ISOPERIMETRIC INEQUALITIES FOR
RELATED CONFORMAL MAPS

E. F. Beckenbach

1. INTRODUCTION

Let
[~}
(1) w = 1(z) = f(rele) =2 a z"
n=0
be analytic for lzl < 1. We shall say that
(2) € =g(z)= z £'(z)

is the star relative of (1).

The above choice of terminology is based on the well-known fact that if the map
given by (1) is univalent, or schlickt, then this map is convex if and only if the map
given by (2) is starshaped with respect to the origin [4, pp. 357, 359]. This geometric
result follows directly from the fact that 2f/00 = ig.

Certain deformation theorems, ordinarily expressed in terms of f(z) and {'(z),
admit interesting geometric interpretations that compare the maps given by (1) and
2). Thus if f(z) is normalized by a; = 0, a; = 1, and if the map (1) is univalent for
z| < 1, then [3, pp. 4, 5]

1-r g(reif) 1+r
(3) 171 S |feeif)) ST-7 (0<r<1).
If, further, the map (1) is convex, then [3, p. 13]
1 g(relf). 1
(4) T+1 = [gpeit) | =T-1 (0<r<1).

It therefore seems natural to investigate for their own sake relationships between
an arbitrary analytic f(z) and its star relative g(z). In this note, we shall consider
isoperimetric properties comparing f(z), g(z), and other related functions.
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2. THE ISOPERIMETRIC INEQUALITY REVERSED

Between the length
27 .
L(r; f) = S |f'(re19)| rdéo
0
of the image of |z| =r and the area
A 9= 7 (11 (0o papao
0 0

of the image of |z! <r (0 <r < 1) under the transformation (1), the isoperimetric-
inequality relationship [2] is

(5) Alr; ) < o (L DI

Similarly, for the transformation (2), if L(r; g) denotes the length of the image
of |z| =r, and A(r; g) denotes the area of the image of |z| <r (0<r <1), then

(6) Alr; @) < o [L(r; @12,

We shall show that the same isoperimetric inequality holds between L(r; f) and
A(r; g), but this time with the sense reversed:

THEOREM 1. If the function (z) is analytic for |z| <1 and g(z) is the star
rvelative of f(z), and if L(xr; f) is the length of the image of |z} = r undeyr the trans-
Jormation w = £(z) and A(r; g) is the area of the image of |z| < r undevr the trans-
Jormation ¢ = g(z), then

(7 o= [L(r; D)2 < A(r; @) (0<r<1).

The sign of equality holds in () if and only if 1(z) is of the form
(8) gz)=ag+a;z.

Proof. By the Schwarz inequality,
27 2 27
1 1 i 1 i0 y 12
(9) - [Ls f)]2=E [SO |f'(re19)lrd9:| < mr? [ﬂ 5; |1 (re”)] de].

The sign of equality holds if and only if ]f'(z) is a constant on 'zl = r, that is, if
and only if f(z) is of the form f(z) = aj + a, z¥. Let

(10) f(z) = 27 a, z".

n=0
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Then
[+e)
(11) g(z) = zf'(z) = 27 na_z™.
n=0
By Parseval’s identity,
1 e _ o0
(12) 7r? [—2—7;5 |£1(reif)|2 de] = 7 27 n2|a_|? r2n,
0 n=1
and similarly
(13) Alr; g) = 5;} S |gt(pe*?)|* pdpdo = = 20 n3 Ianlz 2n
0 n=1
Since n? < n3 for n > 1,
O oo
(14) 72 0t |a_|2r? <o 27 n3 |a_? r2n,
n=1 n=1

the sign of equality holding if and only if f(z) is of the form (8).

Now (7) follows from (9), (12), (13), and (14), the sign of equality holding if and
only if f(z) is of the form (8).

3. HADAMARD COMPOSITION AND HADAMARD MEANS
The Hadamard composition, or Hadamard product [4, p. 82], of two functions
[+ o] o0
f(z) = 22 a, z", o(z) = 27 b, z™
n=0 n=0
is the function
fx¢(z) = 27 anbnzn.
n=0

In particular, the Hadamard composition of the function (10) and its star relative (11)
is

(=]
fxg(z) = 27 nal?; zn,
n=0

For nonnegative real numbers a and b, the nonnegative number c is the geo-
metric mean of a and b provided c? = ab. By analogy, we might say that
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Y(z) = 27 c,z”

n=0
is an Hadamard mean of f(z) and ¢(z) provided

(15) le,|? = |lagb,| (=0, 1,2 ).

Thus the Hadamard means of the function (10) and its star relative (11) are the func-
tions

w -
(16) h(z) = 2o w/ian e'¥nzn (6, arbitrary, real).

n=0

One might ask, for example, whether or not there are.analogues of the inequali-
ties (3) and (4) with g(z) replaced by h(z), and whether or not, if f(z) is univalent
and convex, there necessarily exists a univalent, starshaped Hadamard mean of f(z)
and its star relative g(z). Similar questions might be asked if, in (16), Vn is re-
placed by some other mean-value function of 1 and n (see [5]).

4.. ISOPERIMETRIC INEQUALITIES AND HADAMARD MEANS
¥
(17) s = h(z)

is an Hadamard mean of f(z) and its star relative g(z) in ‘zl < 1, then between the
length L(r; h) of the image of |z| = r and the area A(r; h) of the image of |z| <r
(0 < r < 1) under the transformation (17), the isoperimetric-inequality relationship
is

(18) A(r; h) < o [L(r; D).

We shall now extend the result of Theorem 1 in terms of A(r; h) and L(r; h), as
follows:

THEOREM 2. Let f(z) be analytic for Izl < 1, denote by g(z) the star relative
of f(z), and let h(z) be an Hadamard mean of 1(z) and g(z). For any (z), analytic
in |zr <1, let L{r; ¢) denote the length of the image of |z| = r, and A(r; ¢) the
arvea of the image of |z| <r (0 <r <1), under the transformation w = §(z). Then

(19) = [L(r; DI < Alr; h)
and
(20) 41—ﬂ [L(r; h)]* < A(r; ).

For each of the inequalities (19) and (20), the sign of equality holds if and only if
f(z) is of the form
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(21) f(z) = ag + akzk

Proof. Let 1(z), g(z), and h(z) be given by (10), (11), and (16), respectively. By
(9) and (12),

(22) 74-1; [L(r; £)]? < 2 n? la,nl2 rn,

n=1

with equality if and only if f(z) is of the form (21). Also, by (13),

(o)
(23) A(r;g) =7 22 n3 |a_|2r2n,

n=]1

Similar computations yield

(24) 4%—ﬂ[L(r; h)]? <m 27 n3 Ian |2 r2m,

n=1

with equality if and only if f(z) is of the form (21), and

<O
(25) A(r; h) =7 2J n? lanlzrzn .

n=1
Now (19) follows from (22) and (25), and (20) follows from (23) and (24). In each
case, the sign of equality holds if and only if f(z) is of the form (21).
It might be noted that, in addition to holding for Hadamard means, (19) holds
more generally for all mean-value functions of the form

(26) 27y

n=0

p
z®, where I'ynl =n " Ianl and ngn_<_—;- n=1, 2, «),
and (20) holds more generally for all mean-value functions of the form
q .
(27) 27 6.z, where |6n| =n " |a,| and %Sqns 1 (n=1, 2, «-).

The set of Hadamard means, for which both inequalities hold, is the intersection of
the sets (26) and (27).

The inequalities (5), (19), (18), (20), and (6) combine to yield
(28) A(r; 1) < 5= [L(r; DI? < Alrs h) < 7= [Lir; W]? < A(r; ) < 5= [L(r; 9P,

the sign of equality holding throughout if and only if f(z) is of the form (8). The se-
quence of inequalities (28) can be continued indefinitely to the right and to the left by
considering, respectively, the star relative of h(z) and the function of which h(z) is
the star relative, and so forth.
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5. IMPLICATIONS

If the function f(z), analytic for |z| < 1, is continuous for ]zl < 1, then clearly
A(r; f) is a nondecreasing function of r for r < 1, It is also true, by the Bieber-
bach-Csillag theorem [1], that L(r; f) is a nondecreasing function of r for r < 1.
Further, if f(z) is analytic for |z| <1, and L(r; f) <L <« for r < 1, then f(z) can
be defined [6] on |z| =1 in such a way as to be continuous for |z| <1 and of
bounded variation on |z| = 1.

It follows from the foregoing results that if, for example, the function (11) is
analytic for |z| <1, and L(r; g) <L <« for r < 1, then the functions (10), (11),
16), (26), and (27) can be defined on |z| =1 in such a way as to be continuous for
12‘ < 1, and consequently for them the area function A(r; ¢) and the length function
L(r; ¢) are finite for r <1.
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