc M. We say that M is an
almost Hevmitian submanifold of M if JX € X(M) whenever X € X(M), where J is
the almost complex structure of M. Thus the almost complex structure of M is the
restriction to Z(M) of the almost complex structure of M, and we denote both by J.

LEMMA 5.1. Let S and F be the Nijenhuis tensov and the Kahlev form of M,
respectively. Then the restrictions of S, F, and dF to %(M) are the Nijenhuis ten-
sor, the Kahlev form, and the devivative of the Kahlev form of M.

Proof. Since the bracket and almost complex structure of M are simply the re-
strictions of the corresponding objects of M, the Nijenhuis tensor of M is the
restriction of S. Similarly, the Kiahler form of M is the restriction of F, since the
metric tensor is the induced one. Since d commutes with the inclusion map, dF
also restricts to Z(M) to give the derivative of the Kahler form of M.

Henceforth, we let S stand for the Nijenhuis tensor and F for the Kahler form
of both M and M.

PROPOSITION 5.2. If M is Kahlevian, almost Kahlevian, nearly Kiihle_'r_ian,
quasi-Kahlerian, ov Hermitian, then any almost Hermitian submanifold of M has the
same property.

Proof. For the classes « o and & the proof follows directly from the pre-
ceding lemma. For the classes & and 2..¢, the proof uses the preceding lemma
together with (4.8) and (4.9), respectively. That the #o -property is inherited can
be proved by a direct calculation.

We shall use terminology such as “M is an almost Kihler submanifold of M”
to mean that M is almost Kihlerian and M is an almost Hermitian submanifold.

PROPOSITION 5.3. If M C M is a Kahler submanifold and X, Y € %(M),
Z € 2(M)L, then

(5.1) Ty @Y)=JT(Y); Ty(JZ)=JITy(Z),

(5.2) T (Z)= -JT(Z).
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Proof. We have the relations
Ty (JY) = VX(JY) - VX(JY) = J(WX(Y) - VX(Y)) = JTX(Y).

From this, (2.4), and (2.5), the rest of the proposition follows easily.

The fact that J and Ty commute determmes to a large extent the behav1or of
Ty . For example it is easy to show that if M? is a Kihler submanifold of M2*

then T}Z& (Y) = §(K -K) “XH2 Y for X, Y € £(M). Another application is to 1sotroplc
immersions (see O’Neill [12]).
PROPOSITION 5.4. If M C M is a quasi-Kahler submanifold, then

(5.3) Ty(Y)+T;x(@Y)=0forall X,Y e %(M).

If M C M is a Hermitian submanifold, then

(5.4) Tx(Y) - T3x([Y) = -J(Tx(IY) + T;x(Y)).
Proof. For (5.3), we note that

0 = Ty (I)X) + Ty (@)IX)

Vs (INX) + V5 (DEIX) + Ty (X) - IT(X) - T (X) - IT , (IX)

H(Ty(X) + T3 (IX)).
Since the right-hand side is symmetric in X and Y, it follows that
Tx(Y) + TJX(JY) = 0.

The proof of (5.4) is similar.

Our next task is to investigate the relation between minimal varieties and almost
Hermitian submanifolds. First note that the co-derivative 6 F of F on M is not
generally the same as the co-derivative 6F of F on M. It will be useful to consider
yet another “co-derivative” 6 F, defined by the formula

(5.5) BF(X) = -E {Vg, (F)E;, X) + V5 (FIUE;, X},
i= 1 1

where {El s s B, JEy , JE } is a frame field on an open subset of M and
X € £(M). On %(M) we may 1nterpret F similarly to k and R. First note that we
may restrict F to a differential form on any submanifold of M, whether it is almost
Hermitian or not. Let p € M, and let M be the manifold consisting of all M geo-
desics starting at p and tangent to M. Then we may interpret_6 on X(M) as the
co-derivative at p with respect to_this submanifold. Even if M is not almost
Hermitian, we may still consider 5 F, which is given by (5.5). However, it will be
more useful to consider 6 F on I(M)l

PROPOSITION 5.5. Let Z € ¥(M)t. Then

(5.6) 0F(Z)=(JH, Z).
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Proof. We have the relations

m

- Z_) {(VEi(J)(Ei), z) + (VJEi(J)(JEi), Z)}

3 F(Z)

= - 23 {Ty (E,) - IT (E)) - T;5 (E) - IT (Ey), Z)
i=1 i i 1 N

(IH, z2).

Proposition 5.5 immediately leads to the following result.

THEOREM 5.6. An almost Hevmitian submanifold M C M is a minimal variety
if and only if 5F =0 on (M) .

THEOREM 5.7. A quasi-Kahler submanifold is a minimal variety.
Proof. By (5.3),

H=2J {T. (B)+ T, JE)} = 0.
i=1 i i

We note one further property of quasi-Kahler submanifolds. The kolomorphic
curvature K, of an almost Hermitian manifold is a function that assigns to each
X € %(M) the sectional curvature of the field of 2-planes spanned by X and JX
(whenever X is nonzero).

PROPOSITION 5.8. The holomovphic curvature Ky, of a quasi-Kihler submani-
Jfold is not greater than the holomorphic curvature Ky, of M.

Proof. From (2.9) it follows that if X € X(M), then
(5.1 (KX - K@) [X]* = - 1 @] - | Tx(0x)]?

wherever X is different from zero.

We remark that the work of O°Neill [11] and Otsuki [13] on compact minimal
varieties in complete Riemannian manifolds applies a fortiori to compact quasi-
Kahler submanifolds.

6. QUATERNIONIC STRUCTURE

Analogously to the way that complex numbers suggest various complex struc-
tures, we can use the quaternions to form quaternionic structures on a differentiable
manifold. R turns out that the additional structure tends to make the various geo-
metrical relations trivial.

A differentiable manifold is almost quatevnionic if it has two almost complex
structures I and J satisfying the condition IJ 4+ JI= 0. E M is a Riemannian mani-
fold in which.both I and J are isometries, we say that M is q-almost Hevrmitian.
Similarly, if (M, I) and (M, J) are both in one of the classes that we have defined,
then we indicate this by prefixing a *q” to the class of M.
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Obata [10] has proved that the Ricci curvature of a gq-Kahler manifold vanishes.
This says, for example, that quaternionic projective space is not g-Kahlerian, and
in fact Massey [8] has shown that it is not even almost complex. I would be inter-
esting to find some nonflat examples of q-Kdhler manifolds. The following theorem
about quaternionic submanifolds again demonstrates the simple nature of quaternionic
structure.

THEOREM 6.1. Let M be a q-quasi-Kahler submanifold of M; that is, assume
that any of the almost complex strvuctures I, J, I makes M quasi-Kahlerian, and
that M is almost Hermitian with vespect to 1, §, and IJ. Thern M is tolally geodesic.

Proof. I is clear that M itself is g-quasi-Kidhlerian. Furthermore,
0 = T (Y) + T x(I¥) = Ty(Y) + T ;5x(JY) = T(I¥) + T ;5 (JY).

Hence Ty (Y)= Ofor all X, Y € %(M).

7. CONFORMAL STRUCTURE

A classical theorem of Weierstrass statés that a surface in R3 in “conformal
representation” is a minimal variety if and only if the coordinate functions are har-
monic. In this section we discuss how this theorem can be generalized to an arbi-
trary Riemannian manifold. For this purpose we need some information about con-
formal equivalence, and in particular about conformal flatness.

Definition. Let (M, ( >) and (MO, < >0) be two Riemannian manifolds.
Then M and M? are conformally equwalent if and only if there exists a diffeo-
morphism ¢: M — MO and a differentiable function o : M — R such that

(1.1) (X%, Y°) = (29 (X, Y))ogp!,

where X, Y € X(M) and Xo Y0 e I(MO) are the vector fields corresponding to X

and Y 1nduced on MO by ¢. K M is flat, we say that MO is conformally flat.
LEMMA 7.1. Suppose M and MO are conformally equivalent. Let V and v

denote the corrvesponding Riemannian connections. If X, Y € %(M), then

(7.2)  VIHY®) = (VLY) + X(0) Y+ Y(0) X - (X, Y) grad 0)°.

Proof. This follows from (7.1) and the formula
2 {vx(¥), 2y = x(¥, Z2) - (X, [Y,2]) +Y(X, 2) - (Y, [X 2])
-z{x,Y) +(2, [% Y]).

We now generalize the Weierstrass theorem. For this purpose we cons1der con-
formally equivalent Riemannian manifolds M and MO, and we suppose MO is im-

mersed in M. Let {E;, -*-, E,} be a frame field on an open subset of M. Our
generalization of the Laplacian will be Ei=1 VEo (Ei ); if M is some Euclidean
i

space, then this expression reduces to the ordinary Laplacian, modulo the usual
canonical identifications. First we need some more lemmas.

LEMMA 17.2. We have the formula
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n 0
(7.3) 20 Vgp(Eg) = E VE (E;) - (n - 2)(grad o'))

i=1 1 i=1

Proof. This is easily calculated from (7.2) and the fact that

grad ¢ = 22 E(o)E;.
i=1

COROLLARY 17.3. Suppose M° is conformally flat and {E, ---, E_} ave the
natural coovdinate vector fields of Euclidean space.

n

If dim m° > 3 and 27 VOO(EO) 0, then MO is flat .
i=1

If dim M° = 2, then voo(E?)+v°o(Eg) = 0.
1 2
Proof. Tn the case at hand, V_ (E)—Oforl-l ,n. I dim M® >3 and

n
Z) -1 EO(E )— 0, then by (7.3) grad o0 =0 and so M is flat. The conclusion for

d1m MO = 2 is also obvious from (7.3).

LEMMA 17 4. Suppose MO is a conformally flat manifold of dimension n im-
mevsed in M. If {E 15 °°°, En} ave the natural coordinate vector fields of Euclidean
space, then

n

(1.4 2V O(EO) =e? H - (n - 2)(grad o)° .
i=1

Proof. It is sufficient to observe that

n n

2 VoE) = 2 {v? Q(E )+ T 0(EO)}

i=1 1 i=1

2 {(Vg EN + TooED} - (n - 2)(grad o)°
i=1 1 i

=e2%H - (n - 2)(grad 0)0 .

Now we can prove the main theorem.

THEOREM 7.5. Suppose MO isa conformally flat submanifold of M of dimen-
sion n, and let {E 1> " En} be the natural coordinate vector fields of Euclidean
space.

(1) If dim M° = 2, then MO is a minimal variety of M if and only if

= O\ , = 0y _
VE(I,(EI)+ VEg(EZ) =0.



286 ALFRED GRAY

(ii) If dim M° >3, R <0, and 21 1 v O(E ) = 0, then MO is a flat totally
geodesic submanifold of M.
Proof. K dim M° = 2, then (7.4) reduces to the relation
= = 0 2
vEO(Ef) +V _ofEp) = €71,
1 2
. - 0 n = 0
and (i) follows. ¥ dim M°>3 and 27;_; V_ o(EZ) = 0, then (7.4) becomes

e?’H - (n - 2)(grad )% =0. Now H is perpendmular to M0 while (grad 0)0 is
tangent Hence H= 0 and o is constant. The latter cond1t10n implies that M is
flat; hence its Ricci scalar curvature R vanishes. Therefore, by Corollary 3.5 and
the hypothesis R < 0, we conclude that MO is totally geodes1c
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