FUNCTIONAL ANALYSIS AND GALERKIN’S METHOD
Lamberto Cesari

INTRODUCTION

In the present paper we discuss a process for the existence analysis concerning
solutions of linear and nonlinear equations Kx =y in functional spaces (Chapters 1
and 2). The method reduces the problem to the study of a finile system of trans-
cendental equations (determining system) in a finite-dimensional Euclidean space;
the system in turn is analyzed by considerations based on the topological index of a
mapping. The method is connected with Galerkin’s method of successive approxima-
tions, which is often applied to cases where the existence of an exact solution is not
known. In this situation the process may give an answer to two questions: 1. H a
certain mth approximation ™) ig known, is it possible to argue whether an exact
solution X also exists? 2. If the answer to (1) is in the affirmative, is it possible
to give an upper estimate for the difference X - x(m) (error bound) ?

In association with these problems we mention Kantorovié’s theory [7], [8], [9]
for linear equations of the form Kx =y, and KeldiS’s proof [10] of the convergence
of Galerkin’s method in linear differential problems with boundary values (for which
the exact solution is known to exist). Also, let us mention the work of Schmidt [15]
and Bartle [2] on functional equations, and Rothe’s analysis [13], [14] of gradient
mappings and topological order in Banach’s spaces.

In Chapter 1 we discuss a few points of the present approach, remaining, as far
as possible, in the frame of a normed linear space (the setting of the first pages of
our previous paper [4] was only slightly more general). In Chapter 2, with a view
toward applications, we recast the present approach in the frame of a separable,
complete, real Hilbert space, and under enough assumptions so as to simplify as
much as possible the final statement (Theorem viii of Section 10).

In Chapter 3 we apply the process as discussed in Chapter 2 to a particular prob-
lem, namely, the nonlinear ordinary differential equation

XM+ x+ax3 = Bt (0<t<1)

with homogeneous boundary conditions x(0) = 0, x'(1) + hx(1) = 0. For h = 1, we show
that a solution exists for all |a| <1, |B| < 1. The process is then applied to the
study of the first Galerkin approximation to the solution of the same problem, for
particular values of h, ¢, and B3, and numerical error bounds are obtained.

In other papers we shall apply the same process to an existence analysis for non-
linear partial differential equations for smooth or generalized solutions.

In previous papers [4], [5] we have applied the process of the present paper to
questions concerning existence, approximation, and error bounds for periodic solu-
tions of periodic (or autonomous) nonlinear ordinary differential equations. The
numerical case discussed there provides another exemplification of the process that
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is here given in a more general setting. In that example we used the same approach
to prove the existence of an exact solution X, first independently from any Galerkin
approximation and then in association Wi%h the second Galerkin approximation

(m = 2), to obtain an upper estimate of x'%) - X,

H. W. Knobloch [11], [12] applies the approach given in the present paper and in
[4], [5] to a qualitative existence analysis of periodic solutions of certain types of
second-order (not necessarily linear) ordinary differential equations. The results
Knobloch obtains by this approach are similar in form and partially overlapping in
extension with others obtained by Barbalat by means of Wazewski’s topological
method.

C. Borges [3] applies the process of the present paper to obtain existence and
error bounds for periodic solutions of nonlinear (periodic, and autonomous) second-
order ordinary differential equations in association with the first Galerkin approxi-
mation (m = 1, method of harmonic balance).

For linear equations derived from the problem of the minimum of integrals of
quadratic forms, Galerkin’s method is known to coincide with Ritz’s method (see
[22], for example).

THE mth GALERKIN APPROXIMATION

1. Let S be a separable, real, complete Hilbert space of elements x, y, *--. Let
x.y and ||x|| denote respectively the inner product and norm in S, and let
(b1, 2, ***, dn, ***) be a complete orthonormal system of S. Let K: Sx — S be a
mapping (not necessarily linear) from a subset Sk of S into S. We shall consider
an equation of the form

(1) Kx = 0,

Since K is not necessarily linear, this problem includes equations of the form
Lx-y=0.

Often Galerkin’s method is applied; that is, approximate solutions to Kx = 0 are
sought that have the form x=c¢; ¢; + --» + ¢, ¢, and satisfy the equations

(2) K ECJ¢J>‘¢k=O (i=1, "',m).
j=1

If cgm), c(zm), e cgln) is a solution (in case one exists) of this system of m equa-
tions in the m unknowns c;, ---, ¢, , then

x(m) = cgm) ¢1 4 eee c](;‘lll) qu

is said to be an mth Galerkin approximate solution to equation (1). Often the map-
ping K is replaced by another mapping K, (close to K), and the mth Galerkin ap—
proximation is obtained by replacing K by Kg in (2).
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CHAPTER 1. NONLINEAR EQUATIONS IN FUNCTIONAL SPACES

2. We shall assume first that S is a normed linear space of elements x and
norm || |. Let E, N, K=E - N, P, H be mappings, and let Sg, Sy, Sk, So, and
S; be subsets of S satisfying the following hypotheses:

(Ia) E: Sg — S is a linear operator (not necessarily bounded), N: Sy — S is an
operator (not necessarily linear), K: Sk — S, wherve Sx=Sg NSy # 0 and
K=E - N,

(Ib) S is the (topological) divect sum of the (closed) subspaces Sy and Sy . Let
P: S — S, be the (bounded) projection of S with null-space S; and vange
S
0 .

(Ic) H: S; — S, is a linear opevator such that
(3) H(I - P)Ex = (I- P)x forall x € Sg,

wheve 1 is the identity operatoy on S,

In the applications, S may for instance be the class of all continuous functions,
or of all functions x(a) (a € A), Lz-integrable over a domain A, and E may be a
differential operator of order M. Then Sy will be a subset of S composed of func-
tions x(a) sufficiently “smooth” so that Ex(a) is defined and is an element of S; that
is, E: Sy — S, as assumed in (Ia). The operator N is not necessarily linear and
need not be defined on the whole of S. Actually, we shall consider N as operating
only on certain subsets of S defined by means of limitations of the form | x" <M,
or analogous ones. Below, we shall have to assume that the subsets we need con-
sider are actually contained in Sy. Since K = E - N, equation (1) can be written in
the form Ex = Nx. The assumption (Ic) states essentially that H is a partial left in-
verse of E (see Remark 1 below).

3. First let us note that PPx = Px for every x € S and Px=x for every x € S; .
Also, every x € S admits a unique decomposition x=xy +y, Xg € Sp, y € S;. I
I is the identity operator in S, then I - P: S — S;, and P(I - P)x= 0 for each x € S.
Also, H: 8; — 8,, and hence
(4) PHx = 0 for every x € S,

(5) PH(I - P)x = 0 for every x € S.

Remark 1. If H: S — S, and H is a left inverse of E that commutes with P, that
is, HEx = x for every x € S and HPx = PHx for every x € §, then in S,

H(I - P)E = HE - HPE = HE - PHE = 1- P.
Besides, by force of the relations
HPx = PHx, H(I - P)x = (I - P)Hx (x € 8),

we deduce that H: Sg — Sg and H: S; — S; in this particular situation. Thus (Ic)
holds in this particular situation.

We have already noticed that, by force of (Iabc), equation (1) Kx = 0 becomes

(6) Ex = Nx.
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If y is a solution of this equation, then Ey = Ny, y € Sg N Sy, and, by applying the
operator H(I - P), we see, again by force of (Iabc), that

H(I - P)Ey = H(I - P)Ny,
(I - P)y = H(I - P)Ny.
If F denotes the operator F = H(I - P)N, then F: Sy — S;, and
(7 y = Py+ Fy = Py + H(I - P)Ny.

If T=P+ F, then y = Ty; that is, y is a fixed point of the transformation
T: SN — S defined by

(8) T = P+ H(I - P)N.
4.. For given constants ¢, d (0 < c <d), let V be the set
v =[x|xes, |Px]| <cl.
For a given element x* of the set V, let S* be the set
(9) ’ s* = [x| x € S, Px = Px*, and [x| < d].

The set S* is not empty, since Px* € S*, Besides (Iabc), we now need the further
assumption that

(Id) for each element x* € V,
S* C Sy, and | 7=<|| <d - c for every x € S*¥,

Let us prove that hypotheses (Iabcd) imply that T: S* — S*, Indeed, if y = Tx,
x € 5%, then

y = Tx = Px+ Fx = Px+ H(I - P)Nx,

Py = PPx+ PH(I - P)Nx = Px = Px¥*,

I

Iyl < Ip=*l + |72l <c+a-c=a.
If, in addition, Fl S* is a contraction, that is,
(10) [Fx; - Fx,[| < k|, - %,

for all x;, x, € S* and some constant k < 1, thenT: S* — S* is also a contraction,
Indeed,

y; = Tx; = Px; + Fx; (i=1, 2,), Px; = Px, = Px*, and
"Yl - yz" = "Fxl - sz" < k”x1 - Xz” .

‘By fixed-point theorems of Schauder and Banach, respectively, we obtain the
two theorems helow.
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THEOREM (i). Under hypotheses (Iabcd), T: S* — S*, If S* is compact (or S*
is complete and T(S*) is compact), then T: S* — S* has at least one fixed point
y = Ty in S*,

THEOREM (ii). Under hypotheses (Iabced), if Fl S* is a contraction, then
T: S* — S* is also a contraction. If S* is complete, then T has exactly one fixed
point y =Ty in S*.

5. We now need a new assumption, in order to deduce important properties of any
possible fixed points of T: S* — S*,

(Ie) For each fixed point y = Ty € S* of the transformation T (if any exist),
y € S, Py € S, and the Jollowing velations hold:

(11) EPy = PRy,
(12) EH(I - P)Ny = (I - P)Ny.

Assume now that all hypotheses (Iabcde) are satisfied, so that T: S* — S*, Let
y = Ty be any fixed element (if any exists) of T| S*., Then y = Ty € Sg N S*, and

y = Ty = Py+ Fy = Py+ H(I - P)Ny.

Since y € Sg and Py € Sg, we see that H(I - P)Ny € Sg. Applying to both sides the
operator E, we successively conclude by (Ie) that

Ey = EPy + EH(I - P)Ny,

Ey PEy + (I - P)Ny,

Ey = Ny + P(E - N)y,

that is, Ky = PKy. If p = PKy, then we conclude that any fixed point y = Ty of Tj S*
satisfies the equation

(13) Ky = p,

where p = PKy is an element of Sj.

In order to establish the desired connection with Galerkin’s method, we shall now
restrict the generality of the space S by means of a new assumption:

(If) S is a separable, veal, complete, Hilbert space, (¢y, ¢,, -**) is a complete
ovthonormal system in S, and (¢, ***, ¢.) spans S;.

Under the hypotheses (Iabcdef), we now see that

p = PKy = (Ky-¢1)p; + -+ (Ky - ¢.)0,, -

We conclude with the following theorem.

THEOREM (iii). Under hypotheses (Iabcdef), if y = Ty is any fixed element of
T: S* — S* then y satisfies the equation Kx = 0 if and only if the m Galevkin-like
equations
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(14) U, =Ky-¢;=0 (i=1, -, m)

hold.

These will be called the determining equations of equation (1).

CHAPTER 2. THE EXISTENCE THEOREM

6. In order to prove an existence theorem for solutions of the equation Kx = 0,
and with a view toward applications, we prefer to recast the previous consideratio:
in a different setting. In a way, the new setting is more complete because it takes
into consideration an “approximate” solution xy and an “approximate” equation
Kgx = 0 besides Kx = 0. On the other hand, it is from the beginning placed in a
real, complete, separable Hilbert space.

Let S be a real, complete, separable Hilbert space, let (¢1, ¢2, *++) be a com-
plete orthonormal system in S, let E, N, Ny, K, Ko, P, H be mappings, and Sg,
SN Sk Sg, S, subsets of S, sa.tlsfymg the followmg hypotheses

(Ila) E: S g— S is a lineav opevatov (not necessarily bounded), N and N are
operators (not necessarily lineavr) from the same subset Sy of S into S,
K=E-N, Ko=E - Ny, K and Ky map Sk into S, and Sk = Sg N Sy # @.

(IIb) S is the (topological) dz'rect sum of the (closed) subspaces Sqg and S| with
Sy spanned by (¢, *++, ¢) (1 <m < ») and Sy CSg. Let P: S — Sy be
tke (bounded) projection of S with null-space S, and vange Sy.

(IIc) This hypothesis is the same as (Ic).

Let x, denote any element of Sg N Sy. Actually, we think of N, as an operator
“close” to N, and of x( as an “approximate” solution of the approximating equation
Kogx=(E - Ng)x=0

7. We may assume that the Hilbert space S, besides the norm || ||, has one or
more seminorms p.(x) (for which the value +« is not excluded). We shall assume
that N and N are at least defined in a “neighborhood” Sy of xg. Precisely, cor-
responding to numbers ¢, d, r, and Ry with 0 <c <d and 0<r <Ry, let S, be
the set

(15) So=1[x] xes, |x-x <a, plx-xy9 <Ryl.

We shall assume in (IId) below that Sy € Sy. Obviously, S, is not empty since it
contains xg.

We could now consider the set
(16) x| xes, [Px-xp] <ec, uPx-xy <rl,
which is not empty since it contains xy. Most of the considerations below apply to

this situation. Nevertheless, to simplify matters, we shall first assume that x; is
actually an element of S, that is, xg is an element of the form

X0 =Co191+ " Com®Pm-

Second, we shall restrict the set (16) to elements x € Sy, so that Px = x,
Px, = x,, and P(x-xp)=%x-%; (x-x%xg€ S¢). In other words, we replace (16) by
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(17) V=[x|xesy, [x-x0| <ec, nlx-x) <rl.

Since 0 <c<d, 0<r <R, weseethat VCS§S,.

Finally, we shall assume, again to simplify matters, that a relation of the form
z € S, "z" < c, implies pz <r for some r, and that ¢ and r are so related. This
situation actually occurs in the applications we have in view. We could dispense with
these three restrictions, but they simplify matters in the last step of the process that
we shall describe. Note that with the last convention, V is actually defined by the
simple conditions

(18) V=[x|xe So, = - xon < c],

since X, X, X - Xg € Sy, and Hx - Xo“ < c imply p(x - x5) <r.
For each x* € V we now consider the set
(19) S§ = [x| xes, Px = Pxx, ||x-x4f <d, nx-x) <Ryl.
Note that SO is not empty, since it contains x*, and also, by comparison with (15),

that S§ S, .

Finally, we shall assume that for each x* € V the corresponding set SZ')‘ is com-
plete. This is a stronger form of an assumption mentioned in Theorem (ii) of Chap-
ter 1.

For the reader’s convenience we summarize the assumptions we have made in
the present section:

(IId) xq € Sy s a given element of Sy, 0<c <4, 0<r <Ry are given numbers
so velated that z € Sy, |zl <c _imply p(z) < r. If V, Sy are the sets de-
fmed by (18), (15), assume that Sy Sy. Then V C So C Sy, and
SO C S0 C Sy for every x* € V. Also, assume that for each x* € V, the
corvesponding set S is complete in the novm | |.

Note that xy € Sy C Sg by (Ilbd), and that x; € S0 C Sy by (15) and (IId). Hence,
Xy € Si N Sy, as was assumed at the end of Section 6. Analogously, from the inclu-
sions V C Sy C Si and V C Sy, we deduce that V C S N Sy
8. In analogy with Chapter 1 we denote by F and F, the operators
F = H(I - P)N, Fy, = H(I - P)N,,
and by T the operator
T = P+ F = P+ H(I - P)N.
Let a, a', b, b’ be positive numbers such that
(200 [[Fxy - Foxoll <a, p(Fxy,-Fyxp)<a', [al<n n@)<bpy,
where A is the element of S defined by

Xg = Pxg +Fyxg + A.
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Note that, if 6 = Kgx denotes the error with which x; satisfies the approxima-
ting equation K x = 0, then we can successively conclude

0 =K0xO=EXO—NOX0 (068),
(1- P)x, = H(I - P)Ex, = H(I - P)(Nyx,+ 9),
Xy = Pxy+ Fyxy+ A, and A = H(I - P)6.

Thus, the numbers b, b' > 0 above arerelated to the error with which x; satisfies
the approximating equation Kyx = 0. The closeness of the operators N and Ny is
measured by the numbers a and a'.

We finélly assume that the operators N and H satisfy hypotheses of continuity.
Precisely, we assume

(Ile) theve exists a constant L > O such that, for any paiv x! and x% in S,

(21) [Nx! - Nx?|| < L|x! - x2|.
Concerning H we could assume that
(22) I - Pzl < xllzl, wHE- P2 <k

for every z € S. The first inequality is the usual boundedness of H(I - P), and hence
of H. The second inequality is actually a property of the seminorm p, analogous to
the one already assumed in (IId). Indeed, if z € S implies pu(s) < C|z|, then we
could take k' = Ck. But all this is far too restrictive. The weaker assumption (IIf)
below is sufficient for the proofs of the theorems to follow. Let Zg be the set

Zo = N(Sg) - N(Sp), in other words, the set of all z = z! - z% with zl = Nx1,

2% = Nx? (x!, x% € S;). All we need is the requirement

(If) theve exist constants k, k' > 0 such that the inequalities (22) hold for all
z € Zg.

Under hypotheses (IIabcdef),
(23) [Fx! - Fx?|| = ||H(1 - P)(Nx! - Nx?)| < kL|x! - x2|
for all x!, x? € §,; moreover,
(24) | Fx - Fxo| = [HE - P)(Nx - Nxg)|| < kL% - x4[| < kLd,
u(Fx - Fxp) < k'Lix - x,] < k'L
for all x € Sy.
9. The first part of assumption (Id) has in the present setting been replaced by

the stronger assumption Sy C Sy contained in (IId). Now we need an assumption that
corresponds to the second part of (Id):

(ig) The numbers a, a', b, b', k, k', ¢, d, r, and Rq satisfy the three relations

kL <1, kLd<d-c-a-b, Kk'Ld<Ry-r-a'-b'.
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We are now in a position to state and prove a theorem that corresponds to Theo-
rem (ii) of Chapter 1:

THEOREM (iv). Under hypotheses (llabcdefg) and for each x* € V, T maps S’S
info Sﬁ and is a contraction, and hence it admits one and only one fixed point

y =Ty € S§, which depends on x* and is thevefore a single-valued function
y = ¢(x*) (x* € V); thatis, ¢: V — S,

First let us prove that T maps S§ into S§. For every x* € V and every x € s
we see from (19) that Px = Px* = x* € Sy, and, as in Chapter 1, we conclude that

y = Tx = Px+ H(I - P)x,
Py = PPx+ PH(I - P)x = Px = Px* = x*,
Also,
y = Px+ Fx, Xg = Pxg+ Fgxg +4,
and, by way of comparison,
Yy - X9 = P(x - x5) + (Fx - Fx) + (Fxg - Fyxg) - A.
Hence, by (17), (24), (20), and (IIg),
Iy - =oll < llx - xoll + | 7% - Fxoll + [ Fxo - Foxoll + A
<c+kLd+a+b
<d.
Analogously,
p(y - xg) < p(x - x0) + L(Fx - Fxg) + p(Fry - Foxg) + (D)

<r+k'Ld+a'+Db'

IN

RO-

Thus y = Tx € Sg, for every x € S§, or T: S§ — S§.
Let us prove that Tl S$ is a contraction. Indeed, for every two elements
X, X, € S’(';, it follows from (19) and (23) that
y; = Tx; = Px;+ Fx; (i=1, 2), Px; = Px, = Px* = x* and
”Y1 - Yz" = “ Fx, - sz” < kL”xl - xz“ s

where kL < 1. Thus T| S} is a contraction and maps S} into S§, and S} is com-
plete in the norm | ||. Thus, the fixed point y = Tx € S§ of T| S} exists and is
unique. Theorem (iv) is thereby proved.

THEOREM (v). Under the hypotheses of Theovem (iv), y = T(x*) (x* € V), is a
continuous function of x*.
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This proposition is essentially known. Nevertheless, we prove it here for the
convenience of the reader. I x*, x'* are any two elements of V, then

y= T(x+) e S5y, ¥y = T(x*)eg*cS,

y = Py + H(I - P)Ny, y' = Py'+ H(I - P)Ny'
b

xX* Py' = Px'* = x'*¥ y = ITx*, y' = Tx'*¥,

Py = Px*
Hence,
ly -yl < [pxx - x| + BT - PY(Ny - Ny,
where y, y' € Sg. Hence, by force of (23), we successively see that
ly -yl <l - x*| +xLfly -y,
Joxt - wxx] = Jly -y <@-xn) o - xx].
This proves the continuity of €: V — S under the conditions of Theorem (iv).

10. In order to obtain further properties of the mapping y = T(x*), we need two
more assumptions, the first of which corresponds to (Ie). We now presuppose

(IIabedeig).
(IIh) For each x* € V, the fixed point y = Ty = T(x*) of T| SE," is an element of
S, and the relations

EPy = PEy,

EH(I - P)Ny = (I - P)Ny

hold.
(i) E has the property that theve exist some elements ¢; € S (i=1, -+, m)
such that, fov all X € Sg,

EX'(ﬁi:X’(-ﬁi (i=1, "',m).

Let us note that the requirement Py € Sy of (Ie) is not explicitly stated in (IIh),
since it is a consequence of the stronger requirement Sy C Sy of (IIb). As noted in

Section 5, y € Sg, Py € Si imply H(I - P)Ny € Sp.

Hypothesis (ITh) implies that T: V — (Sg N Sn). Indeed, for each x* € V, we see
that y = Ty € S§, where S§ c Sy C Sy by (IId) and y € Sy by (ITh). Thus

y € Sg NSy, and T: V — (Sg N Sy).
If we denote ¢; by G¢,, then (IIi) becomes

Ex-¢, = x-G¢,; (x € 8, i=1, ese, m).
Thus, G can be extended into a linear operator G: Sy — S such that

(25) Ex-z = x-Gz (x € S, z € 8).
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In other words, (Ili) can be stated by saying that E admits an “adjoint” operator G
satisfying (25) for all x € Sg and z € Sg.

Under hypothesis (IIi), we shall use the notation

mo 1/2 m 5 1/2
- (Z1507) " - (Bhewr)

We can now prove the following theorem.
THEOREM (vi). Under hypotheses (Ilabcdefgh), for each x* € V, the fixed ele-
ment y =Ty = T(x*) of T| S§ satisfies the relation Ky = PKy, with
P = PKy = (Ky-¢1)¢1+ ==+ (Ky - b11)) b, -
Hence,y = T(x*) is a solution of the equation Kx = 0 if and only if the m Galerkin-
like equations Ky-¢;= 0, (i=1, ---, m) are satisfied.
The proof is the same as that in Chapter 1, and we do not repeat it.

As stated in formula (18) of Section 7, V is the set of all finite expressions
x* = ¢y Py + e+ Cp by, With ||x* - x| <c. Let En,, Ep, be two auxiliary m-
dimensional Euchdea.n spaces whose points will be denoted by y = (¢, **-, ¢,,) and
u=(uy, -+, u,), respectively. The norms in E,, E,, will be denoted as usual by
”'y" and "u“ respectively. We shall denote by ¢: E — S the trivial map
x = ¢(y) that associates the expression x = cj ¢ + ° + €, ¢y, With the point
y=(cy, »-, ¢, ) of E_. K T denotes the closed ball with center

Yo = (Co15 5 Com) € By

and radius c, ¢: I' = V. Note that ¢ is a one-to-one linear map with
Horll =l ||¢l| =1, and [l¢-1] = 1.
Let ¥: (S NSy) — E_  with u=¥(x) (x € S N Sy) be the map defined by

ui=Kx—¢i=K<Z; csqbs)-gbi (i=1, ---, m),
s=1

where
Elcsc,bs € S N Sy and u=(uy, >, u )€ E;n,
s:
sothat u= ¢"1 PRx (x € S N Sy), or ¢ = ¢~! PK.
THEOREM (vii). Undev hypotheses (abcdefghi) the mapping
Y: (S NSy — Ef
is continuous.

Indeed, if x1 , x% € Sg N Sy, then by Bessel’s inequality and the definitions of G
and e,
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lox! - wx?|| = 2 (|(Rx" - Kx?) - ;]2)1/2
i=1
i=]l

_ .Z)(|(X1 - XZ).G¢i - (Nx! - Nx2) .¢i| 2)1/2

i=1
< (e+ L)Hx1 - x2||

This proves the continuity of y.

Finally, we shall consider the two maps
M=yp: T—E _, M=yI¢: T —E),
where
g: T o VC(SE NSy, T:V—-(SgNSy, ¥ EgnNSy)—E, .

Both of the maps M = ¢ and M = Yy T¢$ are continuous on I,
Each y € T determines a unique ¢(y) = x* € V. Thus for each y € T, the error
function p in Theorem (vi) has the alternate representation
p = PKy = ¢¢~1l PKITx* = ¢yTx*,
where x* = ¢(y). Hence, ¢~!p = ¢ TP(y). Moreover, p = 0 if and only if ¢~1p = 0;
that is, p = 0 if and only if ¢ T¢(y) = 0.

We shall denote by pg and p the topological degrees of M and M with respect
to the origin O of E] . If we denote by 9I' the boundary of T', then 9T is an
(m - 1)-dimensional sphere in E_, and

Co =M|ar:8I'>E!, and C= M|al:sl—E

are singular (m - 1)-cycles whose topological orders with respect to the origin of
E., are still the numbers pg = @(Cqy, O), p = ¢(C, O).

m
The distance " C, Cy || between C and C; is the number

lc, Goll = max|aG) - .00,

where C: u= A(y), Cy: u=Ay(y) (y € 9T), and the maximum is taken over all
veall. If

A = max [yé(y) - o) |,
veadT’

then [[C, G, <A.
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Let Q denote the minimum distance of the points of the range of Cy from the
origin O of E},. It is well known from topology that if

”C, CO" < Q’

then 0(C, O) = 0(C, O). Thus A <Q implies p = pg. In this situation, if ng # 0,
then p # 0 also. Hence, we know from topology that there exists at least one point
v in the interior of T" such that ¢ T¢(y) = 0, that is, for which p = 0. Therefore

Ky = 0, and y = T ¢(y) satisfies the original equation Kx = 0 exactly. Also, pg #0
implies that there exists a point ¥, inside I' such that ¥¢(yy) = 0, that is, which
satisfies exactly the equations of the mth Galerkin approximation. We conclude this

section with the following theorem.

THEOREM (viii) (Existence and Approximation Theovem). Undev hypotheses
(ITabcdefghi), #f pg # 0 and

(26) A <Q,

then theve exists an exact solution y of the given equation Kx = 0. Also, y = TX*
and Py = Px* = x* for some x* € V. Moreover, y € SE')‘, y € (SE N SN), and

Iy - xoll <da, NPy -xl <e,
.U(Y-XO)SRO, M(PY—XO)SI'.

Thus the numbers c, Ry give evaluations of the distance of the exact solution y
from the “approximate” solution x, of the equation Kyx = 0. For some values x
(say Xy = 0), ¢ and R, cannot be small, and Theorem (viii) is a mere existence
theorem.

11. In applications, verification of the hypotheses (26) that A < Q may be made
along the following lines. We determine first of all convenient upper bounds for the
distance || C, COH . To do this, we shall assume that the elements ¢;, ¢,, --- satisfy
the usual relations E¢; + A;¢; = 0 (i=1, 2, ---) (say, they have been obtained by
solving a boundary value problem relative to the linear operator E), and that
lkil — © a8 i — 40,

Then
m m )
Xp = 2 coidy,  x*= 20 cidy, ¥y = 20 cqd
i=1 i=1 i=1
m m
Exy = - 27 A;Co; 95 Ex* = - 27 Asc ;.
i=1 i=1
If we put
o oo o
Nxg = 20 vg; &5, Nxx = 20 y¥e,, Ny = 2J v;4;,

i=1 i=1 i:l

then



398 LAMBERTO CESARI

o
Il

Kx* - ¢, = (E -N)x*-gbi = Ex*-¢;, - Nx*¥-¢, = x*-G¢, - Nx*-¢,,

U. = KY'¢i = (E -N)Y'¢i = EY'¢i - NY'¢i = Y'G¢i' NY'¢iy

and
lu; - U;| = |x*-Go; - y-Go; - Nk« ¢ + Ny - ¢
= |(x* - y)-G¢, - (Nx* - Ny)-¢,| (i=1, -, m).
Hence,
m 1/2 m 1/2
27 (u; - Uy)? = { 27 [(x* - y)- G - (Nx* - NY)'¢1]2}
i=1 i=1

m 1/2  'm 1/2
< {E [(x* - y)-Gqsi]Z} +{ 27 [(Nx* - NY)'¢'i]Z}

i=1 Ci=1

m 1/2

< = -y : las 4l ® + | Nx* - Ny
1:

<elx -yl +Llx* -yl

= (e+ L)||y - x*“ .

In case E is selfadjoint (E = G), the first of the two expressions above is zero, and
e -+ L. can be simply replaced by L.

Now y = Py + Fy, X4 = Pxy+ Fyxo+ A, and Py = x*; hence,
y - Py = Fy - Fgyxg - A,
ly - x|l = lly - Pyl < [y - Fxoll + [ Fxq - Foxoll + [ 4]
< kLd+a+b.
Thus
m 1/2
A = max[g (ui—Ui)z:] < (e+ L)(kLd+ a+ b).

Instead of (26), it is easier to verify that
(27) (e + L)(kLd+a+b) <Q,

where Q is the distance between the range of C; and the origin in El',n If E is
selfadjoint, that is, E = G, then e + L can be replaced by L in all these formulas.

12. In particular situations both the numbers pg = ¢{(Cqy, O) and Q can be de-
termined numerically, for a given c > 0. Nevertheless, it is convenient to obtain a
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lower bound for the number Q@ appearing in (26) and (27), and together with it a
criterion assuring that p, = 0.

Let

m
Kx0'¢EK Z) c05¢0)'¢i=ni (i=1, '“:m)7

s=1

the numbers 7; being the errors within which x; satisfies the exact equations of the
mth Galerkin approximation, and let 7 = (m§ + -+ nrzn) 1/2 | Now, for x = x* € V,

ui=KX*'¢)i=K(Z> cs¢s)-¢i (i"—‘l, ...’m).
s=1

We assume that these functions of ¢y, -, ¢, are known and are of class CZ, and
that we are able to determine the m2 numbers

mij = [aui/acj ]C=c01 (1: j = 1: T m) .
Furthermore, let

2
d uj

M = max ————-—acjach

b

where the maximum is taken over all i, j, h=1, ---, m and all v € T, that is, over
all (c;, +--, c,) with

m

)
(c; - cpy)” < e
s=1

If m = det [mij] # 0, then the (m - 1)-dimensional sphere

m
ar: 2J (c; - C()i)z = CZ,
s=1
is mapped by
m
(28) i = ni+j=21 my; (¢ - ¢o;)

into an (m - 1)-dimensional ellipsoid C,,. To simplify notation, we shall also denote
by C. the map (28) restricted to aI"'. The m semiaxes of the ellipsoid C.,, can be
determined by analytic geometry. Indeed, by reversing the linear relations (28) we
obtain the formulas

Hij (uj - 775)

|
VE

€ - Coi =
1

(S
1]
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and
m m
c? = 2 (c; - cOi)2 = 2 A5 - ny)(uy, - 1y,
i=1 j,h=1
where
m m
Aj;= iZ—>1ui2j’ Asp = ?1 Mijlhin (G #h; j,h=1, -, m).

If 0-1’ ---7 o-m

numbers aj = coj‘

are 91e (positive) roots of the equation det [Aih - ¢I] = 0, then the m
(j =1, *»-, m) are the semiaxes. Let

-1/2
b

o = minf[o ]

’

o2,

By Taylor’s formula,
m m

(29) u, =7+ 21 m;;(c; - coj)+—;: . hzl d;jnle; - co5)(ey, - coy),
J= J.n=

where the second derivatives dijh are computed at some point inside I'. By com-
parison with (28), we see that

m m
- 1 -1
log - 0] = |5 2 diglej - cop)lep - cop)| < 271 M 27 ej - eq5l ley, - cop
j,h=1 j,h=1
m 2 m m
=27 M 20 Je. -y |) <2im 2 (e, -2 Y[ 2 12
. J 0j — . J 0j .
=1 J—l J=1
= 27! Mmc?
Thus

48
48

1/2 m 1/2 1/2
(v - ni)Z:] > [ 2 (G - 'ni)ZJ [ (u; - ai)z]
i=1 i=1

> €O - 2"1Mm3/2 cZ,

I

and, finally,

1
P

m 1/2
(Euf‘ _>_ccr—2"1Mm3/ch—n,
i=1

where co is the minimum distance, say Q', of the points of the ellipsoid C, from
the origin O of E_ . If
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(30) co - 2-1Mm3/2¢2 - 5> o0,
then ||C., Col|l < Q' = co, hence
o= O(Cqy, O) = 0(Cy, O) # 0,

and it is not necessary to compute [Ly. On the other hand, if (30) is satisfied, then,
instead of (27), we may simply verify that

(31) (e + L)kLd+a+b) < co - 2'1Mm3/2c2'- 7.
Of course, this type of evaluation may be convenient only for small values of m.

13. For m = 1 (the first Galerkin approximation), the reasonings above remain
the same. In this case Cy, C, and C,, are pairs of real numbers, namely, the val-
ues of u, U, and @ at the points cg; - ¢, ¢g; + ¢, and to say @(C, O) # 0 simply

means that zero separates the pair u c1=cgpte Also,

and we are required to verify that
(e + L)kLd+a+b) < Q.

Concerning (31), note that here there is only one number mj:
m = |ou;/0c - .
11 [ 1/ 1] €101
Let

M = maxlazul/acﬂ for all cy; -¢c < ¢; < ¢g;+cC.
Then
Q> |m11|c—2'1Mcz -7,
and we may simply verify that
(e + L)KLd+a+b) < |my;|c- 27" Mc® - 9.

14. A rather typical situation is that of a linear differential operator E of order
M, a domain A, and preassigned linear homogeneous boundary conditions (B) on the
boundary 9A of A involving derivatives of order M; < M. Concerning E we shall
assume that' the associated linear problem Ex + Ax = 0 with conditions (B) has a
countable system of eigenvalues and eigenfunctions 2A; and ¢;, and that [¢ 1, 92, eee]
is a complete orthonormal system in the Hilbert space S = L,(A) of all square-
integrable functions x(«o) (¢ € A). By - and || || we shall denote the inner product
and square-norm in S = L, (A).

Let p(x) denote the uniform norm, that is, let

p(x) = Sup |x(a)].
a€EA
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Every element x € S has a Fourier series
x(a) ~ ey ¢y +cpdy + o0,
and we shall devnote by Px the projection operator

Px=cy¢;++c ¢,

-

for some fixed m.

For S we could for instance take the linear set of all functions x(a) (o € A)
such that x(a) is continuous in A U 9A, x(a) has all partial derivatives of orders
no greater than M; and they are continuous in A U 9A, x(a) has all partial deriva-
tives of the orders no greater than M and they are continuous in A, x(a) satisfies
conditions (B) on 2A, and Ex is an element of S. We shall assume ¢; € Sy
(i=1, 2, --*); hence P S — Sy . Finally, we shall assume that for x € S;; we can
apply the operator E formally to the series

x(a) ~ ¢, ¢y +cC, b, + oo,
so that
Ex~ -CjAy¢) -Crr, ¢, - - (x € Sg).
For each x € S, to x(a) and (I - P)x(o) there correspond the Fourier series
x(a) ~ ¢y dy +Cy 0, + oo,
(I-P)x(a)~c 119041 Cmi2Prpazt " -

We shall let H: S; — S; be the operator defined by

-1
(32) H(I - P)X(@) ~ - €y Mye $mtl = oz Mnrz Pz = *° -
Then, for every x € Sg,
H(I - P)Ex = (I- P)x, EPx = PEx, EH(I- P)x = (I - P)x.

Thus, the parts of hypotheses (IIa), (IIb), (IIc), and also (ITh) concerning E and H
hold prowded the fixed element y = Ty of each set S can be proved to belong to Sg .
As we noted in Section 5, if this is so, then y € Sy and Py € Si imply

H(I - P)Ny € Sg .

Remark. For the problem of periodic solutions of ordinary periodic differential
equations (see [4]), say of period T = 27/w (w > 0), we took in [4] for E the opera-
tor Ex(t) = x"(t) (0 <t < 27/w) with eigenvalues Ay =0, x;= (i - 12wl (i=2, 3, --).
Thus, the operator H satisfying (32) is defined in S; (not in S) as desired, w1th
Px=cy¢;++cCp¢, and m > 1,

Remark. The considerations above apply also to generalized solutions, provided
the continuity requirements on the derivatives of x are omitted and both the equation
and the boundary conditions are understood to be satisfied in a conveniently chosen
weak sense. As mentioned in the Introduction, we shall discuss this problem in sub-

sequent papers.
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It may occur that H is represented in the form

(33) w@ = Hx = | h(a, B)x(e) a8,
A
where h is a convenient kernel defined in A X A. Since
Pmﬂ=@WMﬁm+@wM%FSX@(E%MM@ as,
A i=1
we see that

z{(a) = H(I - P)x = SAh(a, B)[X(ﬁ) - SAZ(7)< ?1 $;(8) ¢, (¥) dv] dg

(34)
= | Ko, px(@)as,
A
where
k(a; B) = h(aa B) —SAh(a’ ﬁ)(z?ll ¢1(B) d)l(')’))d'}/'
Thus
. 1/2 1/2
|z(a)| = (S K*(a, B) dB) (S XZ(B)dB) :
A A

We may take for k the number

(35) k={5

AXA

> 1/2
k™(a, B)dadB ;

and, if k is continuous on A X A, we may take for k' the number

1/2
(36) k' = Max {S k%(a, f) dB} ,
QEA A
since then
lz]] = [|u@ - Px| <k|x| and p(z) = p@EEI- P)x) < k'[x|.

Thus k and k' depend on m. It is known that k — 0 as m — <, since this simply
corresponds to the possibility of approaching the kernel k(a, 8) in the norm l

Thus, the main condition kL. < 1 ensuring that F is a contraction is certainly satis-
fied for all sufficiently large m. This process for the estimation of k and k' re-
quires only the knowledge of the m eigenfunctions ¢,, --+, ¢ and of the kernel h.
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Assume that the eigenvalues are ordered, |r;| < I)L 2| < -, and that A1 70
is known. From E¢;+ A;¢; = 0, we deduce ¢;+ Ar;H¢; = 0, that is, H¢; = —Agl b,
(i>m+ 1). Hence, if
x(a) ~c d;+c0,+ o0,
then
I-Px(a) ~ci1bmat

H(I - P)x(@) ~ -Cppy1 Ay bl - 7
and

it 1/2 © N 1/2 .
faa- el =( 2 @x2) " <Pl (2 ) <l Il

i=m+1 i=m+l
Thus we may take for k the value
-1

37 k= [Apna] ™.
If we have lower estimates {; < A; for the eigenvalues A; (i=m+ 1, m+ 2, ---) and

upper estimates p; > |¢i(a)| for the corresponding eigenfunctions ¢;, then we can
obtain another estimate for k'. Indeed,

BT - P)x(e)| < 22 o] [A7H] o

i=m+1
) - 1/2 ) 5 1/2 ] 1/2
_ -2 2
<(z ) (2 ) <( 2 )",
i=m-+1 i=m+l i=m+l
and hence we can assume
o > > 1/2
(38) k= 27 o] ”‘i) ,
i=m+1

provided this series is convergent. We may take for S’('; sets of the form
Sg = [x(a)| x(@) € 8, ||x(a) - x*(@)]| < d, |x(a) - x*(a)| < Rgl.

We have to prove that each S} is complete in the norm | |. Let x (@) be a Cauchy
sequence of elements of S§. Then the limit x(a) exists in S since S = L,(A) is
complete, and obviously | %,(a) - x*(a)| < d implies |%(a@) - x*(@)|| < d. Conver-
gence in L, implies convergence in thé mean, and this in turn implies convergence
in measure. Also, there exists a sequence {nk} such that x_ (o) — X(a) as k — o,

almost everywhere in A. Thus Ixnk(a) - x*(oz)l < R, implies Ii(a) - x*(oz)[ <Ry

almost everywhere, and we may assume that the relation |i(az) - x*(az)| <Ry is
satisfied for all a € A.
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Once the conditions ensuring that T| S} is a contraction and maps S}§ into S
are satisfied, T| S’(')< has one and only one fixed element y = Ty. Since y satisfies
the equation

y(a) = Py + H(I - P)Ny = (y*é1)p) + +=« + (¥ ¢,.)¢,,, + H(I - P)Ny,
we see that y is decomposed into the sum of m + 1 functions all satisfying the linear
boundary conditions (B). Thus y satisfies the same boundary conditions.
CHAPTER 3. A NUMERICAL EXAMPLE

15. We shall study a nonlinear boundary value problem in ordinary differential
equations:

x"+x+ax3={3t 0<t<1),
(39)
x(0) = 0, x'(1)+hx(1) = 0,

where o and 8 are numerical constants.

We shall prove that for h = 1 this problem certainly has a solution for all (o, B)
such that || <1, |B] < 1.
EXISTENCE ANALYSIS

Let S = L0, 1), so that the norm || | is the square-norm. If x(t) € S is a
bounded function, let us denote by p the uniform norm

px) = Sup |x(®)]. .
X€ [0,1]

Let ¢;(t) (i=1, 2, ---) be the eigenfunctions of the familiar boundary value problem
x"+0%x = 0(0<t<1), x(0) =0, x'(1)+hx(1) = 0.
Then, for h > 0,
¢;(t) = v; sing;t (0<t<1),
htan &; +¢ = 0, 'v; = [2(b% +25)(® + ﬁiz +h)? ]1/2,
2i-1)1/2 <8 <imr (i=1, 2, =),
where the numbers v; are determined by the condition

1

S v¥sin® g5 tdt = 1.
0

For h=1,
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9, £2.0288, v, T 1.2934, ¢, = 4.9132, v, = 1.3868,

2, ), v;—2Y%asi o

1<v, <22 (=1, 2

It is convenient to assume that E is the linear operator Ex = x"+ x, with the
homogeneous boundary conditions x(0) = 0, x'(1) + hx(1) = 0. The normalized eigen-
functions are the functions ¢;(t) above, and.

Eg;+ (07 - 1)g; = 0 (i=1, 2, =),

that is, the eigenvalues relative to E are the numbers A; = ﬂi?‘ -1(@(=1, 2 --),

We shall take for Sy the set of all functions x(t% (0 <t < 1) such that x(t) and
x'(t) are absolutely continuous in [0, 1], x"(t) is L“-integrable in [0, 1], and x(t)
satisfies the conditions x(0) = 0, x'(1) + hx(1) = 0. Thus Sz C S and E: Sp — S.

If x € S=L,(0, 1) has the Fourier series

(40) x(t) ~ 2Jc; vy sin g5 t,

where Z ranges over all i =1, 2, -+, then we define H by taking

(41) u(t) = Hx = - 2002 - D7legpysingst (0<t< 1),

For x € S, we note that % cf‘ <+, and hence, by Schwarz’s inequality,
Eicﬂ(ﬁiz—l)"l <4w and  20|e;| 4 (ﬂiz'-l)-1 <+,

This shows that the series above for u(t) and the series

(42) 205002 - 1) yicos 05t

are absolutely and uniformly convergent in [0, 1]. Thus u(t) and u'(t) are continu-

ous in [0, 1] and satisfies the boundary conditions. Also, the series for x - u, that

is, the difference of the two series (40) and (41),

(43) 2iei0f(0f - 1) visingt,

is L%-convergent in [0, 1]. I s, and o, denote the partial sums of the series (43)

and (42), respectively, then ||s, - (x - u)|| — 0 as n — «; hence, by Schwarz’s in-
equality, it is also true that

— 0

t t
S sp(a@)da - S (x(a) - u(a))da
0

0

as n — o, uniformly in 0 <t < 1. This limit relation can be written in the form

— 0

t
() - 94(0) - | (x(@) - u(@)a

as n — %, 0<t<1; hence
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t
wi(t) = u'(0) + i (x(@) - w(@)de (0<t<1).

This implies that u'(t) and u(t) are absolutely continuous in [0, 1] and that
u"(t) = x(t) - u(t) almost everywhere. Hence u'(t) € S = L(0, 1). Thus Hx € Sg,
and H: S — Si. Also, since Eu = u" + u = %, we see that EHx = x for every x € S.

16. We define P: S — Sg by taking Px = c; ¢; = (x- ¢;)¢; for every x € S. Ob-
viously, P2 x = Px for every x € S, and

H(I - P)Ex = (I - P)x, EPx = PEx, EH(I-P)x=(I-DP)x
for every x € Si . Note that
H(I-P)x = -2 c(02- 1) ysinggt  (x €8),
where X' ranges over i= 2, 3, ---. It follows that

(44) la@ - P)x|| = [Z}'cf(niz - 1)‘2]1/2 < (@ -t (Z)'cf\)l/zgkllxl] )
Since '(ﬂg - 1)"1 = 0.043217, we may take k = 0.044. Now
|H(1 - P)x(t)| < Z)llci|(ﬂi2 -1t v;|sin !Zitl
(Z'@ -2 )2 (22 )2
(2@ - 12:2) "2 1)

R

IN

(45)

IN

v 1A

Since (2i - 1)7/2 < ¢; <im and v¥ < 2, the numerical factor in (45) is less than
(@ - 7% W2+ 22" [ (21 - Du/2)® - 1] 72}/,

where Z" ranges over i =3, 4, ---. Since the quotients
[(21 - Va/2)%/[((21 - Da/2)® - 1] (1=3, 4, =)

all lie between 1 and £ = (57/2)%/[(57/2)% - 1], the same numerical factor in (45) is
less than

{02 - 17202 + 262 (2/m* (57 + 774+ ) } /2,
This expression is less than 0.06621, and thus we can take k' = 0.067 in (45). Thus
(46) ||H(I - P)x| <k|x||, and pH(- P)x=max|HI - P)x| <k'| x|
for all x € S, where k = 0.044 and k' = 0.067.

17. Let Nx = -ax + Bt and K = E - N; then (39) becomes Ex = Nx or Kx= 0.
Also, let F = F, = H(I - P)N; then (39) yields
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H(I -P)Ex = Fx or (I - P)x = Fx.
Thus
x = Px+ Fx.
If x,(t) is any approximation of x(t) (xg € Sg), then
(47 Ex, = Nxy+ 6(t) and X, = Pxy+ Fxy+A(t),

where A(t) = H(I - P)o(t).
For x = y¢; = yv; sin £, t, we find that

x" + x+ ax> - Bt

1\

6(t; v)
(48) 2 1 33
y(1 - 47 v sin @ t+47 "y  av] (3 sing, t - sin 3¢, t) - B,

il

and we define

1
AG) = | 66 Ma, At ) = HI-P)o(t ).
0
Then
Aly)=(1 - g% Yy + [(3/4) + (;%/3221 )(sin 4¢, - 2sin 20, )]z}f 0!73
(49) - v 07%(sing; -2, cos £,)B

1R

- (3.11603)y + (1.36478)ay> - (0.56373)8.
For y = v, = 0, that is, for x =y, ¢ = x4(t) = 0, we see that o(t; 0) = -Bt, and
Pt = (t-¢;)¢; = vi272%(sing, - £, cos ;)sin g, t.
Now
Hsing t = -@f - Dlsinggt  (i=1, 2, =),
(50)
Hsin ¢t = (le - 1)'1 [-singt+ (hsin ¢ + ¢ cos £)-(h sin 1+ cos 1)-!sin t]

for £ #1 and ¢ #;, and Ht =t - (h+ 1)(h sin 1 + cos 1)-1 sin t. Finally, we obtain
the relation '

A(t; 0) = H(I - P)o(t; 0)
= {t - (h+ 1)(h sin 1 + cos 1) sin t}

(51)
+V%£f2(ﬂ% -1)"Y(sing, - £,cos £;)sin g, t

n

-g{t - 1.447415 sin t + 0.234009 sin 0, t} .
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We shall take h = 1, Numerically, for t = 0; 0.1; ---; 1.0, respectively,

-B~1 A(t; 0) = 0, 0.00265; 0.00481; 0.00605; 0.00608; 0.00478; 0.00227; -0.00109;
-0.00444; -0.00736; -0.00807, and |- A(t)| = 0.00816 at t = 0.976. Hence,

max
| att; 0)|| <o0.0050{8] and max|A®)| < 0.0082|8].
We shall take b = 0.0050 |8|, b' = 0.0082 |8|. Since F =F,, we take a = a' = 0.
18. The requirement |x* - xo" < c with x* € §g, %9 =0 in (17), or ly[ <ec,
implies |x*(t)| = |yv; sin ¢;t| <cv]. We shall take r = cvy = 1.2934c, so that
|| ¥ - X, | <c implies |x*(t) - xo(t)l <r (0Lt 1), and V is then defined by
v =[] x* € 8o, [ < c .

Since x((t) =0, we see that |x(t)| <R for |x(t) - x¢(t)| < Ry, and we take R = Ry.
Now, for any two elements x;, x, € S with |x;] <R and |x,| <R,

X} - %3 = (x;+ %%, + x,)(x; - x,), and Ix% - xgl < 3R2|x1 - x2| .
Thus,
[Ny - Nz || = 3]a|R* |21 - %,

and we take L = 3|a|RZ.
For each x* € V the set S{ is defined by

sp = [x| xes, [x]| <a, |x| <RI

(recall that Ry = R), and this set is obviously complete in the L,-norm (see Section
14).

I y = Ty is any fixed element of a set S§, then
y=Ty=Py+HI-P)Ny and |yt)] <R.

Thus y is bounded and measurable, and, by the properties of N and H, y is abso-
lutely continuous together with its first derivative y', and y' is bounded and measur-
able. By repeating the argument we see that y is of class c? (actually of class
C%). Thus, Ey=y"+y and y" are continuous in [0, 1]. Finally, y satisfies the
boundary conditions y(0) = 0, y'(1) + hy(1) = 1, since y is the sum of two functions
with the same property. Thus y = Ty € Sﬁ is an element of S .

19. The relations (IIg) now become

0<ec<d, r=12934c<R=Ry, c+0.0050|8] <[1-0.044(3|a|R?)]4,
(52) 1.2934 ¢ + 0.0082|8| <R - 0.067 (3| «|R?)d,
L=3|a|R?, kL=0.044(3|c|R?) <1.

From the definition (40) of A(y) we see that

Ai(y) = -3.11603 + 4.09434 > and A"(y) £ 8.18868 cry.
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Hence, A(0) = -0.563738, A'(0) = -3.11603; and, for |y| <ec, A"(y) <8.18868¢c |a|.
Finally,

uy; = A(-c) = 3.11603 ¢ - 1.36478¢3 |a| - 0.56373 |8],

U, = A(e) < -3.11603 ¢ + 1.36478 ¢>| | + 0.56373 |8] .
As mentioned above, we shall verify the inequalities ugp; > 0 > uy,, and we take
2 =min[|uy; |, |uyg,|]. Relation (27), or the inequality L(kLd+ 0.0050|8|) <@, is
now replaced by the inequality

3| | R? (0.044 (3| @ |R%)d + 0.0050 | 8])
(53)

< 3.11603c - 0.56373 |8| - 1.36478 c> || .

The positive character of the second member then ensures that ug; > 0> ug, .

For instance, if we take
R=0.5300, |a|<1, |8] <1, c¢=0.37714, d=0.4500,
then all inequalities in (52) and (53) are certainly satisfied. This proves our conten-
tion that the nonlinear boundary value problem (39) has at least one exact solution
for |a| <1, |8] < 1.
FIRST GALERKIN APPROXIMATION FOR a=8=1/2
20. For o = B = 0.5, we conclude from (49) that
A(y) = -3.11603y + 0.68239°> - 0.281865,
and the Galerkin equation for the first approximation, A(y) = 0, yields
y =y, = -0.090610.

~

Since vy, v; = -0.11721, a first Galerkin approximation for problem (39) with
a=8=0,5is

x(t) = v, vy sin g, t = -0,11721 sin(2.0288t) (0 <t<1).
This function satisfies equations (47) with errors 6(t), A(t):
Exy = Nx,+ 0(t), Xy = Pxg+ Fxo+ At),
with
Aft) = H(I - P)O(t).

For x = vy¢; =yvsin¢,t, we see that Ex - Nx = 6(t), where 0(t) is given by (48)
and
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l

(I- P)O(t) = 6(t) - Alyy)v,sinf t = 6(t)

yi(1 - 2%y sing t+4 9T av; (3 sinl t - sin 301 t) - Bt,

since A(y;) = 0.

By using the same formulas (50) above, we obtain the relation

A(t) = H(I - P)O(t) = yy vy sin 2, t+ 47193 03 {-3(¢F - 1) 1 sin 0t
+(92% - 1)"}[sin 30t - (h sin 3¢, + 34, cos 3¢,) (h sin 1 + cos 1) "' sin ¢]}
- B[t -(h+1)(h sin 1+ cos 1) ! sin t].

For h=1, ¢; =2.0288, v, = 1.2934, @ = 0.5, B = 0.5, and 7, & -0.090619,

A(t) = -0.11701337sin £; t - 0.00000558 sin 3¢, t
- 0.5t+ 0.72343164 sin t,
and the values of A(t) for t= 0.0, 0.1, ---, 1.0 are 0, -0.0013, -0.0024, -0.0030,

-0.0030, -0.0024, -0.0011, +0.0006, +0.0023, +0.0037, 0.0040, respectively. Also
max A(t) < 0.004094 at t = 0.0759. Finally,

lall = (S A%(t) dt)l/z < 0.0026, max]|A(t)| < 0.0041,
and u:e n(1)ay take b = 0.0026 and b' = 0.0041. Since F = F(,, we also know that
a=a'=0.

21. The requirement || P(x* - xq) |[ <ec, or Iy - —yll < ¢, in (17) implies
|x*(t) - xo(t)| = |&r - vp)vysin A t] < ewy.
We shall take r = cv; = 1.2934c, so that [ P(x* - X,) | <c implies
lxx(t) - x| < r,
and V is then defined by
V = [x*| x* e P(S), [|x* - xqf < cl.
Since |xo(t) | = |y vy sin A  t| < |y, |y £0.11721, we see that for
|x(t) - x| < Ry,
|x(®)] < |x,0)] + Ry < 0.11721 + Ry.

We take R = 0.11721 + Ry. For numbers c, d (0 < ¢ < d) that are for the moment
undetermined, let S, be the set

= [x®] =) €8, |x) - x| < a, [x(®) - x,®)] <R,
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Then |x(t)| <R for every x(t) € S;. Now for any two real numbers xj, x, with
|x1], 1x2] <R,

lx% - xg[ = |(x%+ X, X, + x%) (x, - xz)l < 3R?‘|x1 - X, .
Hence, for any two elements x;, x, € S,
INx, - Nx,ff < 3R2”X1 - %,

and we take L = 3R% = 3(0.11721 + Ry)?.
Now, for each x* € V, the set Sg is defined by

SE = [x| xes, ||x-x| <d, |x - x*] _<_R0],

and each set S§ is obviously complete in the L,-norm (see Section 14).
If y= Ty is any fixed element of a set S}, then
y =Ty = Py+H(I-P)Ny and |[y] <R.
Then y is continuous in [0, 1] together with y', since y is the sum of two functions
with the same property. By the same argument, Ey = y"+ y is continuous in [0, 1],

and so is y" = Ey - y. Finally, y satisfies the boundary condition y(0) = 0,
y'(1) + hy(1) = 0. Thus y = Ty is an element of Sg.

The relations (IIg) now become
c + 0.0026 < (1 - 0.044 L)d,
1.2934c + 0.0041 < Rg - 0.067 Ld,
R = 0.11721+ Ry, L = 3R%, 0.044L < 1.
From the expression (49) for A(y), we deduce that
A'(y) £ -3.1160+ 2.04717y% and A"(y) = 4.09434 .

For " = -0.090610, we obtain the estimates

A'(y;) £ -3.0992,

| An(y)] < 4.09434(0.09062+ c)  for |y - v;| < c.
Hence
Q > 3.0992c - 271 (4.09434)(0.09062 + c)c® > 3.0992 ¢ - 2.04717(0.09062 + c)c”
and relation (27) becomes
L(kLd + 0.0026) < Q.

For c¢ = 0.00063, d = 0.0038, R = 0.2, and R; = 0.08279, we deduce that
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c+ 0.0026 = 0.0032300 < 0.0037799 < (1 - 0.044 L)d,
1.2934c + 0.0041 < 0.00493 < 0.8276 < Ry - 0.067Ld,
L = 0.12, Lk = (0.12)(0.044) = 0.00528 < 1,
L(kLd + 0.0026) < 0.0003145,

0.0019520 < 3.0992c - 2.04717(0.09062 + c)c2 < Q2.

Thus an exact solution x(t) of problem (39) exists, and

1-

2.

3.

10.

|| x(t) + 0.11873 sin 2.0288t| < d = 0.0038,
|x(t) + 0.11873 sin 2.0288t| < R, < 0.083,

| Px(t) + 0.11873 sin 2.0288t| < c¢ = 0.00063 .
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