ON NONLINEAR PROJECTIONS IN BANACH SPACES
Joram Lindenstrauss

1. INTRODUCTION

Let Y be a Banach space, and let X be a closed linear subspace of Y. By a
projection from Y onto X we mean a mapping P from Y onto X such that Px = x
for all x € X. Being Banach spaces, Y and X have in particular a linear structure,
a topology, and a uniformity assigned to them. It is therefore natural to consider
many types of projections between Banach spaces—linear, continuous, bounded
linear, uniformly continuous, and so forth. It is well known that a linear projection
from Y onto X always exists. It is also known that a (norm-) continuous projection
from Y onto X always exists (see Michael [21] for more general results and refer-
ences to earlier papers). Another well-known result is that a projection which is
both linear and continuous (that is, bounded linear) does not in general exist. In Sec-
tion 2 we shall mention some of the known results in this direction.

In the present note we intend to study the question of the existence of projections
that lie “between” the continuous and the bounded linear projections. We shall be in-
terested in uniformly continuous projections generally, and particularly in those that
satisfy a Lipschitz condition. (Unless it is stated otherwise, the metric—and hence
the topology and uniformity—of a Banach space will be those determined by its norm.)

Section 2 contains the notation and necessary background material. In Section 3
we prove first some theorems which state that in many situations the existence of a
uniformly continuous projection from Y onto X (where X is a closed linear sub-
space of the Banach space Y) implies the existence of a bounded linear projection.
This is for example the case if X is a conjugate Banach space (that is, X = Z* for
some Z). Combining these results with known results concerning the nonexistence
of bounded linear projections, we get many examples of Banach spaces Y D X such
that there exists no uniformly continuous projection from Y onto X. Dual results
concerning uniformly continuous liftings are obtained. The rest of Section 3 is de-
voted to the study of some projection constants of metric spaces, particularly of
Banach spaces.

In Section 4 we consider the existence of uniformly continuous projections onto
some special classes of spaces—C(K)-spaces and uniformly convex spaces. These
questions have already been considered by Isbell [14]. We obtain stronger versions
of his theorems; for Lj-spaces our results are in a sense the best possible. The
study of the Lp-spaces enables us to give an example of a space such that neither it
nor its unit cell are absolute neighborhood retracts uniformly (in the terminology of
Isbell). This solves a problem raised in [14].

In Section 5 we apply the results of Sections 3 and 4 to the problem of the exist-
ence of uniform homeomorphisms between certain Banach spaces or their respec-
tive unit cells. The question of the topological classification of Banach spaces and
their convex sets has in recent years been discussed by several authors. One of the
outstanding problems in this direction is the question, raised by Fréchet and Banach,
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whether every two separable infinite-dimensional Banach spaces are homecmorphic.
Many recently obtained strong results suggest that the answer to this problem is in
the affirmative. For example, it has been proved that every separable Banach space
having a closed infinite-dimensional linear subspace with an unconditional basis is
homeomorphic to ¢,. This implies that all known examples of separable infinite-
dimensional Banach spaces are homeomorphic to £,. For further results concern-
ing this and related problems we refer the reader to Bessaga and Pelczyriski [4],
Corson and Klee [6], and a forthcoming paper of Bessaga [3], which has an extensive
list of references.

In [3] and [4] the authors ask whether every two homeomorphic infinite-dimen=-
sional Banach spaces are also uniformly homeomorphic, Our results concerning
projections imply that the answer is negative. We show for example that no infinite-
dimensional C(K)-space is uniformly homeomorphic to a reflexive Banach space (see
Theorem 11 for more details). Concerning the classification of bounded convex sets
we give examples of two separable Banach spaces whose unit cells are homeomorphic
but not uniformly homeomorphic, and also of two separable Banach spaces whose unit
cells are uniformly homeomorphic but not Lipschitz-equivalent. (Two metric spaces
are called Lipschitz-equivalent if there exists a one-to-one mapping T from one
space onto the second such that T and T-! satisfy a Lipschitz condition.)

Our next result gives a partial negative answer to the question whether C[0, 1]
is uniformly homeomorphic to a subset of ¢ ,. Finally we prove that the space cg
has an uncountable number of mutually nonisomorphic (even not uniformly homeo-
morphic) closed linear subspaces.

Statements of some open problems occur throughout the paper.

2. NOTATION AND PRELIMINARIES

All Banach spaces are assumed to be over the reals. This is only a matter of
convenience, and all our results hold also in the complex case, except that Theorems
6 and 7 require slight modifications. Let K be a topological space. By C(K) we de-
note the space of all bounded, real-valued continuous functions on K with the sup
norm, For every set I, m(I) will denote the space of all bounded real-valued func-
tions on I with the sup norm. For 1 <{p <« and n=1, 2, ---, we denote by fpn
the Banach space of all n-tuples x = (x;, X,, ***, X,,) of real numbers with

1
Il = (2=
if p < and le" = max |xi| if p = <. The usual meaning is attached to cg, £, m,
and Ly(u), where p is a measure on some measure space. Let {X;}}.; be a se-
quence of Banach spaces, and let p= 0 or 1 < p <, The Banach space
X=X ®X,® DX D ),
is the space of all sequences
X = (XI, X5 "% Xy =)

with x; € X, and with
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0, i 1<p< o,

(ol =l ooy Ml =) € .
cg if p=0.

| x|l is the norm of the latter sequence in ¢p (or in cg if p = 0).

The cell Sy(xy, r) in a metric space X is the set { x; d(x, %) < r}. The dis-
tance between two sets B and C in a metric space X is denoted by d(B, C). The
Hausdovff distance between B and C (that is, the least upper bound of the distance
of a point in one of these sets to the other set) is denoted by H(B, C).

Let T be a map from a metric space X into a metric space Y. The function

#(e) = sup d(Tx;, Tx;) (£>0),
d(Xl ,XZ)SS

is called the modulus of continuity of T. Clearly, T is uniformly continuous if and
only if ¢(¢) — 0 as € — 0. If X is a convex subset of a Banach space, then the
modulus of continuity of every map T defined on X is subadditive, that is,

de; +e5) < pleg) + ofey).

A special kind of uniformly continuous map is the class of Lipschitz maps, that is,
the class of maps with || T|| < «, where

(2.1) ITll = suw a(Tx,, Txy)/d(x;, x;).

We shall often make use of the following lemma, which states that a uniformly
continuous map defined on a convex set “has the Lipschitz property for large dis-
tances.” The lemma follows immediately from the subaddivity of the modulus of
continuity, and it is a simple special case of a result of Corson and Klee [6, p. 48].

LEMMA 1. Let X be a convex subset of a Banach space, and let T be a uni-
Jormly continuous map from X into a metrvic space Y. Then for everyn > 0 there
exists a X < o such that d(Tx,;, Txy) < Ad(xy, x;) if dlx,;, x,) > 7.

Let X be a Banach space. Atong with its usual conjugate space X* we shall con-
sider also its Lipschitz conjugate X", the space of all Lipschitz maps from X into
the reals that vanish at the origin of X. The norm in X# is that given by (2.1), and
the linear operations are defined as usual for function spaces. It is easy to verify
that X# is a Banach space. X* is a closed linear subspace of X#. An analogue to
the Hahn-Banach Theorem holds for Lipschitz maps (see [7, p. 154] for references):
A Lipschitz map from a subset of a metric space Y to the reals can be extended to
the whole of Y without increase of its norm, This extension result is a special case
of the following lemma due to Aronszajn and Panitchpakdi [2].

LEMMA 2. Let Y be a metric space, and X a subset of Y. Let T be a map
Jrom X into m(l) for some set 1. Suppose that the modulus of continuity of T does
not exceed a given subadditive function ¢(c). Then T can be extended to a map from
Y into m(I) having a modulus of continuity that does not exceed ¢ ().

This lemma, combined with the well-known fact that any metric space X can be
embedded isometrically in C(X) and hence in m(X), has many useful consequences.
For example, if X admits a uniformly continuous projection from every metric
space Y containing it, then there exists a function ¢(g) with lim__ #(e) = 0 such
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that from every Y D X there is a projection onto X with a modulus of continuity not
exceeding ¢(c). Indeed, take any (isometric) embedding of X in a space m(I), and
let ¢(¢) be the modulus of continuity of any uniformly continuous projection from
m(I) onto X.

Let X be a Banach space. We denote by H(X) the space of all nonempty bounded
closed convex subsets of X, metrized by Hausdorff distance. In the consideration of
projections onto a Banach space X, it is sometimes more convenient to use the
natural embedding of X in H(X) instead of an imbedding in some m(I). This was
observed by Isbell, to whom the following useful lemma is due [14, Lemma 3.2].

LEMMA 3. Let X be a Banach space, and let Y be a metric space containing
H(X) as a subspace. Then theve exists a projection P from Y onto H(X) with
" P” < mng, where g, ts an absolute constant (that is, a constant independent of X
and Y).

In [14], Isbell asserted only the existence of a uniformly continuous projection
from Y onto H(X). However, simple computations show that the projection which he
constructed is a Lipschitz projection of norm less than 12, The following is an easy
consequence of Lemmas 2 and 3. Let Z; D Z; be metric spaces, and let T be a
map from Z; into H(X) (for some Banach space X) with a modulus of continuity not
exceeding ¢(c), where ¢ is a subadditive function. Then there exists an extension
of T from Z, into H(X) with a modulus of continuity not exceeding 7q ¢(c).

A Banach space X is called a ) -space if from every Banach space Y contain-
ing X as a linear subspace there exists a linear projection from Y onto X with
norm at most A. A Banach space is called a P-space if it is a P ) -space for some
finite A. If X is a P)-space, then X** ig a ¢, -space, but not conversely. Finite-
dimensional spaces are B-spaces. An infinite-dimensional P space cannot be
separable, and it must have a linear subspace isomorphic to cg (thus it cannot be
reflexive or w-sequentially complete). For proof of these and related results and
for further references see [8, pp. 94-96], [18], and [22].

Let X be a metric space, and let n be an integer. By P, (X) we denote the
greatest lower bound of the numbers A with the following property. From every
metric space Y D X, with Y ~ X consisting of at most n points, there exists a pro-
jection onto X with norm at most A. I no such 1 exists, we put P, (X) = . P(X)
(and hence P,(X) for n > 1) is infinite if X is not complete, while for complete X,
P} (X) <2 and hence P,(X) < 2" (see Griinbaum [11]). For Banach spaces X,

P;(X) =1 if and only if X is a $P;-space, and this is the case if and only if X = C(K),
where K is a compact Hausdorff space which is extremally disconnected (that is, in
which the closure of an open set is again open). This is a result due to Nachbin,
Goodner, and Kelley (see [8, p. 95]).

Some final remarks concerning our terminology: When we speak of a Banach
space X as a subspace of X** we shall assume, unless it is stated otherwise, that
X is canonically embedded in X**. Similarly for inclusions like X# > X* H(X) D X,
m(K) D C(K), and Y* D X* (or Y#> X#) in case X is a quotient Banach space of Y.
If Y and X are metric spaces and we write that X is embedded in Y or Y D X, we
always mean that the embedding of X in Y is an isometry. Mappings between
Banach spaces will not be assumed to be linear, unless this is stated explicitly.
However, the word “isomorphism?” will mean “linear isomorphism.”
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3. GENERAL RESULTS

We prove first that under certain circumstances, the existence of a uniformly
continuous projection implies the existence of a Lipschitz projection.

THEOREM 1, Lef Y be a Banach space, and let X be a closed linear subspace
of Y. Suppose that there exists a uniformly continuous projection P from Y onto X
and a Lipschitz projection Q from X** onto X. Then theve exists a Lipschitz pro-
jection from Y onto X.

Proof. By Lemma 1 there exists a number A < < such that

Py; - Py, || <llyy - 32|l

if ly; - y2] > 1. Consider the sequence of projections P,(y) = P(ny)/n from Y
onto X as mappings from Y into X**, For ever f1xed y “the sequence {Pn(y) | o
is bounded (indeed, [P ()| < r|ly]| for n > |ly|[-1). Since the cells in X** are
w*-compact, it follows from Tychonoff’s Theorem that the sequence { B, } hasa
limit point Py in the topology of pointwise convergence (taking in XH* the w* -
topology). P,x = x for every integer n and every x € X, and hence P oX = x for

x € X. Further, IPavi -Povall <Allyy - v2 | for n> || v1 -v2 -1, consequently
||P0|| <xa It follows that the mapping QP, from Y into X is a Lipschitz projec-
tion from Y onto X.

Remark. It is well known (see Dixmier [9]) that if X is a conjugate space or an
L;-space, then there always exists a linear projection of norm 1 from X** onto X.
In the next section we shall show (see Theorem 6) that there may exist a Lipschitz
projection from X** onto X even if there exists no bounded linear projection
(X = cg is a typical example). We do not know whether there exists a Banach space
X for which there exists no Lipschitz projection from X** onto X.

THEOREM 2. Let Y be a Banach space, and let X be a closed linear subspace
of Y. Then theve exist linear projections of norm 1, Py from Y# onto Y* and Py
Srom X% onto X* such that PxRj = R, Py, where Rl [respectively R,] is the
natural restriction map from Y# onto X# |vespectively Y* onto X*].

Proof, We shall first assume that Y is finite-dimensional and construct a linear
projection from Y# onto Y*. Let {e;}; be a basis of Y, and let y(y) be a non-
negative C! function on Y having a compact support and satisfying the condition

S Y(y)dy =1 (here y = Zy; e;, dy = dy; *** dy,, , and Cc! denotes the class of the

contmuously differentiable functions). We define a projection P from Y# onto Y*
as follows:

(3.1) PF E a; 91)— - Z) S F(y)az’b(Y) dy (Fe Y#)

Clearly P is a linear mapping from Y# into Y*. We shall show that PF = F for
F e Y" and “ PF| < F|F for every F € Y#. To this end we assume first that
F € CLl. In this case (smce ¢ has a compact support)

S F(y)a;ﬁw N aF(Y) Wy)dy (=1, -, m).
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That PF = F for F € Y* is now obvious. As for the norm of PF, let ”Eaiei“ =1
and A > 0. Then

PF(E o3 el)

a-l SY () ( 20 ey a;';(,}i') ) dy
(3.2)

A'IS W) (Fy + 2 Aase;) - Fy) + 26\, y))dy,
Y

where 6(X, y) tends to 0 uniformly on the support of ¥ as A — 0. Since
|7y + 2rasey) - F)|| <A F

and PF(Z a; e;) does not depend on A, we see from (3.2) that

or (Base )| < 171§ vray - v)

and hence ”PFH < ||F||
Let now F be a general element in Y (not necessarily in C Ly, Let {¢n}:10=1 be
a sequence of nonnegative C! functions on Y such that SY ¢,(y)dy = 1 and the sup-

port of ¢,(y) is compact and shrinks to the originas n — «~., Put F = F* ¢, (where
* denotes the usual convolution). Then Fn(y) — F(y) uniformly on Y as n — o,
F,e Y*ncCl, and |F,|| < [|F|. It follows by (3.1) that |PF_- PF| — 0,

since we have already shown that HPF || < " F " we conclude that || PF” < "F"
and hence [P} = 1.

Let now X be a linear subspace of Y (Y is still assumed to be finite-dimen-
sional). We may assume that the basis in Y is chosen so that {e }k 1is a basis of
X (for some k < m). We choose two nonnegative c! functions ¥ 1 and ¥, of k, and
m - k variables respectively, each with compact support and with its integral over
the respective space equal to 1. For every integer n, let P, be the linear projec-
tion of norm 1 from Y# onto Y*, defined (for F € Y# and i =1, ---, m) by

P_ F(e;) = -n™ 5 F(y) [alfl(yl y ot Vi) oy, o, ny )l dy.

Since [P, “ < 1 and Y* is finite-dimensional, it follows that the sequence

{Pn n=1 has a limiting point Py in the strong operator topology for linear opera-
tors from Y# to Y* (this assert1on is an immediate consequence of the w¥*-com-
pactness of the unit cell of (Y#)*). Clearly, Py is a linear projection of norm 1
from Y# onto Y*. For i <k, it follows from the uniform continuity of F that

Py F(e;)

Il

lim P F(e,)

n — oo
= ‘S\ F(yl ) yz’ eee, yk’ 0 o-o 0) lpl(yl R -.-, yk) dyl ces dYk’
Hence, if we define Py from X# onto X* by

Py Gle;) = - S G(x)a_;f’xﬂi)dx (=1, =, k; G e XH),
X i
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then R, Py = PxR;, where the R; are the restriction operators appearing in the
statement of the theorem. This concludes the proof of the theorem for the case
where Y is finite-dimensional.

Let now Y be an infinite-dimensional Banach space, and let X be a closed
linear subspace of Y. Let B be a finite-dimensional subspace of Y, and put
C = BN X. Denote by R1,B [respectively, R, p] the restriction map from B# onto
C# [respectively, from B* onto C*]. By what we have already proved, there exist
linear projections of norm 1, Py from B# onto B* and PZ from C# onto C*, such
that

B
Rz P = PcR; .

(We denoted the projection from C# onto C* by Pg’ rather than PC, since
Pg’l may be different from sz if C=B;N X=B, NX.) Further, denote by R}13
[respectively R{] the restriction maps from Y# onto B# [respectively, from X#

onto C#]. We now assign to B a function fp from Y# X Y into the reals and a func-
tion gg from X#x X into the reals by putting

0 if y ¢ B,

f5(F, y) = (FeY' yev),
P,RPF(y) if y € B,
0 if x ¢ B,

g5(G, X) = (G e X* x € X).

PCRY G(x) if x € B,

For every F € Y#, y € Y, and every B, ]fB(F, y)| < “F” ||yl|, and similarly
|gB(G, x)| < ||G|| "x" for all G, x and B. We order the finite-dimensional linear
subspaces of Y be inclusion, and get thus a directed set 7. By Tychonoff’s Theorem

there exist subnets

{fBI}BI€TI of {fB}B€‘T and {gBl}BleTl of {gB}BGT

(where 7' is a certain directed set) that converge pointwise to mappings f and g
from Y X Y, respectively X# x X, into the reals. |[£(F, y)| < |F| ||y]| for an F
and y, and f is a bilinear map. Indeed, fy(F, y) is linear in F for every B, and

afB(F3 y]_) +BfB(F’ yz) = fB(F’ C!Y]_ + BYZ)

for all B that contain y; and y, . Hence {(F, y) = Py F(y), where Py is a linear
operator of norm at most 1 from Y¥ into Y*. Since fp(F, y) = F(y) for F € Y*
and B containing y, it follows that f(F, y) = F(y) for ally € Y and F € Y*, There-
fore Py is a projection from Y# onto Y*. Similarly there exists a linear projec-
tion Py from X7 onto X* such that g(G, x) = Py G(x). Let F € Y# and

x € X N B =C; then

fp(F, x) = R, g Pg R} F(x) = PER; g Rf F(x) = PER;,c R F(x) = gp (R; F, %)
R R = Ri cR; since each is the restriction map from Y# onto C#). Hence,
1,BR1 ,
R, PyF(x) = f(F, x) = g(R; F, x) = Px Ry F(x) (Fe Y% xeX).

We have thus shown that R, Py = Px R; , and this concludes the proof of the theorem.
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Our next theorem is an easy consequence of Theorem 2.

THEOREM 3. (a) Let X be a closed lineay subspace of the Banach space Y.
Suppose there exists a Lipschitz projection with norm X from Y onio X. Then
there exists a linear opervator T of norm at most )\ from X* into Y* such that
R, T is the identity map of X* (R, denotes the vestviction map from Y* onto X*).

(b) Let X be a quotient Banach space of the Banach space Y and let R be the
quotient map. Suppose lheve exislis a Lipschitz map T of novm ) from X info Y
such that RT is the identity of X. Then there exists a linear projection of norm at
most A from Y* onto X*.

Proof of (a). Let Py and Py satisfy the condition R, Py = PyR; (the notation
being that of Theorem 2). Let P be a projection from Y onto X with HP]I = A, and
P# pe the linear mapping from X# into Y# defined by P#G(y) = G(Py) (G e X%,

v € Y). Clearly ||[P#|| <A, and Ry P¥ is the identity of X*, Put T = Py P¥. Then
T is a linear map from X# into Y* with ||T| <. For x* e X*

R, Tx* = R, Py P#x* = Py R, P#x* = Pyx* = x*.

Hence the restriction of T to X* has the required properties.

Proof of (b). We may assume that T(0) = 0 (otherwise, replace T by T - T(0)).
Define T# from Y# onto X# by T#F(x) = F(Tx) (x € X, F € Y#. Then T# is a
linear projection of norm at most A. We recall that we identify an element G € X
with the element G in Y# defined by G(y) = G(Ry). Let Px be a linear projection
of norm 1 from X# onto X*. Then the restriction of PXT# to Y* is a linear pro-
jection of norm at most A from Y* onto X* (again, we identify x* € X* with the
element £* in Y* determined by £*(y) = x*(Ry)).

COROLLARY 1. Let Y be a Banach space and let X be a closed linear subspace
of Y. Suppose there exists a Lipschitz projection of norm M\ from Y onto X. Then
therve exists a lineay projection of norm at most X from Y** onto X**,

Proof. Let T be the operator from X* into Y* whose existence is shown in
Thsorem 3(a). Then T* is a linear projection of norm at most A from Y** onto
X**,

In general we cannot assert that, under the assumptions of Corollary 1, there
exists a bounded linear projection from Y onto X (see Theorem 6 below). We have
however the following proposition.

COROLLARY 2. Let Y be a Banach space, and let X be a closed linear sub-
space of Y. Suppose theve exists a bounded lineav projection from X¥* onto X and
a uniformly continuous projection from Y onto X. Then theve exists a bounded
linear projection from Y onto X.

Proof. By Theorem 1 and the preceding corollary, there exists a bounded linear
projection P from Y** onto X**. Let Q be a bounded linear projection from X**
onto X, The restriction of QP to Y has the required properties.

COROLLARY 3. Let X be a quotient Banach space of the Banach space Y. Lel
R denote the quotient map and let 7 be the kevnel of R. Suppose there exist a
bounded linear projection from Z** onto Z and a uniformly continuous map T from
X into Y such that RT is the identity of X. Then theve also exists a bounded linear
operator Ty from X into Y such that RT is the identity of X.

Proof. Without loss of generality we may assume that T(0) = 0. I - TR is a uni-
formly continuous projection from Y onto Z (I denotes the identity operator of Y).
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By Corollary 2 there exists a bounded linear projection P from Y onto Z. Take as
To the inverse of the restriction of R to the subspace (I - P)Y of Y. This operator
Ty has the required properties.

COROLLARY 4. Let X be a Banach space that is not a P-space and such that
there exists a bounded linear projection from X** onto X. Let T be a uniformly
continuous map from X into a space m(l), for some 1, that has a uniformly continu-
ous inverse T-l. Then theve exists no uniformly continuous projection from m(I)
onto TX.

Observe that TX is not necessarily a linear subspace of m(I).
Proof. Use Lemma 2 and Corollary 2 of Theorem 3.
Similarly, Lemma 3 yields the following proposition.

COROLLARY 5. Let X be a Banach space that is not a $-space and such that
theve exists a bounded linear projection from X** onto X. Then theve exists no
uniformly continuous projection from H(X) onto X,

We now pass to some results concerning projection constants. We shall need the
following elementary lemma.

LEMMA 4. Let {Sy}aea be a collection of closed intevvals on the veal line.
Let p be a metric on A such that d(Sy, S ) < pla, B) for all a, B € A. Then there
exist y, € Sy such that |yoZ YBl < pla, B) for all o, B € A.

Proof. For a finite set A, Lemma 4 is a special case of Lemma 5 (take a K
consisting of a single point, in Lemma 5), which will be proved in the next section.
The general case follows from that with a finite A by a simple compactness argu-
ment,

COROLLARY 1. Let X and A be melric spaces with metvics d and p, vespec-
tively. For every a € A, let

(3.3) {sx(xa,g> Ta,p)t geBy, )

be a collection of cells in X (the By arve sets depending on a). Suppose that for all
a;, 0y € A

(3.4) dxa, B, » Xay,p,) < Tay,p, TP, 02)+Ta, 8
(:Bl € Baly Bz € Baz)-

Then theve exists a metric space Y containing X (the metvic in Y will also be
denoted by d) and points yo in Y (a € A) such that

(3-5) d(Yaly Y(yz) S p(al ’ CUZ); Y(y € SY(X(}},B ’ ra’ﬁ) (:8 € Ba)-

Proof. Embed X in m(I) for some I. If y € m(I) and i € I, we shall call y(i)
the i-th coordinate of y. Consider the intervals

a.p = [on,ﬁ(i) - T B> xa,B(i)"' roz,ﬁ] (v € A, B e By, iel.

By (3.4), Sio‘!’B1 N Sfil,ﬁz # @ for every B;, B» € B, and i € I. Hence, by Helly’s

theorem,
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i _ i

By (3.4), we see that also d(S(i)l1 s Sfxz) < p(a,;, @,). By Lemma 4, there exist
Yo (i) € Sia such that |ya1(i) - yaz(i)l < play, az). Let @ € A. The set {y () hie1

is bounded (by H on,B” +ry g forany S8 e By ), and hence the i-th coordinate of
some point yo in m(I) is ygy(i). The points {yy }aea chosen in this manner satisfy
(3.5). As Y we may take m(I) or, of course, the subset X U {Ya}aeA of m(I) (with
the metric induced on it by m(I)).

Our next aim is to give an intrinsic characterization of the projection constants
P, (X) defined in Section 2. To this end we consider for each integer n and each
metric space X the number E_(X) which is the g.l.b. of the numbers A with the
following property. For every set A of cardinality at most n and every collection
of cells (3.3) for which (3.4) holds, there exist points x, (@ € A) in X such that

(3.6) Xg € S(xq, g, AT B) (¢ € A, B € By),
(3.7) d(xal, Xaz) <aplay, ay) (ay, ay € A).

(If no such A exists, we put E,(X) = «.)

We are now ready to prove the following theorem, which generalizes one of the
main results of Griihbaum [11].

THEOREM 4, For every metric space X and every integer n, E_(x) = P (X).

Proof. ¥ X is not complete, then E,(X) = P,(X) = « for n =1 and hence for
every n (Grunbaum {11}). Hence we may assume that X is complete and conse-
quently PL(X) < . Let A > Py(X), let A consist of at most n points, and for every
a € A let a collection of cells (3.3) be given such that (3.4) holds (the sets B, may
be of any finite or infinite cardinality). Let Y = X U {yo fwea be the metric space
constructed in Corollary 1 of Lemma 4. The cardinality of Y ~ X does not exceed
n, and hence there exists a projection P of norm at most A from Y onto X. The
points xg = Pyy satisfy (3.6) and (3.7). This proves that P,(X) > Ex(X). Now let
A > E_(X), and let Y be a metric space containing X with Y ~ X = {yy }yea, where
the cardinality of A does not exceed n. Put

play, az) = dyg,, Ya,) (@1, @z € A).

For o € A, consider the collection of cells {Sy(x, d(x, yo)) },ex- Inequality (3.4)
holds for these cells, since

d(x,, Xz) < d(xl ’ yal) + play, ay) +dx,, Yaz) .
Hence there are X, in X (o € A), for which
d(xm1 , xaz) <2aplay, a@p), dxg, x) <Adyg, X).

The projection P defined by Py, = X, (@ € A)—and, of course, Px=x (x € X)—is
of norm at most A. Thus P,(X) < E,(X), and this concludes the proof of the theorem.

REMARK. The constants E(X) and Py (X) may be defined also for infinite
cardinals m in an obvious way. Theorem 4 and its proof generalize easily to this
situation.
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We now examine the behavior of lim,_, ., P,(X) for Banach spaces X. Let X be
a Banach space. The g.l.b. of the A such that X is a P ,-space is called the pro-
jection constant P(X) of X (if X is not a P -space, we put P(X) = =),

THEOREM 5. Let X be a Banach space, and suppose that theve exists a bounded
linear projection of novm Ay from X** onto X, Then

P(X)/2& < lim P, (X) < P(X).

n —°eo

Proof. Embed X linearly (and isometrically) in some m(I). Suppose P(X) < e,
For every A > P(X) there exists a linear projection of norm at most A from m(I)
onto X. Hence, by Lemma 2, P,(X) <A for every n, and thus lim, . P, (X) < P(X).
This holds of course also if P(X) = «., Suppose now that A > P,(X) for every n.
Then for every finite set of points {yi}liLl in m(I) ~ X, there exists a Lipschitz pro-
jection of norm at most A from X U {y;}I-; onto X. By the w*-compactness of the
cells in X** and by Tychonoff’s Theorem we deduce that there exists a mapping of
norm at most A from m(I) into X** whose restriction to X is the identity. Hence
there exists a projection of norm at most Axg from m(I) onto X. From Corollary 2
of Theorem 3 (and its proof) we see that there exists a linear projection from m(I)
onto X of norm at most AA(Z,, and hence P(X) < Ax%. This concludes the proof of the
theorem.

If in particular X is a conjugate Banach space, it follows from Theorem 5 that
P(X) = lim, _,,, P (X). Griunbaum [12] has computed P(X) for certain finite-dimen-
sional Banach spaces.

4. PROJECTIONS ON SOME SPECIAL SPACES

We first consider projections onto C(K)-spaces. We conjecture that for every K
and for every metric space Y containing C(K) there exists a Lipschitz projection
from Y onto C(K). Our next two theorems show that this is the case in many special
situations.

THEOREM 6. (a) Lef K be a lopological space, let kg € K, and let X = Cy(K)
be the space of all bounded veal-valued functions f on K for which f(k) — 0 as
k — ko (with the sup norm). From every metrvic space Y containing X theve is a
projection onto X with novm at most 2,

(b) Let K be a metric space, and let X = Cyu(K) be the space of all bounded, uni-
Jormly continuous, veal-valued functions on K (with the sup norm)., From every
metvic space Y conlaining X theve is a projection onto X with norm at most 1,
wheve 1, is an absolute constant.

Proof, (a) To every subset E of the line we assign a number Y(E) in the follow-
ing manner. If E consists of negative numbers only, then

Y(E) = sup {t;t € E};
otherwise, we take
Y(E) = inf {[t|; t € E}.

For every two bounded subsets E; and E, of the line, |t,l/(E1) - w(EZ)l < H(El, EZ).
In order to prove (a) it is sufficient to show that there exists a projection of norm at
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most 2 from m(K) onto Cy(K) (see Lemma 2). Let f € m(K), and let E; be the set
of all the limiting points of f(k) as k — k. Now put Pf(k) = Y(f(k) - Ef). For

f € Cy(K), Ef consists only of the number 0, and hence in this case Pf =£f. For
every f € m(K), Pf € Co(K). Indeed, let ky — kq; then d(f(ky), Ef) — 0, and there-
fore Pf(ky,) — 0. We also have

H(f (k) - By, f(5) - Bg,)) < 2y - 2] (], £, € m(K), k € K).

Hence [|P| < 2.

We turn to the proof of part (b). As above, we need only prove the existence of a
projection with norm at most n; from m(K) onto C,(K). We may clearly assume
that the given metric p on K is bounded. For every f € m(K), denote by «f(f) its
distance from C,(K). Let t be a positive number, and put

pet) = sup {r; plk;, k,) <r = |£k;) - £(k,)]| <t}.

Clearly, p¢(t) > 0 for t > 2a(f). We now define y(f, k, t) for £ € m(K), k € K and
t > 0, as follows:

Wlt, k, t) = sup {£(h); p(h, k) < 3~Ltps((3 + t)a())}.
Clearly,
£(k) < Y(f, k, t) < £(k) + (3 + o)

if t < 3, and hence f(k) = Y(£, k, t) if £ € Cy(K). Put
1
Pi(k) = S Wk, )t  (k € K, £ € m(K)).
0

(The integral exists, since Y(f, k, t) is a bounded, nondecreasing function of t.)
Pf=1f if f € C(K). For every f € m(K), Pf € C (K). Indeed, let f € m(K) ~ C,(K),
let 0 <& < 1/2, and suppose that p(h, k) < 3-1 £ u¢(3c(f)). Then

W, k, t) <Y, b, t+eg),

and thus
1+
Pi(k) < S W, h, t)dt < Pf(h) + 2&(||[£]| + 5a(f)).
€

By symmetry, |Pf(k) - Pf(h)| < 2¢(||f]| + 5a(f)), and hence Pf € Cy(K).

We shall now show that P is a Lipschitz map. Let f, g € m(K), and put
e=||f-gl, a=a(f), and b= a(g). Clearly |a-b| < e. If a< 3¢, then b < 4¢
and hence H Pf - f“ < 4a < 12, H Pg - g” < 4b < 16e. Therefore

IPt - pef < 29[t -gf,

and this proves our assertion if a < 3s. Hence we may assume that min(a, b) > 3¢.
Since (3+t)a < (3+t+4e/b)b for t € [0, 1] and pg(s) < pgls + 2¢) for all s,
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1+6€/b 1+6€/b

Ue, k, Dat =& +g) + | (g, K, t) - gk)]at
68 b

Pi(k) < € + (
- v6e/b

1+6€/b

<erg+ | [We k O - g)]at
0

1+6£/b
£ + Pg(k) + S [w(e, K, t) - gli)] dt

< €+ Pg(k) + (68/b) (4 + 68/b)o < Pg(k) + 37¢ .

By symmetry, |Pf(k) - Pg(k)| < 37¢, and hence |P]| < 37.

REMARKS. 1. Theorem 6(a) shows, in particular, the existence of a Lipschitz
projection in the situation discussed in [23]} (where the nonexistence of a bounded
linear projection was proved). Part (b) shows, in particular, that a separable C(K)-
space admits a Lipschitz projection from every metric space containing it.

2. Isbell [14, Theorem 3.1 (b)] showed that from every Y D Cu(K) there is a uni-
formly continuous projection onto C,(K). The proof of part (b) given here is a modi-
fication of the argument of Isbell.

Our next result is on general C(K)-spaces.

THEOREM 7. Let X = C(K), wherve K is a compact Hausdorff space. Then
P,(X) < 2 for all integers n.

Proof. Let Y be a metric space containing X, with Y ~ X = {y;}{.;. We have
to show that there exist g; € X such that

(4.1) le; - &l <2d(v;,v) (<4 i<n
and
(4.2) lg; - £l <2dly;, ) (1 <i<n, fe CK)).

For every i, put

Fi(k) = lim inf { inf [f(h) + 2d(y;, )]},
h—k feC(K)

G;(k) = lim sup { sup [£(h) - 2d(y; , DI} .
h—k  f€C(K)

F; is lower-semicontinuous, and G; is upper-semicontinuous. Next we shall show
that

(4.3) G;k) < Fj(k) + 2d(y;, y-) (1<i, j<n, k € K).

In order to establish (4.3), we have to prove that for all nets {k } and {kB} that
converge to k and all nets of elements {f,} and {fg} in C(K)
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(4.4) lim sup[fy(kqy) - 2d(y;, fo)] < lim inf[fg(kg) + 2d(y;, 18)] + 2d(v, ¥;)-
kog—k kﬁ—’ k

Let £ > 0, and let f; o € C(K) satisfy the condition

fe C(K)

Then
falky) - 24y, fa) < falka) - d(yi, fa) - d(yi, fie) + &
< falka) - [[fa - fi¢ll +6 < f35(kg) + &
< 5 e0cq) - £5,60c)| +2p(kp) + [lEp - £5 ¢l +¢
< 1 glka) - 1 g (kp)| + £a(kp) + 2d(y; , 1) + 2d(y; , v;) + 2¢.
Thus since f; ¢ € C(K),

lim sup[fy(ky) - 2d(y;, fo)] < lim inf[fg(kg) + 2d(y; , £g)] + 2d(y; , vy + 2.
kg— k kg—k

Since & was arbitrary, (4.4) and hence (4.3) follows. By Lemma 5 below, there exist
g € C(K) that satisfy (4.1) and the requirement that G;(k) < g;(k) < Fy(k) for all i
and k. From the definition of the G; and F; it follows that also (4.2) holds for these
g; . This concludes the proof of the theorem.

REMARK. Combining Theorem 7 with a result of Amir [1], we see that
P, [C(K)] = 2 for all n and all compact Hausdorff spaces K that are not extremally
disconnected. For extremally disconnected K, P,(C(K)) =1 for all n.

We now prove the lemma that was used in the proof of Theorem 7.
LEMMA 5. Let K be a compact Hausdorff space, and let {F;}i; and {G;i}i=:
be 2n functions on X such that

wheve p is a metvic on {1, «--, n}. Suppose further that each G; is upper-semi-
continuous and each F ;i is lowev-semicontinuous. Then theve exist n continuous
Sunctions {g;}_; on K such that

(4.6) Gik) < gi(k) < Fyk) (1<i<m, k € K)
and
(4.7) legs - g5 <o, ) (1<i, i<n).

Proof, For n =1 the lemma is well known. We proceed by induction. Put

G'(k) = sup [Gyk)-p(i, )], F'k)= inf (F;k)+p(i, 1)).
1_§i_<_n ‘ lSiSn
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G' is upper-semicontinuous and F' is lower-semicontinuous, and by (4.5),
G'(k) < F'(k) for all k. Hence there exists a g; € C(K) satisfying the condition
G'(k) < g1(k) < F'(k). For 2<1i,j<n and k € K,

sup [Gi(k), g1(k) - p(i, 1)] < inf [Fj(k), g1(k) + p(3, D]+ p(i, 3).
By the induction hypothesis there exist functions g; in C(K) such that
le; - g5 < e, 1) (2<3, 1<)
and
sup [G;(K), g, (k) - p(i, 1)] < g;(k) < inf [F(K), g,(k) + p(i, 1)] (2 <i<n).

These g; (2 <i < n) together with g; satisfy (4.6) and (4.7).

We pass now to another class of Banach spaces—the uniformly convex spaces
(Clarkson [5]). For a Banach space X the modulus of convexity 6(g) will be defined
by

= i (= - lx ) (2 e 0).
ol o P I = By 22>

For the sake of convenience we put 6(2\) = A6(2) for A > 1. It is easy to verify
that for all A > 1 andall £ >0, 6(xe) > A6(c), and € > 6(g) > 0. X is uniformly
convex if 86(g) > 0 for all ¢ > 0. A uniformly convex space is reflexive, and for
such a space, 6-1(g) is well-defined for every £ > 0 and satisfies the condition
A6-1(e) > 6-1(xe) for A > 1 and 6-1(e) > &.

Isbell {14, Theorem 3.1 (c)] asserted that for every uniformly convex Banach
space X and every metric space Y D X there exists a uniformly continuous projec-
tion from Y onto X. His computations contained an error, and in fact, as we saw in
Section 3 (see Corollaries 4 and 5 of Theorem 3), the assertion itself is false, for
example, if X is infinite-dimensional and Y = H(X). However, by modifying the rea-
soning in [14], we get the following result.

6(g)

THEOREM 8. There exist constants n, and 13 such that for any uniformly con-
vex Banach space X with modulus of convexity 6(g) the following holds.

(a) From every metvic space Y D X, with d(y, X) <r for all y € Y, there is a
projection onto X whose modulus of continuity ¢(c) satisfies the condition

¢(e) <mprd-1(e/r).

(b) From every metric space Y D Sx(0, 1) there is a projection onto Sx(0, 1)
whose modulus of continuity ¢(c) satisfies the condition ¢(g) < 15 6 ~1(g).

Proof. (a) Let C be a closed bounded convex set in X, and for x € X let
p(x, C) = sup{ “z - x||, z € C}. There is a unique point X € X at which p(x, C)
attains its minimum (the existence of a point x is a consequence of the conditional
w-compactness of bounded sets in X; its uniqueness follows from the uniform con-
vexity of X, by a special case of the continuity argument that will be given below).
We call x the center of C and p = p(xc , C) the 7adius of C. We shall show that

(4.8) lx; - x,|| < 3rs-t(H(C,, C,) /i)
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if r > max{p;, p;) (and r # 0), where Pi = Pc, and x;= Xc, (i=1, 2). Let the

. Hausdorff distance H(C;, C,) between C; and C, be equal to £, and assume that
p, < py. Since p((x; +x;,)/2, Cy) > py, there exists a z € C; such that

%1 + x5 - 22] > 2p,.
Put a = ||x1 - z|| and b= ||x2-z||. Weseethat a<p;, b<p,+¢, a+b> 201,
and hence that p; - ¢ <a < p; <b < p; +¢. Inequality (4.8) holds if a = 0, since in
this case

%, - x,]| =b < 2¢=2r(/r) < 2r5 (e /r).

We assume from now on that a # 0. By the definition of the modulus of convexity,

2p; < H(x1 —z)+(x2—z)|| <b-a+a

Xy - Z X2 - Z
“ 1 L %2
a

D]

nm mgeoap)

Xl—Z XZ—Z
< b-a+al2-56 -
- a b

§2p1+s-a5(

Hence
”xl - X, H < aé'l(a/a)+ 2e < 3a6 "1 (¢/2) < 3r 6 ~1(g/r),

and this proves (4.8).

Now let Y be a metric space containing X with d(y, X) <r (v € Y). By Lemma
3 there exists a map T with “T” <1no from Y into H(X) whose restriction to X is
the identity. All the convex sets Ty (y € Y) have a radius not exceeding ngr. Let
Py be the center of Ty (y € Y). Then P is a projection from Y onto X whose
modulus of continuity ¢(e) satisfies the condition ¢(e) < 379 r 6 ~1(g/r), and this
concludes the proof of (a). -

Next we prove (b). For every C € H(X), let p(C) be the point of C nearest to the
origin of X. We define a projection P from H(X) onto Sx (0, 1) by putting

p(C)/|p(©)] it |p(C)| > 1,

p(C) if [p(C)| <1.

PC =

By an argument similar to that used in the proof of (4.8), it can be shown that P is
uniformly continuous and that its modulus of continuity is at most n4 6 ~1(¢g), for
some constant 74 . Theorem 8(b) follows now with the help of Lemma 3.

Our next aim is to show that Theorem 8 gives the best possible result if
X = Lp(p) (1 <p < ).

LEMMA 6. Let X = €p,2n-1 with 1 <p <o, n=2, 3, «=-, and let ¢, r > 0.
Then theve exists a metric space Y D X with d(y, X) <r for all y € Y and such that
Jor every projection P from Y onto X the modulus of continuity ¢ of P satisfies
the condition
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(4.9) #(rl-PgP) + 25(r)n-1/P > ¢,

Proof. For every subset a of {1, 2, ---, 2n - 1}, let xo be the point in £, 5,1
given by

€ ifie a,
Xa(i)=
0 ifid a.

Then " Xg - HP = A(a, B)eP, where A(a, B) denotes the number of points in the
symmetric dzf%erence of a and B. Clearly, A(a, B) is a metric on the set A con-
sisting of the 227-1 gsubsets of {1, 2, -+-, 2n - 1} Since t < 1+ tP for every

t>0,
%o - xgll < r+ePr'PA(e, 8) (o, € A).

By Corollary 1 of Lemma 4, there exists a metric space Y O X such that
Y=XU{yy,taea and

d(yy, Xg) <1, dyg, yg) <& r' P A(a, B)

for all @ and B8 in A. (We do not assert that y?, #yg if o # B, or that yo ¢ X; thus
the cardinality of Y ~ X may be less than 22n- ]fet P be a projection from Y
onto X, and let ¢ be its modulus of continuity. Let IT be the group of all the permu-
tations of {1 2, eee, 2n ~ 1}. For every o € Il let Uy be the isometric operator on
0p,2n-1 defmed by Ugx(i) = x(0i). Clearly Uy, = U,Ug and X -1g = =Ug Xg. Put

—zn—_fr E UO'PYO'Oz (OZSA).

Then
- 1 > - 1 DD -
Urzg = (2n - 1)1 UsrPY¥oq = @n - )1 U Py, 14 = Z_-14>

Toell Toell
and in particular
(4.10) Ta = a > Uz, = z, (¢ e A, TeI).
Further,

S S )

(4.11) lzg - x| < @n - 1)1 [Us Pyoa - xall

oell

(:zn‘"“i o7 2 1P¥oa - xeall < 0x) (2 ca).
cell

[/\

Since A(a, B) = Aloca, oB) for every «, B, and o, we deduce similarly that

(4.12) |z, - zB” < HEPr P A(a, B))  (a. B € A).
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Consider the set @y = {1, 2, ---, n}. By (4.10),

zao(n) (1<i<n),

Zay (1) = .
zao(n+1) n+1<i<2n-1).

Hence, by (4.11),

n[zao(n) -eP+(n - 1)zao(n + 1)P < &(r)P,

and thus |za0(n) -e| < #(r)n-1/P . Similarly, by taking Bo = {1, -, n - 1}, we see
that |zﬁo(n)| _<_¢(r)n'1/P, By (4.12),

(P rl’P) > "zao - ZBOII > zao(n) - ZBo(n) > € - 2<;b(r)n"1/P,

and this is (4.9).

REMARKS. 1. We have actually shown here that if we embed X in some m(I)
and take Y = {y; y € m(I), d(y, X) < r}, then (4.9) holds for every projection from Y
onto X. Since this Y depends only on r, and not on &, (4.9) holds (with this Y) for
every & > 0.

2. In the proof we did not use the full strength of the assumption that P is a pro-
jection from Y onto X, but merely the facts that P maps Y into X and that
Pxqy = xo for all a.

Combining these remarks and letting n —  in Lemma 6, we get the following
consequence.

COROLLARY 1. Let 1 <p <, and embed £, in m. Let € > 0, and let A de-
note the set consisting of all the finilte subsets of the integers. Fov every o € A,
denote by X the point in ﬂp defined by

e (i€ ),
0 (ida).
Then for every r > 0 there exist yo = Yo (r) € m with "ya - X H <r (o € A) such

that, for every map P from 05U {yotaea into lp for which Pxqy = x4 (@ € A),
the modulus of continuity ¢ of P satisfies the condition ¢(ePri-P) > ¢,

Xo (i) =

Proof. Observe that if we identify £p,n Wwith the subspace of ¢, consisting of all
the elements whose coordinates vanish beyond the n-th place, then there exists a
linear projection of norm 1 from (, onto { . Combining this observation with
the proof of Lemma 6, we get the desired result.

2
COROLLARY 2, Pzn(ﬁp,n) > 5-1n(p-1)/pP Jor every integey n and every p

(1 <p < ),

Proof. In the proof of Lemma 6 the cardinality of Y ~ X does not exceed 22n-1_
Suppose there exists a projection of norm A from Y onto X =40, 2.1 . By (4.9)

Arl-PeP + ZArn"l/P > g,
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2
Taking r =1 and & = 2n-1/P, we see that 4P22n_1 (ﬂp,Zn-l) Zn(P'l)/P . From
this the assertion of the corollary follows immediately.

THEOREM 9. Let y(p)=1/p if 2<p < and y(p)=1/2 if 1 <p < 2. There
exist positive constants By, and C, (1 <p < ) such that with X = Lp(n) (for some
measuve [U.) the following holds.

(a) From every metric space Y D X for which d(y, X) <r forall y € Y there
is a projection onto X whose modulus of continuity ¢ satisfies the condition

dle) < Bprl-'}’(P) e?®)  (0<e<r).

(b) If X is infinite-dimensional, then for every r > 0 theve exists a metric
space Y D X, with d(y, X) < r for all y € Y, such that the modulus of continuity ¢
of any projection from Y onto X satisfies the condition ¢(e) > Cp A -1Up) ¥(P) for
all €.

Proof. Part (a) is a consequence of Theorem 8(a) and the fact that the modulus
of convexity of X satisfies the condition &(g) > aPsl/'Y(P) for some ap > 0 and all
¢ in [0, 1] (see Hanner [13]).

To prove (b), embed X in m(I) for some I, and let
Y={y;y e m(D, d(y,X) <r}.

Since X has a linear subspace isometric to ¢, on which there is a linear projection
of norm 1, it follows from Corollary 1 of Lemma 6 that the modulus of continuity of
any projection from Y onto X satisfies the condition ¢(g) > !/P r1-1/P, This
proves part (b) with Cp, =1 if 2 <p <. Part (b) for 1 <p < 2 follows from
Lemma 6 (for p = 2) and from the fact that for every p (1 <p < «) the Banach
space ¢, is isomorphic to

(0 @, @@L, @),

The isomorphism of these spaces was established by Pelczyfiski [22, Proposition 7].
For the unit cells of Lp—spaée we prove a similar proposition.

THEOREM 10. Let v(p) be as in Theorem 9, There exist positive constants
p> Cp, and Tp (1 <p < ) such that with X = Lp(u) the following holds.

(a) From every metric space Y D Sx(0, 1) theve is a projection onto S(0, 1)
whose modulus of continuity ¢ satisfies the condition ¢(c) <bp gY(P) (0<e <1).

(b) If X is infinite-dimensional, then for every r > 0 theve exists a metric
space Y D Sx(0, 1), with d(y, Sx(0, 1)) <r forally € Y, such that the modulus of
continuity ¢ of any projection from Y onto X satisfies the condition

b

#(e) > cppl-Y(P)eV(P)

for 0<e <1, if p<r and ¢(p) < 7p.

Proof. Part (a) follows from Theorem 8(b). We turn to the proof of part (b).
Embed X in m(I) and take

Y = {y; vy € m(I), d(y, Sx(0, 1)) < r}.
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For every n, X has a linear subspace isometric to £ n onto which there is a linear
projection P, from X with norm 1., Let P be a projection from Y onto Sx(0, 1),
and let ¢ be its modulus of continuity. Then P,,_; P is a projection from Y onto
the unit cell of a space isometric to ¢, 5, 7, and the modulus of continuity of

P,,_1 P does not exceed ¢. The points x, used in the proof of Lemma 6 are of

norm at most (2n)1/P - ¢, and thus if (2n)1/P.¢ < 1, they are in the unit cell of

Lo,2n-1" ¥ 6, = %n'l/P, p <r, and ¢(p) < 1/8, then by Lemma 6 (see also Remark

1 and 2 after it)
$(p' PoR)+6,./2 > 6, (n=2 8, ),

that is,

#(e,) > %PI'I/P g/P (g =p'P.n"l.27P),

Since ¢ is decreasing and p < ¢(p) < 1/8, it follows that ¢(e) > %pl'l/P . sl/P for
0 <& < 1. This proves part (b) (with ¢, = 7, =1/8) for 2<{p <., For 1 <p <2
part (b) follows from the fact that Ly is isomorphic to

(ﬂz’l @ ees @ ,Qz’n @ '")p.

We omit the details.
COROLILARY 1. Let

X = (Qpl @ --- @ka @ ...)P’

with p — @ and p=0o0r 1 <p < o, and embed X in m. Then X [respectively,
Sx(0, 1)] is not a uniformly continuous vetvact of any of its uniform neighbovhoods
in m.

Proof. Since there exists a Lipschitz projection from X onto Sy (0, 1) (map x
with ||x|| > 1 to the point x/|x||), it is sufficient to prove the assertion concerning
Sx(0, 1). For every k, Sx(0, 1) has a subset isometric to the unit cell of ka, on

which there is a projection (from Sy(0, 1)) with norm 1. Let
Y ={y;y em, d(y, Sx(0, 1)) < r}

for some r > 0, and let P be a projection from Y onto X with modulus of continuity
¢. By Theorem 10 (b), either ¢(¢) > 1/8 for all £ > 0, or

1-1 1
1 /Px | /Pk

if p<r, ¢(p) <1/8, and p, > 2. Letting k — < in the latier case we see that
¢(e) > p/8 for all ¢ > 0, and therefore P is not uniformly continuous.

REMARKS. 1. In the terminology of Isbell [14], the corollary asserts that
neither X nor Sy(0, 1) is ANRU, and therefore it solves a problem raised by Isbell.
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2. An examination of the argument used in the proof of Theorem 10 and its corol-
lary shows that Corollary 1 still holds if we take as X spaces of the form

@ @ﬂ @ "')P:

(e P1.n] PksNk

where p, — <« and log n /p, — * as k — oo,

5. APPLICATIONS

Our first application of the results of Sections 3 and 4 is to the problem of the
existence of uniform homeomorphisms between certain Banach spaces. All the
Banach spaces appearing in Theorem 11 will be assumed to be infinite-dimensional.

THEOREM 11. (a) A C(K)-space is not uniformly homeomorphic to any Banach
space X such that (i) theve exists a bounded linear projection from X** onto X,
and (ii) X is not a P-space.

(b) Let X, = Lpl(ul) and X, = Lpz(uz). Suppose that p; > max(p,, 2). Then
X is not uniformly homeomorphic to X,, and SXl (0, 1) is not Lipschitz-equivalent
to Sy (0, 1).

(c) Let X = (QPI (—Bﬂpz @ ...@ka@ e )p, With py — «© and p =0 or

1 <p Lo, Then X is not uniformly homeomorphic to a uniformly convex Banach
space, and S« (0, 1) is not uniformly homeomorphic to the unit cell of a uniformly
convex Banach space.

Proof of (a). Let X satisfy (i) and (ii), and suppose that T is a uniform homeo-
morphism from X onto C(K). Let ¢ and iy be the moduli of continuity of T and
T -1 respectively. Let Y be a metric space containing X and such that Y ~ X is
finite. By Lemma 2, the map T from X into C(K) has an extension T from Y into
m(K) such that ¢ is also the modulus of continuity of T. By Theorem 7, there exists
a projection Q from TY onto C(K) with ||Q|| < 2. Hence T-1 QT is aprOJectlon
from Y onto X whose modulus of continuity ¢y satisfies ¢y(e) < ¥ {(2¢(g)). Since
this estimate is independent of Y, and since we assume that (i) holds, it follows (see
the proof of Theorem 5) that from every metric space containing X there is a pro-
jection onto X with a modulus of continuity at most 2y ¢(2¢(c)) (where A is the
norm of any bounded linear projection from X** onto X). This however contradicts
our assumptions on X (see Corollary 4 of Theorem 3).

Proof of (b). Suppose there exists a mapping T from X; onto X, such that T
and T-! are uniformly continuous. By Lemma 1 there exists a A such that
| Tx - Tx'|| < Allx - x| if |x-=x'| >1. Embed X; in m(I,) and X, in m(I,). Let
r > 0, and put

Yi(r) = {y;y e m(Ij); d(y, X)) <r} (=1,2).
X, contains a linear subspace Z; which is isometric to QPl and on which there is a
linear projection P (from X;) with |P|| = 1. Let {x, }yeca be the points of Z,

appearing in the statement of Corollary 1 of Lemma 6 (taking there € = 1), and let
Va(r) be the suitable points in Y(r). || Xy - Xg ” > 1 for a # B, and hence, by our

choice of A and by Lemma 2, there exists a map T, with ||T] <2, from m(I;) into
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m(I,) such that "i"xa = Txy (@ € A). Since [yg(r) - Xo " < r, we see that
Tya(r) € Yo(Ar) for all @ and r. By Theorem 9 (a) there exists a projection Q.
from Y,(xr) onto X, with a modulus of continuity ¥, satisfying the inequality

tpr(g) —<_ sz(hr)l "}/(PZ) . SV(PZ) (0 S e S_ Ar).

For every r > 0, denote by P, the restriction of PT"IQrT to the set

Zl(r) = Zl U {YQ(r)}C{ €A-

Then P, maps Z;(r) into Z;, P.x, = X¢ for all r and @, and the modulus of

continuity ¢, of P, satisfies

(5.1) 8:(e) < 0 (B, 0m)' P2 ey P2} (o <o),

where € is the modulus of continuity of T-1, By Corollary 1 of Lemma 6 (taking
1-
€ = 1 there), we see that ¢.(r Ply> 1. Combining this with (5.1), we deduce that

0 (szx-rl'ply(l’z)) >1 (x>1).

Since p;y(p,} > 1, it follows that 6(¢) > 1 for every & > 0, and this contradicts the
uniform continuity of T-!. This concludes the proof of the assertion that X3 and
X, are not uniformly homeomorphic. That SXI(O, 1) and SXZ(O’ 1) are not

Lipschitz-equivalent follows from Theorem 10. ‘

Part (c) follows from Theorem 8 and Corollary 1 of Theorem 10.

REMARKS. 1. If X; = Lpl(u 1) and X, = Lpz(u >) have the same density charac-
ter, then le (0, 1) and SXZ(O’ 1) are uniformly homeomorphic (Mazur [20]).

2. The method of proof of Theorem 11 can be used to prove more than the non-
existence of uniform homeomorphisms between certain Banach spaces. It can be
shown, for example, that if X = (ﬁpl @ --- (—DJZPk @ :--)p with pp — « and Y = C(K),

then for every map T from X onto Y there exist sequences {un}‘::l and {vn}::___l
in X such that either |u,- v,|| — 0 while || Tu, - Tvn” — o, or [lup - vuf| =
while II Tu, - Tvn” — 0.

Theorem 11 gives rise to many problems, first of all the question whether there
exist any nonisomorphic Banach spaces that are uniformly homeomorphic (this ques-
tion was raised also in [3]). We think, though we have not worked out the details,
that a study of the lifting problem (similar to that in Section 4 concerning projections)
will establish the nonexistence of a uniform homeomorphism between Lpl(u 1) and

LPZ(,U, 2), if py #p, with 1 <pj, p, < 2. However, it does not seem to us that the

consideration of questions concerning the existence of liftings or projections of dif-
ferent kinds will yield a classification of all Banach spaces from the point of view of
uniform equivalence. We do not see a way of distinguishing between ¢, and LP(O, 1)
(1 <p <, p+#2), by a projection or lifting property. Are these spaces uniformly
homeomorphic for any such p?
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We shall now prove a result that is related to Ju. Smirnov’s question whether
every separable metric space is uniformly homeomorphic to a subset of ¢,. (For a
discussion of this problem and for further references, see Gorin [10].)

THEOREM 12. There exists no inveritible uniformly continuous map T from
C [0, 1] into 0, such that T-! is a Lipschitz map for large distances (that is, satis-
fies the conclusion of Lemma 1).

Proof. Suppose that some map T from C[0, 1] into ¢, has the properties ap-
pearing in the statement of the theorem. Embed ¢, in m, and let {Xa}aeA be the
points in ¢, defined in Corollary 1 of Lemma 6 (taking £ = 1 there). It follows from
that corollary that there exists no uniformly continuous map P from m into £,
such that Px, = X, (¢ € A). It is well known that there exists an isometry T
from ¢, into C[0, 1]. Put uy = TTgxy (@ € A). Since |xy - x;gn >1 for a #8,
it follows from our assumption on T-1 that there is a A < « such that

lug - ugll < Allxa - =gl

for all @ and B in A. By a theorem of Kirszbraun [14] (see also [7, p. 154]) there
exists a map Q from ¢, into itself such that ”QH <A and Quy = Xy (@ € A). By
Theorem 6 (b), T has a Lipschitz extension To from m D ¢, into C[0, 1]. QTTo
is a uniformly continuous map from m into £, such that QT%‘O Xy = Xg (a € A).
This is impossible, as was remarked at the beginning of the proof.

REMARK. The theorem implies, in particular, that C[0, 1] is not uniformly
homeomorphic to a subset B of ¢, on which there is a uniformly continuous projec-
tion from £, (or even only from a convex set in ¢, containing B). However, we do
not know the answer to the problem of Smirnov.

Our last application of the results of Sections 3 and 4 concerns essentially a
problem in the linear theory of Banach spaces. We shall prove that ¢y has an un-
countable number of mutually nonisomorphic closed linear subspaces. The only pre-
viously known result in this direction seems to be that ¢y has a closed infinite-
dimensional linear subspace that is not isomorphic to cg. The first to prove this
was Sobczyk [24] (see also K&the [16]). His proof is based on the “only if” part of
the following result. A closed infinite-dimensional lineay subspace X of cg is iso-
movphic to cq if and only if theve exists a bounded linear projection from cqg onto
X (the “if” part is due to Pekczyhski [22], and the “only if” part to Sobczyk [24]). It
is well known and easy to see that if {X_}%-; is a sequence of finite-dimensional
Banach spaces, then

(5.2) X=X XD DX, D)o

is isomorphic to a linear subspace of cy. The space X given by (5.2) is isomorphic
to cp itself if and only if X, € $, for some A <« (independent of n). A criterion
for determining the existence of such a A was given in [17]. One way for classifying
the spaces of the form (5.2) is by computing the index of convergence, @y, Of the
conjugate of X (see [19] for its definition). It seems quite probable that a computa-
tion of @« for various choices of {X }7_; will provide a proof of Theorem 13 be-
low (if we replace uniform homeomorphism by isomorphism). The general problem
of classifying all the spaces of type (5.2) is very far from a solution. Is X @ X iso-
morphic to X if X is of the type (5.2)? Is every closed infinite-dimensional linear
subspace of c; isomorphic to a space of the type (5.2)?
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THEOREM 13, The space cqg has an uncountable number of mutually not uni-
Jormly homeomovrphic closed linear subspaces.

Proof. Put Xp=(lp1 @ - @ Lpn@® ++)o (1 <p < ). By the preceding re-
marks it is sufficient to show that Xpl is not uniformly homeomorphic to sz if

p; > max(2, p,). The proof of this is much the same as that of Theorem 11 (b). We
show here only that, like the spaces L., the Xp also have the property that from
every metric space Y D X, with d(y, Xy) <r (y € Y), there is a projection onto Xp
whose modulus of continuity ¢ satisfies the condition

<;b(8) _<— Mprl")’(P) .SY(P) (8 S I'),

for a suitable constant M. To show this, we embed X in a natural way in
Z=(m@O®m®D - P m @D ---)g. The desired result will follow from the following
two observations. (i) Let Y be a metric space containing X; then there exists a
map of norm at most 2 from Y into Z which is the identity on X (see Theorem

6 (a)). (i) Put Z,.= {z; z € Z, d(z, X)) <r}. Then there exists a projection from
Z, onto X, whose modulus of continuity y satisfies the condition

W(e) < byr! -y (p). .¥(p)

(apply Theorem 9 (a) separately to each of the direct summands {ﬂp,n Y=y of X).
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