THE INSUFFICIENCY OF BARYCENTRIC SUBDIVISION

Ross L. Finney

A theorem one would like to prove for a reasonable category of spaces is that
complexes realized by the same space have isomorphic subdivisions. A tactical
question in the formulation of such a theorem concerns the kind of subdivision to be
admitted. J. W. Alexander, in his elegant paper on combinatorial topology [1], showed
that for homogeneous, finite simplicial complexes, piecewise linear subdivision and
stellar subdivision are equally satisfactory. We now present a theorem showing that
for locally-finite simplicial complexes, barycentric subdivision is insufficient. It re-
quires only a few pictures to show that under the restriction to barycentric subdivi-
sion, the theorem we first mentioned cannot be proved, even for complexes that are
realized by a disk. Our main theorem shows that if only barycentric subdivision is
allowed, one cannot prove the equivalence theorem for complexes realized by any
space save a point.

THEOREM 1. Let K and L be connected, locally-finite, simplicial complexes,
and let BK and BL be the complexes of their first barycenivic subdivisions. If BK
and BL ave isomovphic, then K and L ave isomorphic. If the undevlying space |K|
is not a 1-manifold and K is neither a simplex nor the boundary of a simplex, then
the isomorphism of BK and BL induces an isomovphism of K onto L.

This theorem implies that if the nth barycentric subdivision B*K of K is iso-
morphic to the mth barycepf:ric subdivision B™ L, then one of the two complexes K
and L is already isomorphic to a barycentric subdivision of the other. If m > n,
then K is isomorphic to B™ "™L. Barycentric subdivision is a rigid mechanism.

To illustrate the rigidity of barycentric subdivision, let us partition the vertices
of BK by defining V}(K) to be the set of vertices of BK that appear as barycenters
of i-simplices of K. We think of VO(K) as identical with the collection of vertices
of K. In general, it may not be easy to tell whether a given vertex of BK belongs to
VO(K). For example, let |K| be a 2-manifold, and suppose that v is a vertex of K
whose star in K contains exactly three 2-simplices. In BK, we cannot tell the star
of v from the star of a vertex of V2(K). Surprisingly, we can still distinguigh the
set VO(K) from any other V(K), provided |K| is not a 1-manifold and K is neither
a simplex nor the boundary of a simplex. Under these conditions, f(VO(K)) = VO(L).
In fact, the vertex map f | VO(K)A defines an isomorphism f of K onto L in the fa-
miliar way. In addition, f and f induce the same homeomorphism of |K| onto |L| .

From this last statement it follows that one cannot use barycentric subdivision
to construct new simplicial homeomorphisms of a triangulated space onto itself, un-
less |K| is a 1-manifold or K is either a simplex or the boundary of a simplex.
For example, let |K| be a torus, and let h be a homeomorphism of [Kl onto itself.
If h is simplicial with respect to B™K for some integer m > 0, then h is also
simplicial with respect to K.

The proof of Theorem 1 depends upon two other combinatorial theorems. One of
these, Theorem 3, characterizes the boundary of an (n + 1)-simplex (n > 1) as the
only connected simplicial complex in which each (n - h)-face lies in exactly (h + 1)
n-simplices.
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Theorem 1 does not hold for regular cell complexes. One cannot expect a cell
complex and its dual to be isomorphic. A 3-simplex is self-dual, but a three-dimen-
sional cube is not. Of course, the firstjsubdivision of a regular complex is simpli-
cial, so that cell complexes aren’t completely beyond the reach of the theorem.

1. DEFINITIONS

In what follows, complexes will always be locally-finite and simplicial. If E is a
complex, BE will denote the complex determined by the first barycentric subdivision
of E. We make no distinction between a vertex in E and the vertex it determines in
the complex BE; also, if s is a simplex of E, then bs will denote both the barycen-
ter of s and the vertex determined by it in BE., If E has dimension n, then the
ovder of s in E, denoted by os, E), is the number of n-simplices of E that contain
s (of which s is a face). Thus o(bs, BE) denotes the number of n-simplices of BE
that contain the vertex bs of BE. If two complexes E and E' are isomorphic under
the correspondence g, then ofs, E) = o(g(s), E').

Simplices are to be regarded as closed. The star of a simplex s in E, denoted
by st(s, E), is the subcomplex of E consisting of all faces of all simplices of E that
contain s. The link of s in E, denoted by lk (s, E), is the subcomplex of E deter-
mined by the simplices of st(s, E) that do not meet s.

A complex E is said to be kZomogeneous if it has finite dimension n and each
simplex of E is a face of some n-simplex of E.

2. THE PROOF IN OUTLINE

Let f be an isomorphism of BK onto BL. Rather than prove the theorem in one
stage, we prove it first for homogeneous K and L, and then proceed with relative
ease to more general complexes, using their natural decomposition into homogene-
ous parts. In this section we outline the proof for homogeneous complexes, and we
state two combinatorial theorems on which the proof depends. The extension to
general complexes is accomplished in Section 7.

Suppose that K and L are homogeneous and that they have dimension n > 0 (the
proof for n = 0 may safely be left as an exercise). We distinguish between two
cases, according to whether K is a single n-simplex or contains more than one
simplex of dimension n.

In case K contains more than one n-simplex, the principal steps consist in
proving that 1) £(VO(K) u V(K)) = VO(L) U V(L) and 2) if £f(VO(K)) N VO(L) is not
empty and f carries some vertex of K to a vertex of L, then f(VO(K)) = VO(L) and
f(V(K)) = V*(L). It then follows quickly that if f carries a vertex of K to a vertex
of L, then f induces an isomorphism of K onto L that agrees with f on vertices
of K.

It also follows that if f carries no vertex of K to a vertex of L, then
£(VO(K)) = V(L) and f(V™(K)) = VO(L). This means that each vertex of K lies in
exactly n + 1 n-simplices of K, and that each vertex of L lies in exactly n+ 1
n-simplices of L. I n=1, then |K| and |L| are determined by the fact that they
are homeomorphic to one of the two possible 1-manifolds, and it is easy to construct
an isomorphism of K onto L. If n> 1, then K and L are each isomorphic to the
boundary of an (n + 1)-simplex, as a consequence of Theorems 2 and 3 (proved in
Sections 4 and 5).



THE INSUFFICIENCY OF BARYCENTRIC SUBDIVISION 265

THEOREM 2. If E is an n-dimensional, homogeneous complex whose mod-2
boundary is empty, then o(s"-2, E) > h+ 1 for each (n - h)-simplex of E. If
o(v, E) = n+ 1 for each vertex of E, then o(s®-, E)= h+ 1 for eack (n - h)-
simplex of E.

An (n - 1)-simplex of a homogeneous complex E of dimension n is said to lie in
the mod-2 boundary M,(E) of E provided it lies in an odd number of n-simplices
of E. As a subcomplex of E, M2(E) is the collection of all faces of such (n - 1)-
simplices. A simplex of E that does not lie in M,(E) is said to be infernal. Note
that M, “commutes” with B and with f, and that the barycenter of an n-simplex of
E is an internal vertex of BE.

THEOREM 3. Let E be a connected complex of dimension greater than 1. If
each (n - h)-simplex lies in exactly h+ 1 n-simplices of E, then E is isomorphic
to the boundary of an (n+ 1)-simplex.

One can show by induction on n that if K and L are isomorphic to the boundary
of an (n+ 1)-simplex, there exist 2% (n+ 2)! isomorphisms of BK onto BL, in con-
trast to the (n+ 2)! isomorphisms of K onto L.

To return to the proof of Theorem 1 for homogeneous complexes, suppose now
that K consists of the faces of a single n-simplex s. Unless f(bs) lies in V*(L), a
vertex of lk(f(bs), BL) lies in V™(L). But no vertex of f(lk (bs, BK)) = 1k (f(bs), BL)
is internal. Hence f(bs) is the barycenter of an n-simplex t of L. Hence

Bt = i(st (bs, BK)) = £f(BK) = BL,

and L =t. There are (n+ 1)! isomorphisms of K onto L. Note that once again
there exists no one-to-one correspondence between isomorphisms of K and iso-
morphisms of BK, because there are 22-1(n+ 1)! isomorphisms of the latter onto
BL: one for each of the 22-1(n+ 1)! isomorphisms of B(bdry K) onto B(bdry L).

3. PRELIMINARY LEMMAS

LEMMA 1. If s® is an h-face of the n-simplex s™, each h-simplex of Bs? lies
in (n - h)! n-simplices of Bs™.

The lemma may be proved by mathematical induction as follows: if h <n, then
st lies in (n - h) (n - 1)-simplices of s, and in the barycentric subdivision of each
(n - 1)-simplex, each h-simplex lies in (n - 1 - h)! (n - 1)-simplices. Also, the
lemma is true for n = 1.

From the fact that the barycenter of sP lies in (h+ 1)! h-simplices in BsP
comes the following corollary.

COROLLARY 1. If st is an h-face of the n-simplex s™, then
o(bs®, Bs™ = (n - h)! (h+1)! .

From the corollary we draw the following conclusions for later use. If v is the
barycenter of an (n - 1)-face of s, then o(v, Bs?)=n! . K v is the barycenter of
an h-face of s™ with 0 <h < (n - 1), then o(v, Bs®) <n! . If sP lies in i n-sim-
plices of an n-dimensional complex E, then o(bsP, BE)=i(n -h)! (h+1)! . ¥ v is
the barycenter of s, then o(v, Bs®) = (n+ 1)! .
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Let e be an edge (1- s1mp1ex) of Bsh that joins bsP to a vertex v of sP. From
Corollary 1 we know that o(v, Bs®) = h! . Moreover, o(e, Bsh) = o(v Bsh) because
st(v, Bsh) = st(e, Bs"). Hence o(e, Bsh) = h! . Since each h-simplex of BsP lies
in (n - h)! n-simplices of Bs™, we have a second corollary to Lemma 1.

COROLLARY 2. Let st be an h-face of an n-simplex s™, with 1 <h<n, and
let e be an edge of Bsh that joins bst to a vertex of sh. Then

o(e, Bs™) = (n - h)!h! .
If sb lies in i n-simplices of an n-dimensional complex E, then
o(e, BE) = i(n - h)! h! .

LEMMA 2 (the Vertex Lemma). Lef s and t be simplices of the same dimen-
ston, and suppose that £ is an isomorphism of Bs onto Bt. If 1(v) is a vertex of t
Jor some vertex v of s, then £ carvies each vertex of s to a vertex of t.

Thus f induces a one-to-one correspondence between vertices of s and vertices
of t.

The argument is clear for dim s = 1. Suppose the lemma is proved for
1 <dim s <n. Let w be a vertex of s different from v, and let s®-1 be an
(n - 1)-face of s that contams both v and w. Such a face exists, because n > 1.
By Corollary 1, o(bs™-1, Bs) = n! . Hence o(f(bs®-1), Bt) = n! . The only vertices
of Bt in st (f(v) Bt), excludmg f(v) itself, that are of order n! are barycenters of
(n - 1)-faces of Bt (again by Corollary 1) Hence f(bs™-!) is the barycenter of an
(n - 1)-face tn-1 of t. By the induction hypothesis, f carries vertices of s™-! to
vertices of t®-!. In particular, f(w) is a vertex of t, and the lemma is proved.

LEMMA 3 (the Face Lemma). Let s and t be n-simplices, and suppose that f
is an isomorphism of Bs onto Bt. If, for h<n, f carvies the subdivision Bst of
an h-face sh of s onto the subdivision Bth of an h-face t? of t, then £ carries
each vertex of s to a vertex of t.

I n=1, the Face Lemma reduces to the Vertex Lemma. Suppose henceforth
that n > 1.

¥ h<n -1, we know from Corollary 1 that a vertex of Bs! has order n! in Bs
if and only if it is a vertex of s and hence of sP. The analogous statement holds
for vertices of Bth. Hence, if v is a vertex of sh, then f(v) must be a vertex of
Bth with order n! . That is, f(v) must be a vertex of tb. Apply the Vertex Lemma.

¥ h=n -1, we conclude from Corollary 1 that Bs™-1 has n+ 1 vertices of
order n! in Bs™, Of these, only one, bsn-1 , has all the other vertices in its star
in Bsn-1 (other vertices occur, because n > 1) Since the analogous statement
holds for t™-1, it follows that f(bsn‘l) bt2-! and f carries each vertex of sn-!
to a vertex of t"-1, Apply the Vertex Lemma.

4, THE PROOF OF THEOREM 2
In [1], we find the following lemma (to which we have added corollaries). Alex-

ander’s argument treats finite homogeneous complexes, but it is easily extended to
prove the lemma for locally-finite homogeneous complexes as well.
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LEMMA 4. A simplex s is intevnal in a homogeneous complex F if and only if
M,(lk (s, F)) is empty.

Note that while M,(E) is assumed to be empty, in Theorem 2, no such assump-
tion is made here about M(F).

COROLLARY 3. If s is both an internal simplex of ¥ and a proper face of a
simplex t of F, then o(s, F) > oft, F).

COROLLARY 4. If v is an internal vertex of F, then o(v, F) > n+ 1.

We prove Corollary 3 by showing that if dim t = 1 + dim s, then o(s, F) > o(t, F).
Because s is internal, t is internal, so that both M(lk (s, F)) and M,(lk (t, F)) are
empty. Let v be the vertex of t not included in s. Certainly o(s, F) > oft, F), so
suppose that o(s, F) = o(t, F). Then, with Alexander’s notation,

st(t, F) = st(s, F),
t-k(t, F) = s-lk(s, F),

v-s-lk(t, F) = s-1k(s, F),
v-1k(t, F) = k(s, F).

By comparing the mod-2 boundary of the complex on each side of the last equation,
one sees that 1k (t, F) is empty, which is possible only if dim t = dim F. But then
dim s = dim F - 1, so that o(s, F) > 2 while oft, F) =1,

To prove Corollary 4, let s® be an n-simplex containing v, and let
v=s0<sl <o <l <o <gm

be an ascending sequence of faces of s™ with dim s! =i. Each s! is internal in F,
because each s! contains v. Hence o(si, F) > o(sitl, F), so that o(v, F) >n+1
because o(s™, F) = 1. Corollary 4 will be used in the proof of Theorem 1.

To prove Theorem 2, we need only Corollary 3. Let E be an n-dimensional,
homogeneous complex whose mod-2 boundary is empty, and let sn-h pe an (n - h)-
simplex of E. Let s™ be an n-simplex of E that contains s™-P, and let

s> gl > o> gn-h s o> g0

be a sequence of faces of s® with dim sl =i, Each st is internal, because M(E)

is empty. To see that o(s™-!, E) > h + 1, we apply Corollary 3 to the sequence from
sm to st-b, To see that o(s?-h, E)=h+1 if o(s0, E) = n+ 1, we apply Corollary 3
to the sequence from s®-! to s® and deduce that o(s?, E) >n+ 1 if

o(s™® E)> h+1.

5. THE PROOF OF THEOREM 3

We use induction on the dimension of E. Let v be a vertex of E. If dim E = 2,
st (v, E) contains three 2-simplices. Since each edge emanating from v lies in two
of these 2-simplices, the three 2-simplices fit together to form a disk, the boundary
1k (v, E) of which consists of three edges e, e;, and e, . Let x; denote the vertex
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e N e; of e. One of the two 2-simplices containing e is v-e. Let s be the other.
Since s does not lie in st(v, E), we can now account for the three 2-simplices of
each of the stars st(x;, E), namely v-e;, v-e, and s. Hence s must contain each
e; as well as e. The subcomplex E' = (st(v, E) U s) is isomorphic to the boundary
of a 3-simplex. That E' is all of E follows from the connectedness of E: If

C1(E - E') is not empty, its intersection with E' contains a vertex whose star con-
tains more than it should.

Suppose that the theorem has been proved for dimension n - 1, and suppose that
dim E = n. Then st(v, E) is the union of all faces of all n-simplices containing v,
since each simplex of E containing v lies in at least one n-simplex containing v.
Hence 1k (v, E) is the union of all faces of all (n - 1)-simplices of st (v, E) that do
not contain v: v-1k (v, E) = st (v, E) Let s™-1-I pe a simplex of 1k (v, E). Then
v.gt-1-h jg an (n - h)-simplex t®-b of st(v, E). By hypothesis, o(tn-h, E)=h+ 1.
Each n-simplex containing t®-P lies in st(v, E), because it contains v. ‘Each n-
simplex containing t®-! has an (n - 1)-face in 1k (v, E), and these (n - 1)-faces are
distinct for distinct n-simplices. Each of these (n - 1)-faces contains s®-1-b,
Therefore sn-1-h lies in h+ 1 (n - 1)-simplices in 1k (v, E). Therefore lk(v, E) is
isomorphic to the boundary of an n-simplex, by the induction hypothesis.

Let s; be one of the n+ 1 (n - 1)-simplices of 1k(v, E). By hypotheses, exactly
two n-simplices of E contain s;. One of them is v-s;. Call the other t". Note
that t™ does not belong to st(v, E) (if it did, it would contain the n+ 1 vertices of
the n-simplex v-s), from which we have supposed it to be distinct). Let s be any
other (n - 1)-simplex of lk(v, E). Then s, N s; is an (n - 2)-simplex, s™-2:

Ik (v, E) is built that way, because it is isomorphic to the boundary of an n-simplex.
By hypothesis, s, belongs to exactly two n-simplices of E. One of them is s, V.
Call the other r®. By hypothesis, s”-2 belongs to exactly three n-simplices of E.
But we have now named four n-simplices containing s”-%2. Of these s,°v, 8;°V,
and t™ are known to be distinct. Hence r™ must be one of these three. But r does
not lie in st(v, E) (if it did, it would contain all n+ 1 vertices of the n-simplex

sp *v, from which it is supposed to be distinct). Therefore r = t?, and s, is a face
of t™. Thus each (n - 1)-simplex of 1k (v, E) is a face of t?, so that lk(v, E) is the
boundary of t™.

We next show that E' = st(v, E) Ut" is identical with E. Each vertex x of E'
lies in n+ 1 n-simplices of E'. I x = v, then x lies in the n+ 1 n-simplices of
st(v, E). If x lies in lk(v, E), then x lies in n n-simplices of st(v, E) and in t"
as well. That E = E' follows from the connectivity of E. We can now construct an
isomorphism between E and the boundary S of an (n + 1)-simplex s.

COROLLARY 5. If E is an n-dimensional connected complex, if |E| is locally-
euclidean, and if o(v, E) = n+ 1 for each vertex v of E, then E is isomorphic to the

boundary of an (n+ 1)-simplex.

6. THE PROOF OF THEOREM 1 FOR HOMOGENEOUS COMPLEXES

Let K and L be homogeneous connected complexes of dimension n, and let f be
an isomorphism of BK onto BL. We first prove that if K is not a simplex, then
£(VO(K) U v2(K)) = (VO(L) U V2(L)).

Let v be an internal vertex of K. Slnce f(v) lies in V®(L) for some h, with

0 < h < n, we can show that f(v) lies in vO(L) U V(L) by showing that if h > 0, then
h > n. Let r = o(v, K). Then ofv, BK) = r-n! , while o(f(v), BL)=i-(h+ 1)! (n h)!,
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where i is the number of n-simplices containing the h-face s? of L of which £(v)
is the barycenter (see Corollary 1). Equating the two orders, we see that

. r-n!
T D@ -n)

Let e be an edge of BL joining bs® to a vertex of s®. Such an edge exists, since
h > 0. According to Corollary 2, o(e, BL) =i-h! (n - h)! , which becomes

r

0(e, BL) = m *

n!

when we substitute for i. We now find an upper bound on o(e, BL) by investigating
o(f‘l(e), BK). The edge f-1(e) connects v to the barycenter w of some m-simplex
s™ of K, so that by Corollary 2 o(f-1(e), BK) = j-m! (n - m)! , where j = o(s™, K).
Hence

T
—— ' — .- ' - '
TR jem! (n - m)! ,

m=n,then j=1,and r=h+ 1., But r > n+ 1, since v is internal (Coroliary 4),
so that h> n. Even if m < n, still m is positive (the edge f-1(e) exists, after all)
so that

m!(n-m)! <(n-1)!,
Because v is internal, j <r (Corollary 3), and
j'm!(m-m)! <(r-1)Mm-1)!.
Therefore

Rrr R SToL

which is possible for r > 0 only if h > n.

A slight modification of the argument just presented for internal vertices of K
shows that if v is the barycenter of an n-simplex s? of K, then f(v) lies in
vO(L) U V™(L). As before, f(v) lies in VP(L) for some h with 0 <h < n, and we
show that if h > 0, then h > n. This time, however, o(v, BK) = (n + 1)! , so that

n+1

0(e, BL) = m

n! .

On the other hand,/f‘l(e) joins v to a vertex w of B(bdry s™). Since o(w, Bs™) < n!
(by Corollary 1) and o(f-1(e), BK) = o(f-1(e), Bs®) = o(w, Bs™), it follows that

n+1
=T < .n! !
llln'<n"

which is possible only if h > n,

We can now show that if v is a noninternal vertex of K, then f(v) lies in
vO(L) U VR(L). Let s be an n-simplex of st(v, K). Then f(bs) lies in VL),
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because if it lay in VO(L), then f(v), and hence v, would be internal. Hence
f(Bs) = f(st (bs, BK)) = st(f(bs), BL) =

for some n-simplex t of L. We consider two cases.

Case 1: st(v, K) contains more than one n-simplex. Let s; and s, be distinct
n-simplices containing v, and let t; be the n-simplex of L of which f(bs;) is the
barycenter. Since v lies in s} Ns2, s N s, is a (nonempty) face common to s,
and s, that is carried to the common face t; Nty of t; and t,. Since s; and s,
are distinct, dim (s; N s3) < n, so that £(v) is a vertex of L by the Face Lemma.

Case 2: st(v, K) has only one n-simplex, s. Since K is homogeneous and con-
nected, and since we have assumed that K # s, the simplex s contains a vertex w
that meets another n-simplex of K. Even if w is not internal, o(w, K) > 2, so that
f(w) is a vertex, by a previous argument. Since f(Bs) = Bt for some n-simplex t
of L, f(v) is a vertex by the Vertex Lemma.

Thus £(VO(K) U V(K)) c (VO(L) U V(L)). By analogy,
“1wvow) u vAL) c (VUK) U VRK)),

so that f(VO(K) U V{K)) = (VO(L) U V™(L)).

It is appropriate to say a word about the restriction that K itself not be a sim-
plex. In Section 2 we showed that if K is a simplex, then L is a simplex. The
equation we have just derived may not hold for these simplices, because f may well
carry a vertex of K to the barycenter of a bounding (n - 1)-simplex of L.

The next step in proving Theorem 1 for homogeneous complexes is to show that
if £(VO(K)) n VO(L) is not empty, then £f(VO(K)) = VO(L). Let v be a vertex of K
with f(v) in VO(L). ¥ s is an n-simplex containing v, then f(bs) lies in V*(L),
because no point of VO(L), besides f(v), lies in st (f(v) BL). Hence f carries each
vertex of s to VO(L), because no point of VL), save f(bs), lies in st (f(bs), BL).
In partlcular, if e is a 1-simplex of K containing v, then f carries both vertices of
e to VO(L), because e lies in some n-simplex of K. That f(VO(K)) c V(L) now
follows from the connectedness of K: each vertex w of K lies on a path of edges of
K emanating from v, and f carries each vertex of the path to VO(L). By analogy,

£-1(vO(L)) c VO(K), so that £§(VO(K)) = VO(L).

Because f(VO(K) U V{(K)) = éVO(L) U V™(L)), we can also conclude that
f(VH(K)) = V(L) if f(VO(K)) VL), It 1s also easy to verify that if #(Vo(K)) N vO(L)
is empty, then f(V*(K)) =V 0(1) and £#(VO(K)) = V*(L). Accordingly, we divide the -
remainder of the proof into two parts, depending on whether f carries a vertex of K
to a vertex of L.

Part 1. Let K and L be connected, homogeneous complexes containing more
than one simplex of top dimension, and suppose that f is an isomorphism of BK onto
BL that carries a vertex of K to a vertex of L. There exists an isomorphism f' of
K onto L that agrees with f on VO(K).

We proceed by induction on dim K. The assertion is obviously true for
dim K = 1. Suppose that it is true for dim K <n, and let dim K = n. Because
£f(Vi(K)) = VI(L) for i=0 and i= n, f carries the n-simplices of K to the n-
simplices of L, so that f | BK»-1 (Kn ! js the (n - 1)- skeleton of K) is an 1so—
morphism of BKn“1 onto BLn-1 carrying vertices of Kn-1 to vertices of Ln-1
Let f' be the hypothetical isomorphism of K2-1 onto L™-! agreeing with f BKn-1
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on VO(K™-1) = vO(K). Extend f' to include the n-simplices of K, by defining £'(s™)
to be that n-simplex of L to which f carries bs™. We observe that f' is a well-

defined one-to-one correspondence between K and L. Let s and t be distinct sim-
plices of K. It remains to show that f'(s N t) = £'(s) N £'(t). If neither simplex has
dimension n, then s and t are simplices of Kn-1 , on which f' is already supposed
to be an isomorphism. Suppose that t has dimension n, and that s does not. Then

f'(s Nt) = f'(s N bdry t) = £'(s) Nf'(bdry t),

because s and bdry t lie in K2»-1, But f'(bdry t) = bdry £'(t), because f carries the
vertices of t to the vertices of f'(t), and f' agrees w1th f on VO(K). Hence
f'(s Nt) = £'(s) N bdry £'(t). Since f'(s) lies in L™-1

£i(s) N £'(t) < (L™ N£'(t)) = bdry £'(t).

Hence f'(s) N bdry f'(t) = £'(s) N £'(t).

If s and t are both n-simplices, then
f'(s Nt) = f'(bdry s N bdry t) = f£'(bdry s) N £'(bdry t) = bdry £'(s) N bdry £'(t).
Since f'(s) and f'(t) are distinct n-simplices of L,
f'(s) N £'(t) = bdry £'(s) N bdry £'(t).

Therefore fi'(s N t) = f'(s) N £'(t).

Part 2. Let K and L be connected, n-dimensional, homogeneous complexes
containing more than one n-simplex, and suppose that the isomorphism f of BK
onto BL carries no vertex of K to a vertex of L. Then f(V?(K)) = V*(L), and each
vertex of K is internal, so that M2(K) is empty. Similarly, M(L) is empty. (This
can be deduced either from the fact that M, commutes with B, or from the fact that
£(V(K)) = VO(L).)

I v is a vertex of K, then Corollary 1 implies that
o(f(v), BL) = (n+ 1)! = o(v, BK) = n! ofv, K),

so that o(v, K) =n+ 1. By Theorem 2, each (n - h)-simplex of K lies in the mini-
mum number h+ 1 of n-simplices of K By Theorem 3, if n > 1, then K is iso-
morphic to the boundary of an (n + 1)-simplex. If n =1, then |K| is one of the two
possible 1-manifolds. Since analogous statements hold for L here, K and L are
isomorphic. It is clear that no isomorphism of K and L can be induced directly by
f, because f doesn’t carry vertices to vertices.

Since we have already proved Theorem 1 for the case where K is an n-simplex,
the completion of Part 2 establishes the theorem in general for connected, homo-
geneous complexes.
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7. THE PROOF OF THEOREM 1 FOR
NONHOMOGENEOUS COMPLEXES

Let K and 1. be connected complexes that are not homogeneous. If there exists
an isomorphism f of BK onto BL, then £(V(K)) = VO(L) and there exists an iso-
morphism f' of K onto L that agrees with f on VI(K).

Let Kj, be the subcomplex of K determined by the h-simplices of K that do not
belong to (h + 1)-simplices of K. Define Ly analogously, and observe that if K}, is
not empty, then f(BK,) = BL; . Since K is not homogeneous, K;, is nonempty for at
least two distinct values of h> 1. Let i be one of these values, and let CK; be a
component of K;. For some j different from i, CK;N K; is not empty, because K
is connected. Let CKj; be a component of K; for Wh1ch CK1 N CKj is not empty.
Let CL;j and CLj be the components of Lj a.nd of Lj for which f(BCKl) BCL; and
f(BCK ) = BCL;. Because

[vo(cLy u vicLy] n [vo%cLy U vicLy] c vo%cLy nvocLyl,

f carries a vertex of CK; N CK; to VO(CLi) n VO(CL ;). In particular, f carries a
vertex of CKj to a vertex of CL;. Since CKj is homogeneous as well as connected,
the arguments for homogeneous complexes show that f carries the vertices of CK;
to the vertices of CL; and that there exists an isomorphism f; of CK; onto CL;
that agrees with f on vertices. There is an analogous isomorphism f; of CKj onto
CLJ, and fj and f; agree on CK; N CK , because they agree on vertices of this
intersection. The construction of an 1somorphlsm of K onto L agreeing with f on
vO(K) is now routine.
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