NON-FLAT EMBEDDINGS OF Sⁿ⁻¹ IN Sⁿ

J. C. Cantrell

1. We consider certain embeddings of the (n-1)-sphere S^{n-1} in the n-sphere S^n and will assume in every case that n > 3. It will be assumed that the reader is familiar with the proofs of Lemma 1 of [4] and Theorems 4 and 5 of [5].

DEFINITION 1. An (n-1)-sphere S in Sⁿ is flat if the closure of each component of Sⁿ - S is a closed n-cell.

DEFINITION 2. Let D be a k-cell in S^n , and let p be a point of S^n - D. We take coordinates $x_1, x_2, \cdots, x_{n-1}, x_n$ in $E^n = S^n$ - p and say that D is flat in $S^n(E^n)$ if there is a homeomorphism h of E^n onto itself such that h(D) is a unit cell in the hyperplane $x_n = x_{n-1} = \cdots = x_{k+1} = 0$.

DEFINITION 3. Let S be an (n-1)-sphere in S^n , and let G be a component of S^n - S. We say that S has a local collar in Cl G at p \in S if there exists a neighborhood U of p, relative to S, and a homeomorphism h, carrying $U \times [0,1]$ into Cl G, such that h(x,0) = x for each $x \in U$. We say that S is locally flat at p if there exists a homeomorphism f, carrying $U \times [-1,1]$ into S^n , such that f(x,0) = x for each $x \in U$. A similar definition is given for a locally flat (n-1)-cell in S^n .

CONJECTURE. If $D = D_1 \cup D_2$, where D_1 and D_2 are flat (n-1)-cells in $S^n(E^n)$ and $D_1 \cap D_2 = BdD_1 \cap BdD_2$ is a flat (n-2)-cell, then D is flat in $S^n(E^n)$.

An (n-1)-sphere in S^n is flat if and only if it is locally flat at each of its points [3]. Thus, if S is a non-flat (n-1)-sphere in S^n , then there are points at which it fails to be locally flat, and we denote the set of all such points by E. If S has been constructed by one of the standard techniques (the horned sphere construction [2], spinning an (n-2)-cell, suspending an (n-2)-sphere, or capping a cylinder over an (n-2)-sphere [5]), then E is an uncountable set. In this paper we show that E cannot consist of a single point (as can happen for n=3 [1]). Furthermore it is shown that, if the above conjecture is true, E has no isolated points. Then, since E is closed, E will have to contain uncountably many points.

2. For each t (0 $\leq t \leq$ 1) let A_t be the solid ball in E^n centered at the origin and with radius t. For $-1 \leq t \leq$ 1, let

$$B_t = \left\{ (x_1, \dots, x_n) \middle| x_1^2 + x_2^2 + \dots + x_{n-1}^2 + (x_n + t)^2 \le (1 + t)^2 \right\}.$$

We observe that the proof of Lemma 1 of [4] may be applied directly to establish the following lemma.

LEMMA 1. Let S be an (n-1)-sphere in S^n , p-a point of S, and G a component of S^n - S. Suppose that S has a local collar in Cl G at each point of S - p and that h is a homeomorphism of Bd A_1 onto S such that $h[(0,0,\cdots,0,1)] = p$. Then h can be extended to a homeomorphism of Cl $(B_1 - A_1)$ into Cl G.

Lemma 1 and Theorem 1 of [3] imply the following lemma.

LEMMA 2. Let S, p, and h be as in Lemma 1, and denote the components of S^n - S by G, H. Suppose that S is locally flat at each point of S - p and that S has

Received March 11, 1963.

a local collar in Cl H at p. Then h can be extended to a homeomorphism of Cl $(B_1 - A_{1/2})$ into S^n .

THEOREM 1. If S is as in Lemma 2, then S is flat.

Proof. Let h be a homeomorphism of Cl $(B_1 - A_1/2)$ into S^n such that $h(Bd\ A_1) = S$, $h[(0,0,\cdots,0,1)] = p$, and $h(Bd\ A_1/2) \subset H$. By Theorem 1 of [5], we know that Cl H is a closed n-cell, and we proceed to show that Cl G is a closed n-cell.

Let L denote the closed segment of the x_n -axis from Bd $A_2/3$ to Bd A_1 , and assume a combinatorial triangulation of Int A_1 - $A_1/2$ in which Bd $A_2/3$, Bd $A_3/4$, and L - $(0, 0, \dots, 0, 1)$ are polyhedra has been made. We assign to

$$h(A_{3/4} - Int A_{2/3})$$

the triangulation determined by h; and, since each boundary sphere of this annulus is flat, this triangulation can be extended to a combinatorial triangulation of S^n . For the remainder of this proof S^n will denote the sphere together with the above triangulation.

Let K be the closure of the component of S^n - h(Bd $A_2/3$) which contains S, and notice that K is a combinatorial n-cell in S^n . It was shown in the proof of Theorem 4 of [5] that, if there exists a continuous mapping k of K onto itself such that h(L) is the only inverse set under k (h(L) can be contracted to a boundary point of K), then Cl G is topologically equivalent to K. It was further shown that, if h(L) is locally polyhedral at each point different from p, then such a mapping k can be constructed. Thus it suffices to construct a homeomorphism f of K onto itself such that fh(L) is locally polyhedral at each point different from f(p).

Let M_1 be the set h(Int A_1 - Int $A_{2/3}$) together with the triangulation determined by h, and for each positive integer i let

$$t_i = h(L \cap Bd A_{i+1}).$$

Then, if L_1 is the closed subarc of h(L) from t_1 to t_2 and P_i ($i=1,2,\cdots$) is the closed subarc of h(L) from t_1 to t_{i+2} , we see that L_1 is polyhedral in both S^n and M_1 , and that P_i is polyhedral in M_1 . Let $\epsilon_1>0$ be so small that U_1 (the closure of the ϵ_1 -neighborhood of P_1-L_1) does not meet Bd K, Bd G, or $h(L)-P_2$. Then apply Theorem 2.1 of [6] to obtain an ϵ_1 -homeomorphism f_1 of K onto itself and such that: (1) f_1 is the identity outside U_1 and on L_1 and (2) f_1 is semi-linear on P_1 .

Suppose that i>1 and that certain homeomorphisms f_{i-1},\cdots,f_2,f_1 of K onto K have been constructed so that, if M_i is the set $f_{i-1}\cdots f_2\, f_1\, (M_1)$ together with the triangulation determined by M_1 and $f_{i-1}\cdots f_2\, f_1$, then $L_i=f_{i-1}\cdots f_2\, f_1\, (P_{i-1})$ is polyhedral in both S^n and M_i . If i=2, let $\epsilon_2>0$ be so small that U_2 (the closure of the ϵ_2 -neighborhood of $f_1(P_2-L_2)$) does not meet Bd K, Bd G, or

$$f_1 h(L) - f_1(P_3)$$
.

For i>2 let $\epsilon_i>0$ be so small that U_i (the closure of the ϵ_i -neighborhood of $f_{i-1}\cdots f_1(P_i)$ - L_i) does not meet Bd K,

Bd G,
$$\mathbf{f_{i-1}}$$
 \cdots $\mathbf{f_{1}}$ $\mathbf{h(L)}$ - $\mathbf{f_{i-1}}$ \cdots $\mathbf{f_{1}(P_{i+1})}$,

 $\bigcup_{j=1}^{i-2} U_j$, or $\bigcup_{j=1}^{i-2} f_{i-1} \cdots f_1(U_j)$. Then apply Theorem 2.1 of [6] to obtain an ε_i -homeomorphism f_i of K onto K such that: (1) f_i is the identity outside U_i and on L_i and (2) f_i is semi-linear on $f_{i-1} \cdots f_1(P_i)$.

The homeomorphism f of K onto K is then defined by $f(x) = \lim_{i \to \infty} f_i \cdots f_1(x)$. Routine verifications show that f has the desired properties, and the proof of Theorem 1 is complete.

The effect of Theorem 1 is to remove the semi-linear condition in Theorem 4 of [5]. As was observed in [5], this allows one to remove the semi-linear condition in Theorem 5 of [5]. Thus, with Lemma 1, we have the following theorem.

THEOREM 2. If S and G are as in Lemma 1, then Cl G is a closed n-cell.

COROLLARY. If S is an (n-1)-sphere in S^n , $p \in S$, and S is locally flat at each point of S - p, then S is flat in S^n .

Proof. If we denote the components of S^n - S by G and H, then Theorem 2 implies that both $Cl\ G$ and $Cl\ H$ are closed n-cells.

3. In considering the question of existence of isolated points of E, we would like to consider a point $p \in S$ for which there exists a neighborhood U of p (relative to S) such that S is locally flat at each point of U - p and to show that S is locally flat at p. To do this it would suffice to show that for an (n-1)-cell K in S^n and $p \in Int K$, K is locally flat at p if K is locally flat at each point of K - p.

Let K be as described above, E_0^n the half space of E^n defined by $x_n \geq 0$, and h a homeomorphism of Bd $A_1 \cap E_0^n$ onto K such that $h[(0, 0, \cdots, 0, 1)] = p$. By a procedure entirely analogous to a proof of Lemma 1, we can establish the following lemma.

LEMMA 3. There is a homeomorphic extension of h which carries $(B_1 - \text{Int } B_{-1/3}) \cap E_0^n$ into S^n .

LEMMA 4. Let S be a flat (n-1)-sphere in S^n , and let L be either an (n-1)-cell in S or an (n-2)-cell in S. If L is flat in S, then L is flat in S^n .

THEOREM 3. Let K be an (n-1)-cell in S^n , and let p be an interior point of K. If K is locally flat at each point of k-p, then, if the conjecture is true, K is locally flat at p.

Proof. Let h be the homeomorphism given by Lemma 3. Let $E_{1/2}^n$ be the half space of E^n defined by $x_n \geq 1/2$, and consider the sets M_1 , M_2 , S_1 , S_2 , D_1 , D_2 , where M_1 is the n-cell consisting of the part of $(B_{1/2}$ - Int $A_1) \cap E_{1/2}^n$ determined by $x_{n-1} \geq 0$, M_2 is the cell consisting of the part of $(B_{1/2}$ - Int $A_1) \cap E_{1/2}^n$ determined by $x_{n-1} \leq 0$, S_1 = Bd M_1 , S_2 = Bd M_2 , D_1 = S_1 \cap Bd A_1 , and D_2 = S_2 \cap Bd A_1 .

We let f be the restriction of h to $S_1 \cup S_2$, and observe that, for i = 1, 2, f can be extended into the interior of S_i at each point and into the exterior at each point different from $(0, 0, \dots, 0, 1)$. Thus, by Theorem 1, $f(S_1)$ and $f(S_2)$ are flat in S^n . Furthermore, it is clear that $f(D_i)$ is flat in $f(S_i)$, i = 1, 2, and that $f(D_1) \cap f(D_2)$ is flat in both $f(S_1)$ and $f(S_2)$. Then, by the conjecture,

$$f(D_1) \cup f(D_2) = f(D_1 \cup D_2) = f(Bd A_1 \cap E_{1/2}^n)$$

is flat in Sⁿ and must be locally flat at p. Hence K is locally flat at p.

REFERENCES

- 1. E. Artin and R. H. Fox, Some wild cells and spheres in three-dimensional space, Ann. of Math. (2) 49 (1948), 979-990.
- 2. W. A. Blankinship, Generalization of a construction of Antoine, Ann. of Math. (2) 53 (1951), 276-297.
- 3. M. Brown, Locally flat embeddings of topological manifolds, Ann. of Math. (2) 75 (1962), 331-341.
- 4. J. C. Cantrell, Almost locally polyhedral 2-spheres in S³, Duke Math. J. 30 (1963), 249-252.
- 5. ———, Separation of the n-sphere by an (n 1)-sphere, Trans. Amer. Math. Soc. (to appear).
- 6. H. Gluck, *Unknotting* S¹ in S⁴, Bull. Amer. Math. Soc. 69 (1963), 91-94.

University of Georgia