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1. INTRODUCTION

Consider the Green’s function g(P) of a region D in E3, with pole at the origin
O. If D is star-shaped relative to O, then the regions Dy = { P: g(P) >k} are
star-shaped relative to O (Gergen, [4]); and if D is convex, then the regions Dy
are also convex (Gabriel, [2]).

We now obtain corresponding results for harmonic functions where the pole at
the origin is replaced by a continuum (star-shaped relative to the origin or convex,
in the respective cases) on which the functions are constant.

HYPOTHESIS H. Let C; and C, be two closed subsets of E3 (C, not empty),
and let ¢(P) denote a rveal-valued function on E3, subject to the following conditions.

(i) ¢(P) is continuous on Ej,
(ii) ¢(P) =1 on Cy,
(iii) ¢(P) =0 on Cq,
(iv) ¢(P) — 0 as P — oo,
(v) ¢(P) is harmonic on D =(Cg U C;)' = E3 - (Cg U C)).

Since the set Cy may be empty, the situation just described includes the case where
#(P) =1 on a closed, nonempty set C;, ¢(P)— 0 as P — «, and ¢(P) is harmonic
on Cj = E3 - C; (see[2, pp. 397, 401]). We assume the existence of a function satis-
fying the stated conditions; some conditions on C; and Cg sufficient for the exist-
ence are given, for example, in [1, pp. 290-312].

Note that C; and Cq are disjoint because of conditions (ii) and (iii), and that C1
is bounded because of conditions (ii) and (iv). In addition, by an application of the
principle of the maximum in the strong form, we can deduce from our conditions
that 0 < ¢(P) <1 on Ej.

We shall denote the Euclidean distance of a point P from the origin by |P|, the
Euclidean distance between points P and Q by IP - Q| , and the distance of a point
P from a set C by d(P, C).

2. STAR-SHAPED REGIONS

By definition, a set C is star-shaped relative to the origin O if AP isin C
whenever P isin C and 0 < A < 1,

THEOREM 1. Let Cy, Cq, and ¢ satisfy Hypothesis H, and let C1 and
Co = E; - Cy be star-shaped velative to O; then the vegions Dy = {P: ¢(P) >k}
arve stav-shaped relative to O.
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LEMMA 1. Under the hypotheses of the theorem, D is connected.

Proof. Let 6 be the distance between Cg and C; (for Cy empty, let & be any

positive number). Since Cg is closed and C; is compact, & is positive. Take a

oint R in C; at maximum distance from O, and any real number A greater than
I|}R| . On each plane through OR, start from OR to divide the disk {P: |P| < A}
into closed acute sectors A; determined by circular arcs of length less than 6. Let
R; be a point on the compact set A; N Cy; at maximum distance from O. Since no
point of Cg lies at distance less than 6 from R;, there exists an arc L; across A;
not meeting Cy U C; . Since C; and C( are star-shaped, the arcs L; can be joined
by radial segments to form a curve K not meeting Co U C;. For the same reason,
every point of D can be joined by a radial segment to some K, and the curves K can
be joined by a segment on the extended segment OR. Hence D is arc-wise con-
nected.

LEMMA 2. Under the hypotheses of Theorem 1, 0 < ¢(P) < 1 on D.

Proof. Since D is connected, the strong form of the principle of the maximum
gives both inequalities.

LEMMA 3. Undev the hypotheses of Theorvem 1, ¢ is nonincveasing on each
radius.

Proof. Suppose Lemma 3 is false. Then there exist two points Py and Ag Pg
(0<2A0p< 1) in D with ¢(xg Pg) < ¢(Pg), and the function Y(P) = ¢(P) - ¢(xo P) has
a positive least upper bound m on E3. By condition (iv) in Hypothesis H,
|¢(P)i < m/2 when |P| is greater than some positive 6. Hence Y (P) < m/2 also
for |P| > 6. Hence m is the least upper bound of ¥ on the compact set
{p: IPI < 6}, and is attained there. But m is not attained when P is in Cg, since
Y <0 in Cg. Nor is m attained if P is in C;, since C; is star-shaped so that
Y=01in C;. Also, if A¢P is in Cy, then Y{P) = 0 since C{ is star-shaped; thus
m is not attained in that case. Finally, m cannot be attained at P if AgP isin C,,
since then y(P) < 0. Hence m is attained at some point P; such that both P; and
Ag P; are in D.

Let d be the lesser of d(P,, Cy) and d(xy P}, C;)/Aq; the second is certainly
finite. Then the set N= {P: |P - P, | < d} is contained in Cj. Also

MN={rgP: PinN}

is contained in Cg since Cy is star-shaped. But AgN= {Q: |Q - 29 P3|/2¢g<d},
and hence is contained in C} . Therefore N is contained in C), since C; is star-
shaped. Thus N and AgN are contained in D, and therefore Y(P) is harmonic in
N. By the principle of the maximum, Y(P)=m on N. Now either (a) [P 1- Rl =d
for some R in Cp, or (b) |P; - R| =d for some AgR in C;. In case (a),

Y(R) = 0 - ¢(xg R) < 0, while in case (b), Y(R)=¢(R) - 1 < 0. However, Y(P)=m
for some points in any neighbourhood of R. This contradicts continuity.

Theorem 1 follows immediately from Lemma 3.

COROLLARY. Under the hypotheses of Theovem 1, the vadial derivative 9¢/or
is strictly negative in D. Thus grad ¢ # 0 throughout D.

Proof. The function ra¢/dr is harmonic and nonpositive in D. Thus if ro¢/or
were zero at some point of D, rd¢/or would be zero throughout D, so that ¢ would
be radially constant in D. Since each radius meets the set C;, it would follow that
¢(P) =.1 throughout D, contrary to Lemma 2.
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3. CONVEX REGIONS

THEOREM 2. Let C;, Cq, and ¢ satisfy Hypothesis H, and let C; and C{, be
convex. Then the sets Dy = { P: ¢(P) >k} are convex.

LEMMA 4. If the hypotheses of Theovem 2 are salisfied, and if P and Q ave
two points in D such that ¢(P) = ¢(Q), then ¢(R) > ¢(P) for every point R on the
open segment PQ.

Proof. For all point pairs P, Q with ¢(P) = ¢(Q) and for all points R on the
corresponding closed segment PQ, define

o(P, Q R) = ¢(P)+ ¢(Q) - 26(R).

The function 8(P, Q, R) is continuous and bounded on its domain of definition, and
its least upper bound m is nonnegative.

If m =0, then ¢(R) > ¢(P) = ¢(Q) for all P, Q, R in the domain of 8. If we as-
sume that the lemma is false, then there exist some Pg, Qo in D, and an Ry in the
open segment Py Qy, with ¢(Rgy) < ¢(Pg) = ¢(Qg). Thus if m = 0 and the lemma is
false, then ¢(Rg) = ¢(Pg) = $(Qp). Hence 8= 0 at Py, Qp, Rg, and m = 0 is at-
tained. Since Py and Q, are in D, it follows from Lemma 2 that

0 < #(Py) = #Qy) < 1,

hence 0 < ¢(Rg) < 1. Thus Ry is in D, and Py, Qp, Ry are in D.

If m > 0, condition (iv) in Hypothesis H implies the existence of a 6 > 0 such
that 6(P, Q, R) < m/2 whenever |P| >6 or |Q|> 6, and therefore m is the maxi-
mum value of 8 on the compact set

{(®, Q R): |P|<5, |Q|<6, ¢(P)=¢(Q), R €PQ}.

Now 6(P, Q, R) = 0 whenever two of the points P, Q, and R coincide. Also,

(P, Q, R) < 0 whenever P or Q lies in Cp; and 6(P, Q, R) = 0 when P or Q lies
in C;, since C; is convex. If R lies in Cq, then (by the convexity of Cg) either
P or Q lies in Cq, hence ¢(P) = ¢(Q) = ¢(R) = 0, and again (P, Q, R)=0. If R
lies in C;, then 8(P, Q, R) < 0 because ¢(R) = 1. Thus, for m > 0, 0 takes its
maximum at some P, Q, R distinct and in D.

It follows that in both cases (either m = 0 and the lemma assumed to be false, or
m > 0) we could conclude that 8 takes its maximum at some P, Q, R with P, Q, and
R distinct and in D, R in PQ, and ¢(P) = ¢(Q). On the other hand, by the Corollary
in Section 2, grad ¢ # 0 everywhere in D. By a theorem of R. M. Gabriel [2, p.
389], ¢ is radially constant in D with respect to some center O*,

For any point S in D, consider a ray J from S on which ¢ is constant on each
segment SP from S on J lying in D. If J is completely contained in D, then ¢ is
constant on J, and, by condition (iv), ¢ = 0 on J and ¢(S) = 0. If J is not contained
in D, then the minimum of |S - P| for P in J N (Cy U C;) is attained either in Cy,
in which case ¢(S) = 0, or in C;, in which case ¢(S) = 1. Hence, in all cases, the
result contradicts Lemma 2. This proves that m = 0 and the lemma is true.

Proof of Theorem 2. If ¢(P) > ¢(Q) >k and ¢(R) <k for some R in PQ, then
there exists a point P' in PR with ¢(P') = ¢(Q). This situation is impossible, by
Lemma 4.
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4. A COUNTEREXAMPLE

In relation to the results in Section 2, it is appropriate to consider an example
suggested by W. J. Wong, which shows that if C; and C(') are merely assumed to be
simply connected, then the regions Dy need not be simply connected, and grad ¢
can be zero in D. We shall require bounds for the change in ¢ with change in C;.
Our technique is an adaption of a method used by Gergen in [3].

Suppose C; is C; with a piece removed, with corresponding ¢~. Then
¢(P) - ¢7(P) is harmonic in D, continuous in E3, 0 on Cq, and nonnegative on Cj .
Hence ¢(P) - ¢~(P) is nonnegative on D. Let A be the piece of the boundary D* of
D removed in forming C7, and let g(Q; P, D) be the Green’s function of D with
pole P. If D* is sufficiently smooth (see [5, p. 237]), then, for P in D,

~(P) = -(o)) 28(Q; P, D) 9g(Q; P, D)
M) - 7(B) = | 0@ - 9@ ETER R o < § 2ETEDP do.

Let K be any compact set in D. Again provided that D* is sufficiently smooth (see
0g(Q; P, D)

(6, p. 259]), “E=ir

Hence ¢(P) - ¢~ (P) < M, a(A), where a(A) is the area of A.

Now apply this result to the following system. Let the set Cy be an open sphere
with center X, and the set C; a solid torus inside C{), with the same center of sym-
metry X. We form Cj from C; by removing a section bounded by two half-planes
having the major axis of C; as common edge. Then Cj is a simply connected con-
tinuum. It has only one axis of symmetry, which cuts the inner surface of C; at Y
and Z, say, the latter being removed in the forming of C]. Since ¢(X) <1, we can
take k between ¢(X) and 1.

First, take K= { P, P'}, where P is in XY and P' is in XZ with
k < ¢(P) = ¢(P') < 1. By forming C] appropriately, make Mga(A) < ¢(P) - k
This gives ¢~(P) > k and ¢ (P') > Kk, while ¢"(X) < k. Hence the component of
grad ¢~ along YZ is zero somewhere in PP'. With symmetry, this shows that
grad ¢~ = 0 there.

Second, take K= { P: ¢(P) =k}. For suitably formed Cj, Mg a(A) <k - ¢(X).
Hence ¢~ (P) > ¢(X) on K. On the major axis of C;, ¢~ (P) < ¢(P) < ¢(X). This
shows that { P: ¢~ (P) > ¢(X)} is not simply connected.

has a finite upper bound My for P in K and Q in C"{ .
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