RELATIVE INVERSES IN BAER *-SEMIGROUPS

D. J. Foulis

1. INTRODUCTION

In this note we give some results on relative inverses in Baer *-semigroups
which seem to have interesting consequences when interpreted in terms of the
Moore-Penrose generalized inverse for (square) matrices. In [7] Penrose shows
that if A is an n-by-m matrix over the real or the complex field, then there exists
a unique m-by-n matrix At, called the generalized inverse of A, such that
A = AATA, A*T = AY AAT, (AAM)* = AA*T, and (AtA)* = ATA (where A* is the trans-
posed conjugate of a matrix A). Our methods apply only to square matrices, but it
seems plausible that they can be extended to rectangular matrices by some device
such as the adjunction of rows or columns of zeros.

We begin with several definitions. An involution semigroup is a semigroup S
together with a mapping *: S — S such that (i) (xy)* = y*x* and (ii) x** = x for all
X,y € S. A projection in such an S is an element e € S with e = € = e*, We denote
by P = P(S) the partially ordered set of all projections in S, the partial order being
defined by the condition that e < f if and only if e = ef (e, f € P).

A Baer *-semigyoup is an involution semigroup S with a two sided zero 0 hav-
ing the following property: For each element s € S there exists a projection s' € P
such that {x € Sl sx = 0} = s'S. It is clear that the projection s' is uniquely deter-
mined by s, since two principal right ideals generated by projections in an involution
semigroup S are equal if and only if the projections are equal. The notion of a Baer
*_semigroup was introduced (in a slightly more general form) in [1].

If a is an element of the Baer *-semigroup S, then we say that a is *-regular
in S if there exists a (necessarily unique) element a* in S such that a = aata,
at = ataat, aat = (a*)", and a*ta = a". (Actually, the concept of *-regularity will
be given a slightly different, but equivalent, working definition in Section 4.) The
element at will be called the 7elative inverse of a in S; it clearly specializes to
the Moore-Penrose generalized inverse of a if S is the Baer *-semigroup of all
n-by-n matrices over the real or the complex field.

If a and b are *-regular elements of the Baer *-semigroup S, it is natural to
ask for conditions which will guarantee that ab is also *-regular in S. In Section 7
we show that *-regularity of the product a"(b*)" is a necessary and sufficient con-
dition for *-regularity of the product ab; and we obtain, in this case, the formula

(ab)* = (@b)"b* (a"(o¥)")* 2’ (b*a¥)"

for the relative inverse of ab. This formula reduces the problem of computing the
relative inverse of the product of two (square) matrices to the problem of computing
the relative inverse of the product of two projection matrices.

If a is an invertible element in the Baer *-semigroup S, then clearly a~! = at.
If both a and b are invertible, then (ab)~! = b !a-!., Hence it is natural to ask for
conditions equivalent to (ab)* = b*at if a and b are not necessarily invertible, but
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only *-regular. Such conditions are obtained in Section 7. If we specialize to
(square) matrices, the conditions are as stated in the following theorem: Lef A and
B be two n-by-n malrices over the real or the complex field. Let M be the row-
space of A, and let N be the column space of B, Put K= M N N. Then

(AB)* = Bt A* if and only if the following conditions hold: (i) M N KL is orthogonal
fo NN KL. (ii) K reduces both A* A and BB*,

2. BASIC THEOREMS ON BAER *-SEMIGROUPS

In what follows, the symbol S will always denote a Baer *-semigroup. In the
present section we collect some facts about S that will be useful in the sequel.

We define P'(S) = P by the condition P'= {s'| s € S}. Note that P'c P. A
projection e in P is said to be closed provided e = e". We show (Theorem 1) that
a projection e in P is closed if and only if it belongs to P' and that the set P' of
all closed projections in S forms an orthomodular lattice. For e, fe P', e L {
means e < f'.

We denote the join and meet operations in a lattice L. by V and A, respectively.
An orthocomplemented lattice is a lattice L with a zero and a unit together with a
mapping ': L — L (called the orthocomplementation) such that (i) eV e' =1,
(il)ene' =0, (jli)eLf=>f"<e',and (ivie=e" forall e, f e L. If L is an
orthocomplemented lattice and if e, f € L with e < f', then we say that e is ortho-
gonal to f, and we write e L f. An ordered pair (e, f) of elements e, f € L. is called
a modular pair if

geL, g<f=>gV(eNf)=(gVe)Af.

An orthomodular lattice is an orthocomplemented lattice in which every orthogonal
pair is a modular pair. The latter condition is easily shown to be equivalent to the
condition

e<f=>f=eV({Ae) (e, f e L).

If L is an orthomodular lattice and if e, f € L., then we say that e commutes
with £ (in symbols e C f) provided (e V £') A f=e A {. (Alternate formulations of
the notion of commutativity are discussed in [3].) If M is a non-empty subset of L,
we define

C(M) = {eeLIeCf for every f e L}.
The set C(L) is called the cenfer of L, and L is calledirreducible in case
c(L) =40, 1}.

The facts stated in the next theorem are either proved in [1] or follow immediate-
ly from the results in [1].

THEOREM 1.
(i) For e, i€ P(8), e< f =>f'<e'.
(i) For e € P(8), e<e".
(iii) For e € P(S), e' = e™.

(iv) If e is a closed projection in P(S), and if a € S, then ae = a if and only if
a" <e.
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(v) For a €S, a'=a".
(vi) e € P'(S) if and only if e is a closed projection in P(S).
(vii) For a, b € S, ab = 0 if and only if a" L (b*)".
(viii) O' (which we wyite henceforth as 1) is a unit for S.
(ix) If a, b €8S, if b =Db*, and if ab = ba, then ab' = b'a.

(x) P'(S) is an orthomodular lattice under the partial ovder inhevited from
P(S), with e — e' as ovthocomplementation,

(xi) For e, f € P'(S), e ANf= (e'f)'f and e VI = [(ef') f1]'.
(xii) For a, b € S, (ab)" = [(a")b]".
(xiii) For a € S, (a*a)" = a".
(xiv) For a, b €8, (ab)" < b".
(xv) For e, f e P'(S), (ef)" =(ev ') AL
(xvi) For e € P'(S) and a € S, [(ea*)'a]" <e''Na'.

(xvii) If a € S, and if {ey} is a collection of elements in P'(S) such that
e = Vg eq exists in P'(S), then Vg (eq a)" exists in P'(S) and equals
(ea)".

THEOREM 2.
(i) If e € P'(S), a € S, then ea = ae if and only if (ea)" Vv (ea®)" < e.
(ii) For e, f € P'(S), ef = fe if and only if e C {.

(iii) For e, f, g € P'(S), if any two of the three relations e Cf, fC g oy eC g
hold, then (eVHNg=(eNg) VENE) and{e Nf)Vg=(eV g) N V).

(iv) If {eq} is a collection of elements in P'(S), if e =\ g eq exists in P'(S)
and if a € S is such that ey a = aey for every a, then ea = ae.

Proof. (i): Note that by part (iv) of Theorem 1, (ea)" < e if and only if ea = eae
and (ea*)" < e if and only if ae = eae, from which the result follows. (ii): By the
definition of e commutes with f, and by part (xv) of Theorem 1, e commutes with £
if and only if (ef)" = e A f. Also, by part (xv) of Theorem 1, it is plain that
e A< (ef)" < f always; hence, e commutes with f if and only if (ef)" < e. An ap-
plication of part (i) of the present theorem now completes the proof that ef = fe if
and only if e commutes with f. Part (iii) is proved in [3]. (iv): Since ey a = aey,
(eq )" < ey and (ey a*)" < ey by part (i) of the present theorem. Taking suprema
on both sides of these inequalities and using part (xvii) of Theorem 1, we see that
(ea)' < e and (ea*)" < e. It follows by part (i) of the present theorem that ea = ae.

Part (iii) of Theorem 2 is very useful when making calculations involving lattice
polynomials over P'(S). For example, with its use one easily derives the following
corollary.

COROLLARY. Let e € P'(S).
(i) C(e) = {(e Vg) A(e'Vg)| g € P(S)}.

(ii) The set of all elements in P'(S) that are complements of e is

{[enty AflV(evD|teP(s)}.
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(iii) e € C(P'(S)) if and only if € has a unique complement in P'(S).
(iv) C(P'(S)) is a Boolean lattice.

The following lemma will be useful:

LEMMA 3. For e, f € P'(S), e commutes with £ if and only if

eN(eNnty LiANn(e AN,
Proof. Ii the relation e C f holds, then the relations f' C e and e' C f obtain; so
e NleA)'=e ANf, TAen)' =1 Ae?,
and e A(e A L £ Ale AD'.
Conversely, if e A (e Af) < {'V (e f), then
(f'Ve" /\eS[f' VieNnD] Ne A = f'.
By part (xv) of Theorem 1, (f'e)" < f'; hence, f' commutes with e by part (i) of
Theorem 2. Therefore e commutes with f and the proof is complete.
In dealing with S, the following notation will be useful: If M is a non-empty
subset of S, then

Z(M) = {s € S| sx = xs for all x € M} .

Note, in particular, that if M c P'(S), then C(M) = Z(M) N P'(S).

A subset S, of S is called a Baey *-subsemigroup of S provided (i) S, is a
subsemigroup of S, (ii) S¥ = S,, and (iii) s € S, = s' € S,. Evidently, such an S,
is a Baer *-semigroup in its own right with P'(S,) = S, N P'(S).

As in [1] we call S a complete Baer *-semigroup if the right annihilating ideal
of any non-empty subset M of S is a principal right ideal generated by a projection.
It is clear from [1, Lemma 2, p. 650] that S is a complete Baey *-semigroup if and
only if P'(S) is a complete lattice.

LEMMA 4. Let M and N be non-empty subsets of a Baer *-semigroup S.
i) MC N = Z(N) c Z(M).

(il) M c z(z(M)).

(iii) Z(M) = Z(Z(Z(M))).

(iv) If M = M*, ther Z(M) is a Baer *-subsemigvoup of S, and

PY(Z(M)) = Z(M) N P!(S)

is closed undev the computation of arbitravy suprema and infima in P'(S) provided
these exist in P'(S). Consequently, if S is complete, so is Z(M).

Proof. Conclusions (i), (ii) and (iii} are clear. From part (ix) of Theorem 1 and
from part (iv) of Theorem 2, (iv) follows immediately.

If L is any orthomodular lattice, we follow [1] by saying that S coordinatizes L
if there exists an orthocomplementation preserving lattice isomorphism from L onto
P'(S). In|[1] we proved that every ovthomodular lattice 1. can be coovdinatized by
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some (not necessarily unique) Baey *-semigrvoup S. It follows that anry general
theovem about P'(S) is a theovem about ovthomodular lattices in geneval.

LEMMA 5. If e € P'(S), if a € S and if the relation e C (a*)" holds, then
ea = (e A (a*)")a.

Proof. Since the relation e C (a*)" holds, part (ii) of Theorem 2 yields the
equality e(a*)" = (a*)"e. If two projections in P(S) commute, it is plain that their
product is their infimum in P(S). Noting that e, (a*)" € P*S) and invoking (1,
Lemma 2, p. 650], we conclude that e A (a*)" = e(a*)"; whence,

ea = e(a¥)"a = (e (@a*¥)")a.

According to part (xvi) of Theorem 1, [(ea*)' a]" < &' N\ a" always for all
e € P'(S) and for all a € S. It is natural to inquire under what conditions equality
holds. One answer is given by the next theorem, which involves the notion of a
range-closed element in S. Following [2, p. 890], we say that the element a € S is
range-closed if the condition g € P'(S) with g < a" and (ga*)" = (a*)", necessarily
implies g =a".

THEOREM 6. Let a be an element of a Baer *-semigroup S. Then the follow-
ing conditions ave mutually equivalent:
(i) [(ea*) a]" = e' N\ a" for all e € P'(S).
(ii) a is range-closed in S.
(iii) For e, f € P'(S), (ea*)" = (fa*)" => eV a' =f Va'.
(iv) If e € P'(S) with e < a", theve exists an £ € P'(S) with £ < (a*)" such that
(fa)" = e.
(v) For e, f € P'(S) with e, £ < a", (ea*)" = (fa*)" => e = {.

Proof. Because of the remark directly preceding Lemma 1 in [2, p. 891], the
equivalence of (i), (ii) and (iii) follows from [2, Theorem 2, p. 891]. To prove that
(1) implies (iv), put f= (e' a*¥)' A (a*¥)". Since (e'a*)' > (a*)' by part (xiv) of Theo-
rem 1, the relation (e' a*)' C (a*)" obtains; hence, by Lemma 5, (fa)" = [(e' a*)' a]".
Applying (i) to the latter equality, we see that (fa)" = e A a" = e. To prove (iv) im-
plies (ii), suppose that g < a" and that (ga*)" = (a*)". Put e = a" A g' and note that
it suffices to prove e = 0. By (iv), there exists an f € P(S) with f< (a*)" such that
(fa)* = e, so (fa)' = a'V g. From the latter equation and part (xvii) of Theorem 1,
we obtain the relations

[(fa) a*]" = (a'a*)" v/ (ga*)" = 0 Vv (a*)".
It follows that
(@a*)" = [(fa)' a*]" < f', so < (a*).

Since also f < (a*)", £=0; so e = (fa)" = 0. The equivalence of (iii) and (v) is
trivial.
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3. EXAMPLES

In this section we give two nontrivial examples of Baer *-semigroups.

Example 1. Let H be a Hilbert space, and let #(H) represent the multiplicative
semigroup of all bounded operators on H. Then S = %(H) is a Baer *-semigroup
where *: S — S is taken, as usual, to represent the passage from a bounded operator
to its adjoint. In this case, the projections are the orthogonal projections onto
closed linear subspaces of H, so P(S) is isomorphic to the lattice of closed linear
subspaces of H. If we regard the operators in #(H) as operating on the »ight, then
for T € #(H), T' is the projection onto the orthogonal complement of the range of
T, and T" is the projection onto the closure of the range of T. Also, (T*)' is the
projection onto the null space of T.

If E is any projection in #(H), then E' =1 - E. Thus E = E"; hence all pro-
jections are closed, and P(S) = P'(S). We showed in [2, p. 890] that for T € ®#(H),
T is range-closed if and only if the range of T is a closed linear subspace of H.
We remark that if T € %(H), then the operator T is determined up to a nonzero
scalar factor by the mapping E — (ET)" from P'(#(H)) into P'(Z(H)).

Various Baer *-subsemigroups of @#(H) are of interest, for example, any
weakly closed self-adjoint subalgebra of #8(H) or the subset of #(H) consisting of
all those operators whose norm does not exceed 1.

Example 2. Let X be any non-empty set, and let #(X) denote the set of all sub-
sets of X X Y (these subsets being regarded as binary relations). For R, S € #(X),
define

RS = {(x,y)eXxX!for some z € X, (x, z) € R and (z,y) € S},

and define R* = {(y, x) € X X Xl (x, y) € R}. Then S = #(X) is a Baer *-semigroup.
The projections in #(X) are the equivalence relations defined on subsets of X. If

R € #(X), then R' is the identity relation restricted to the complement of the range
of R, and R" is the identity relation restricted to the range of R. Thus, in this
case, P(S) # P'(S). Note that P'(S) is isomorphic to the Boolean lattice of all sub-
sets of X.

It is easy to show that a relation R € #(X) is range-closed if and only if there
exist relations R,, R, such that R = R, U R,, the domain of R, is disjoint from the
domain of R,, the range of R, equals the range of R, and R, is single-valued, (that
is, R, is a function). In particular, every single-valued relation in #(X) is range-
closed.

Various Baer *-subsemigroups of #(X) are of interest; for example Bij(X),
which we define to be the subset of #(X) consisting of all those relations in #(X)
that are bijective between their domains and ranges. In particular, every element
in Bij(X) is range-closed. Of course, Bij(X) is an example of an inverse semigroup
in the sense of Preston [8].

A second example is afforded by the situation in which X is the Stone space
corresponding to a Boolean lattice B. Following Halmos [4], we say that R € #(X)
is Boolean in case (X)R is closed for every x € X and (M)R* is closed and open for
every closed and open M c X. The subset of #(X) consisting of all those relations
R such that both R and R* are Boolean relations is a Baer *-subsemigroup of
R(X). Actually, this Baer *-subsemigroup is isomorphic to S(B). (For the notation
S(B), see [1].)
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4, *-REGULAR ELEMENTS IN A BAER *-SEMIGROUP

Taking [2, Section 3, p. 892] as our point of departure, we define an element
a € S to be 7ight *vegulay in S if aS = (a*)" S, and we define a € S to be leff *-
regular in S if Sa =Sa". If a € S is both right and left *-regular in S, then we say
that a is *-vegular in S. If every element in S is *-regular in S, then we call S a
*_yegular Baer *-semigroup. In[2, Theorem 10, p. 894] we showed that an ortho-
modular lattice L is modular if and only if L. can be coorvdinatized by a *-vegular
Baeyr *-semigroup; hence, *-regular Baer *-semigroups exist in abundance.

LEMMA 7. If a is an element of a Baev *-semigroup S, the following are
mutually equivalent: (i) a* is vight *-regular. (ii) a is left *-vegular. (iii) Thevre
exists a closed projection e in S such that Sa = Se. (iv) There exists an element
X € S with xa = a". (v) Theve exists an element x € S such that x = a" s(a*)",

(x*)" = a", and xa = a" = a*x*,

Proof. That (i) is equivalent to (ii) is straightforward. That (ii) implies (iii) is
obvious. To prove (iii) implies (iv), suppose that Sa = Se and e = e". Since Sa = Se,
there exist elements x, y € S with xa = e, ye = a. Thus,

e = el = (xa)" < an, and a" = (ye)u <e"=e¢e

by part (xiv) of Theorem 1. Hence e = a", and xa = a". To prove (iv) implies (v),
suppose that ya = a", and put x = a" y(a*)". Note that

xa=a"y(a*)"a=a"ya=(a")®=a" and x=a"x(a¥)".
Since a" is a projection, xa = a" = (a")* = a*x*. Hence
a" = (a* X*) LN (X*)"
by part (xiv) of Theorem 1. Since x = a"x, x* = x*a". Therefore
(X*)" = (X* an)u < (an)u = gM

by part (xiv) of Theorem 1 again. Consequently, (x*)" = a", which completes the
proof that (iv) implies (v). Finally, to prove (v) implies (ii), note that

xa =a"= Sa" c Sa.

Since a = aa", SaC Sa" always; hence, Sa = Sa".

We call an element a € S left *-semivegular if the statements b, ¢ € S and
ab = ac imply a"b = a"c. We say that a € S is vight *-semivegular if the state-
ments b, c € S and ba = ca imply b(a*)" = c(a*)"; that is, a is right *-semiregular
if and only if a* is left *-semiregular. Of course, we call a € S *-semiregular if
it is both right and left *-semiregular, and we call S itself *-semiregular if every
element a € S is *-semiregular.

Note that the Baer *-semigroup #(H) of Example 1 of Section 3 is *-semiregu-
lar, but it is *-regular if and only if H is finite-dimensional. Also, an element R
in the Baer *-semigroup #£(X) of Example 2 of Section 3 is left *-semiregular if
and only if R is left *-regular, and R is left *-regular if and only if R is range-
closed.
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LEMMA 8. If a is left *-regular in a Baer *-semigroup S, then a is left *-
semiregular and vange-closed in S.

Proof. Since a is left *-regular in S, there exists an x € S such that xa = a".
Thus, if ab = ac, then xab = xac, so a"b = a"c. Hence, a is left *-semiregular.
Now suppose g € P'(S) with g < a" and (ga*)" = (a*)". We want to prove that
g = a". By part (xii) of Theorem 1,

g = gan = (gan)n = (ga* X*) no_ [(ga*)n X*]" .
Thus,
g = [(a*)n X*]" — (a* X*)" - (an)n =" ,

and the lemma is proved.

If every element a € S is range-closed, we say that S itself isrange-closed.
We proved in [2, Theorem 10, p. 894] that ar orthomodular lattice L is modulay if
and only if L. can be coordinatized by a vange-closed Baer *-semigrvoup S. A con-
sequence of Lemma 8 is that every *-vegular Baer *-semigroup is *-semiregular
and vange-closed.

LEMMA 9. If a €S, the necessary and sufficient condition for the existence of a
(not necessarily closed) projection e with Sa = Se is that aS = aa*S. Hence, if all
projections in S are closed, then a is left *-vegulayr if and only if aS = aa*S.

Proof. If aS = aa*S, then there exists an x* € S with a = aa*x*. Then
xa = xaa* x* = (xa)(xa)*, so xa = (xa)* = (xa)? = a*x*.

Put e = xa, and note that ae = axa = aa*x* = a. It follows that Sa = Se. Conversely,
if Sa = Se, then ae = a and e = xa for some x € S. Thus, e = a*x* so that

a=ae=aa*x* and aS = aa*S.

LEMMA 10. In a *-sewmivegular Baey *-sewmigroup S, all projections ave
closed.

Proof. Let e be a projection in the *-semiregular Baer *-semigroup S. By
part (ii) of Theorem 1, e = ee = ee"; hence, e"e = e"e", that is, e = e".

5. THE RELATIVE INVERSE OF A *-REGULAR ELEMENT

If a € S is *-regular, then there exists an element a* in S, called the relative
inverse of a, which has many of the properties that a-! would have if it existed.
This statement is a loose version of the next theorem.

THEOREM 11. If a is *-vegular in a Baev *-semigrvoup S, then there exists a
unique element at in S such that ata = a" and at(a*)" = at. The element a™t,
(called the velative inverse of a), may also be charvactevized as the unique solution
x of the simultaneous equations a = aa* x*, x = xx*a*.

Proof. The existence of an element at+ satisfying the conditions ata = a" and
at(a*)" = at follows from part (v) of Lemma 7 and the fact that a is left *-regular.
To prove the uniqueness of at, suppose that xa = a" and x(a*)" = x also. Since a
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is right *-regular, there exists by Lemma 7 an element y € S such that ay = (a*)"
and y = a"y. Hence,

at = at(a*)" = atay = a"y = xay = x(a®)" = x.

This proves the uniqueness of at and at the same time proves that y = a*, so that
aat = (a*)" and a" at = at. We now see that

aa*(at)* = a(ata)* = a(a")* = aa" = a, and at(ah)*a* = at(aat)* = at(a*)" = at;

hence, at is a solution of a = aa*x*, x = xx*a*. Finally, if a = aa*x* and
X = xx*¥a*,

a" = ata=ataa*x* =a'a*x* =a¥*x*,

so xa = a". Also,
x(@*)" = xx*a*(a¥)" = xx*a* = x,

so x = at by the uniqueness of at.

COROLLARY. Let a € S be *-regular, and let at be its rvelalive inverse. Then
(i) ata =a", (ii) aat = (a*)", (iii) a = aata, (iv) at = ataat, (v) @"H)" = (a¥)",
(vi) ((@b)*)" = a", (vii) at i§ *-regular with a*t = a, and (viii) a*t = at*,

Consider, for a moment, the Baer *-semigroup #(H) of Example 1, Section 3.
If an operator T € #(H) is *-regular, then by Lemma 8 its range is closed. Con-
versely, it is easy to show that if the range N of T is closed, then T is *-regular
in @(H). In fact, if N is closed, T+ can be constructed as follows: Let M be the
orthogonal complement of the null space of T. Then, in a well-known way, T induces
an isomorphism T;: M~ N. Let E be the orthogonal projection of H onto the closed
subspace N of H and define T+ = ET;!. One easily shows that Tt is effective as
the relative inverse of T. Hence, an operator T in the Baer *-semigroup B(H) is
*-regular if and only if it has a closed range. Incidentally, this gives a proof of the
well-known result that an operator in #(H) has a closed range if and only if its ad-
joint has a closed range.

We have already mentioned that a relation R in the Baer *-semigroup £ (X) of
Example 2, Section 3 is left *-regular if and only if it is range-closed. It follows
easily from this that R s *-vegular if and only if R belongs to the Baerv *-sub-
semigroup Bij(X) of #(X), (and in this case Rt = R* = R-1),

We say that an element a € S is tnvertible provided a is *-regular and
a" = (a¥)" = 1. If a is invertible, we write at as a-l., We call a € S unitary if a
is invertible and a~! = a*, and we call a € S partially unitary if a is *-regular and
at = a*. In #(H) the partially unitary operators are the partial isometries of the
Hilbert space H; while in #(X), every *-regular relation is partially unitary.

Note that any closed projection e in S is partially unitary with e = e* = e*.

THEOREM 12. Let a be *-vegular in a Baer *-sewmigroup S and let g € P'(S).
Then

(ga"‘)" — [(gl A alt)a*]l N (a*)n .

Proof. Put h=[(g' Aa")a*]'. Since h' < (a*)", h C (a*)"; so by Lemma 5,
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[(h A @*¥)Ma]" = (ha)" .

Since a is *-regular, a is range-closed by Lemma 8; hence, by part (i) of Theorem
6 and part (xv) of Theorem 1,

(ha)" = (g' Na") ANa" = (gVa')Aa" = (ga")".
On the other hand,
((ga*t)" a)" = (gata)" = (ga")".
It follows that
[(h A (@*¥))a]" = ((gat)" a)" .

By Lemma 8 again, a* is range-closed; so by part (v) of Theorem 6, the latter
equation implies that h /A (a*)" = (ga*)" (since h A (a*)" < (a*)" and

(ga+)n S (a+)n - (a*)n) .

This completes the proof.

COROLLARY. Let T be a bounded operator with a closed range on the Hilbevt
space H, let N be the range of T, let M be the orthogonal complement of the null
space of T, and let W be any closed linear subspace of H. Then

WTF = [(WL nNT*H nM.

The above corollary seems to be of interest because, by a remark which we
made in the discussion following Example 1 in Section 3, a knowledge of the mapping
W — (W)TT determines Tt up to a nonzero scalar factor. This should be of some
use in constructing an algorithm for the computation of, say, the Moore-Penrose
generalized inverse of a matrix.

6. THE *-CANCELLATION LAW

The Baer *-semigroup £(H) has an important property not possessed by Baer
*_gemigroups in general; namely, if A, B € #(H) with AA* = BA* = BB*, then
A = B. We call this property the *-cancellation law.

If S is any Baer *-semigroup, then we say that S is a *-cancellation semigroup

or that S satisfies the *-cancellation law if the statements a, b € S and
aa* = ba* = bb* imply a = b.

By a Baer *-ving we mean a ring R equipped with an anti-automorphic involu-
tion *: R — R whose multiplicative semigroup is a Baer *-semigroup. (This defini-
tion differs slightly from the definition given by Kaplansky [5, p. 17], where he de-
fines what we would prefer to call a complete Baer *-ring.)

THEOREM 13. If R is a Baer *-ving, then R salisfies the *-cancellation law,
R is *-semiregular and all projections in R are closed.

Proof. Suppose a, b, ¢ € R with ab = ac. Then, a(b - ¢) = 0, so

b-c)=a(b-c).
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Hence
a"(b-c)=a"a'(b-c¢) =0, thatis, a"b=a"c.

This proves that R is *-semiregular and, at the same time, (Lemma 10) that all
projections in R are closed. Next, we remark that in any Baer *-semigroup S, if
aa* = 0, then by part (xiii) of Theorem 1, (a*)" = (aa*)" = 0. Consequently

a* = a¥(a*¥)" = a*0=0;
hence that aa* = 0 implies a = 0. Suppose now that
aa* = ba* = bb* for a,beR.
Then,
aa* = (aa*)* = (ba*)* = ab*.
But, that
(a - b)(a - b)* = aa* - ab* - ba* + bb* =0
implies a - b = 0 by the above remark. It follows that R satisfies the *-cancella-

tion law.

THEOREM 14. Let S be a *-semiregular Baer *-semigroup. Then S salisfies
the *-cancellation law if and only if for e, £ € PYS), the equality e = efe implies that
e<f.

Proof, If S satisfies the *-cancellation law and if e = efe for e, f € P'(S), then
(ef)(ef)* = e(ef)* = ee*;

hence, ef = e, that is, e < f. Conversely, suppose that e = efe implies e < f for
e,fe€ P'(S). If a, b €S and aa* = ba* = bb*, then ab* = bb* and aa* = ba*; hence
(by *-semiregularity), ab" = bb" and aa" = ba", that is, b = ab" and a = ba". It
follows that bb" = ba"b" and aa" = ab"a". By *-semiregularity again,

bllb!l — b!lallbll’ and allall — allblla"; that is’ bll - bllaﬂbll and all — allbl’lall. By
our hypothesis, b" < a" and a" < b"; that is, b" = a". Hence,

a=ba"=bb"=b,

and the proof is complete.

It is interesting to note that *-cancellation can fail even in the presence of the
condition of *-regularity. For example, let S be the Baer *-semigroup obtained
from the Baer *-semigroup of all 2 by 2 matrices over the complex field by iden-
tifying those matrices that differ by a nonzero scalar factor. Then S is *-regular,
but the *-cancellation law fails. The Baer *-semigroup £ (X) does not satisfy the
*_cancellation law unless X is trivial.

LEMMA 15. If a Baer *-semigroup S salisfies the *- cancellation law, if
e, f € P'(S), and if fef is a projectionin S, then e commutes with f.

Proof. Set q = fef. Then qq* = (fe)q* = (fe)(fe)*; hence q = fe. Since q = q*,
fe = ef.
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7. THE RELATIVE INVERSE OF A PRODUCT
In this section we consider the following question: If a and b are *-regular in

S, is ab *-regular in S and what is the relationship between (ab)*, a* and b*+?

For the purposes of the present section, we adopt the following hypotheses and
notation once and for all: S is a Baer *-semigroup, a and b are *-regular ele-
ments in S, e = a" and f= (b*)". Note that b= fb, a = ae, e = ata, and f = bb™*.

LEMMA 16. If eb is *-vegular in a Baer *-sewmigroup S, then ab is *-vegular
in S and (ab)t = (ab)T at(b*a*)".

Proof. Put x = (eb)Tat(b*a*)". Then

xab = (eb)* a*((ab)*)" ab = (eb)*a*ab = (eb)*eb = (eb)"
= (a"b)" = (ab)".
Also,
abx = ab(eb)*at(b*a*)" = aeb(eb)*at (b*a*)

a((eb)*)u a+(b* a*)n = a(b* e)n a+(b* a*)n

a((b*)"e)"at (b*a*)" = a(fe)"at(b*a*)".
But, if we put
g = (@H(b*a®)" )" = ((b*a®)"at®)" = (braxaxh)
= (*am" = ((mam)" = (1),
then

abx = agat(b*a*)" = aat(b*a*)" = (a*)"(b*a*)"

(b*a¥)" = (@b)*)" .

Thus, ab is *-regular. Since x = x((ab)*)", x = (ab)*.

COROLLARY. If af is *-vegular in S, then ab is *-vegulay in S, and
+ — npt +
(ab) (ab)" bt (af)t.

Proof. In Lemma 16, replace a by b¥, b by a* and e by f. Since af is *-
regular, (af)* = fa* is *-regular; so by Lemma 16 (with the indicated replacements),
(b* a*¥)*t = (fa*)T b**+(ab)'. Performing the operation * on both sides of the latter
equation and using part (viii) of the corollary to Theorem 11, we obtain the desired
result,

LEMMA 17. If g € P'(S) with gf *=regulayr in S, then gb is *-vegular in S,
and (gb)* = (gb)" b*(gf)*.

Proof. In the corollary to Lemma 16, replace a by g.

COROLLARY. If g € P'(S) and eg is *-vegular in S, then ag is *-vegular in
S, and (ag)*t = (eg)tat(ga*)".

Proof. In Lemma 17, replace b by a* and f by e to conclude that
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Performing the operation * on both sides, we obtain the desired result.

THEOREM 18. If ef is *-vegular in a Baer *-semigvoup S, then ab is *-regu-
lay in S, and

(ab)* = (ab)" bt (ef)t at(b* a*)" .

Proof. Since ef is *-regular in S, by Lemma 17, eb is *-regular in S and
(eb)* = (eb)" bt(ef) . Applying Lemma 16, we see that ab *-regular in S and

(ab)t = (eb)* at(b*a*)'' = (eb)" b*(ef)* at(b*a*)" .

Since (eb)" = (a"b)" = (ab)", the theorem is proved.
LEMMA 19. Let x and x* be range-closed in S, and let g € P'(S). Then

(gx*)" - [(gl /\ Xll)x*]l /\(x*)"

if and only if (gx*x)" = (gx™".

Proof. Put h=[(g'/N\ x")x*]. Since h' < (x*)", h commutes with (x*)". There-
fore by Lemma 5, part (i) of Theorem 6, and part (xv) of Theorem 1,

[ Ax¥Mx]" = (hx)" = (g' Ax")' Ax"

(g\/xl) AX! = (gx")".

Hence, if (gx*)" = h A(x¥)", then
(gx* X)" = ((gx*)" X)" = (gx")" .

Conversely, suppose that (gx*x)" = (gx")". Applying the operation ' to both sides
of the last equation and using part (xv) of Theorem 1, we find that

(gx*x)' = (g'" N\ x") Vx'.

Multiplying both sides of this equation by x*, performing the operation " on both
sides, and using part (xvii) of Theorem 1, we see that

[(ex*x)'x*]" = [(g' N x")x*]" V x'x¥)" = [(g' N x")x*]".
Since x* is range-closed, part (i) of Theorem 6 implies that
[ex*x)' x*]" = (gx*)' A (x¥)";
therefore
(gx*)' A (x*¥)" = h', thatis, (gx*)" VvV (x*)' = h.

Forming the meet of both sides of the latter equation with (x*)" yields the desired
result (gx*)" = h A (x*)".

COROLLARY. Let x, x* be vange-closed, let g € P'(S), and let k = (gx")".
Then
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@) = (@' xMx] A )

if and only if (kx*x)" =K.
Proof. (kx*x)" = ((gx")"x*x)" = (gx"x*x)" = (gx*x)".

LEMMA 20. Let ab be *-regular, and suppose that (ab)*t = btat. Put h = (fe)",
k = (ef)". Then, (ha*a)" = h and (kbb*)" = k.

Proof. By Theorem 12,

(fa®)" = (09" a*¥)" = (b*a®)" = (@ab)®)"

(@)h)" = (brah)" = (bH" ah)"

1l

((b*)ll a+)|'l - (fa+)"

= [(£" ANa")a*]' A (a*¥)".

By the corollary to Lemma 19, it follows that (ha*a)' = h. A similar argument
gives the conclusion (kbb*)" = k.

LEMMA 21. If ef is *-vegulay in S, then
(b*(efyta*)" = [(f' A e)a*]' A(a*¥)"  and [(b+(ef)*a*)*]" = [(e' A DD]' AD".
Proof. Let g = (b*(ef)*)". Then by Theorem 12,

[(D)" (eH*]" = [(b¥)"(eD)*]" = (f(ef)*)"

[(£' A (ef)Mfe]" A (fe)" .
But, since (ef)" < f, £' A (ef)" = 0, so g = (fe)". Hence, by Theorem 12 again,

(b*(ef) at)"

(ga*)" = (fea™)" = (fa®)"

[(E'A e)a*]" A (a®)".

This establishes the first equation of the lemma. The second equation is established
similarly. ‘

THEOREM 22. If ef is *-vegular in a Baev *-semigroup S, then (ab)* = bt a*
if and only if the following four conditions hold: (i) ((fe)" a*a)" = (fe)",
(ii) ((ef)" bb*)" = (ef)", (iii) efe = (fe)", and (iv) fef = (ef)".

Proof. Suppose first that (ab)* = bt at*. Then by Lemma 20, conditions (i) and

(ii) hold. Since conditions (i) and (ii) hold, by the corollary to Lemma 19 and by
Lemma 21,

(ab)" bt (ef)t at(b*a*)" = btr(ef)*at;
hence, it follows from Theorem 18 and our hypothesis that b*a* = bt(ef)*a™.
Premultiplication of both sides of the last equation by b and postmultiplication by a

yield the equality fe = f(ef)* e; hence

efe = ef(ef)te = (fe)' e = (fe)",
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establishing (iii). Similarly,
fef = f(ef)t ef = f(ef)" = (ef)",

establishing (iv).

Conversely, suppose that conditions (i)-(iv) hold. Just as above,
(ab)* = bt(ef)tat.

Put x = fe, and note that by condition (iii), efx = (fe)" = ((ef)*)"; while by condition
(iv), xef = (ef)". Since x((ef)*)" = x(fe)" = x, Theorem 11 implies that x = fe = (ef)*.
It follows that (ab)* = b* feat = bt a*, and our theorem is proved.

THEOREM 23. Let a Baer *-semigroup S satisfy the *-cancellation law.
Then ab is *-vegular in S with (ab)t = bt at if and only if the following three
conditions hold:

(i) ((e A fa*a)" = e /i,
(ii) ((e A Dbb*)" = e N{, and

(iii) e commutes with f.

Proof. Suppose that (i)-(iii) hold. Since e commutes with f
ef = fe = (ef)" = (fe)" = enf = (eD)*.

Hence, all four conditions (i)-(iv) of Theorem 22 are satisfied, and ef is *-regular.
It follows that (ab)* = bt at.

Conversely, suppose that ab is *-regular in S and (ab)* = btat. Then

fe = bbtata

b(ab)ta and efe = eb(ab)*a.
Hence,

(efe)? = eb(ab)t aeb(ab)ta = eb(ab)” ab(ab)ta = eb(ab)ta = efe = (efe)*.

It follows that efe is a projection in S. By Lemma 15, e commutes with f. Thus,
condition (iii) is established. Also ef = e A f = fe; hence, by Lemma 20, conditions
(i) and (ii) must obtain.

LEMMA 24. Let g € P'. Then (gb)"b*t is *-vegular in S, and

[(gb)" b*]* = (gf)" b(gb)" .

Similarly, at(ga*)" is *-vegular in S, and

[at(ga*)"]* = (ga*)"a(ge)".

Proof. We prove only the first assertion; the second follows analogously. The
first assertion follows immediately from Lemma 17 if we replace g by (gb)", b by
b", and £ by b".

THEOREM 25. Suppose that ab is *-regular in a Baer *-semigroup S. Then
af is *-regular in S, and
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(ab*t = (ef)" b(ab)*.
also, eb is *-vegular in S, and
(eb)™ = (ab)* a(fe)".

Proof. We prove only the first assertion; the second follows analogously. Note
first that

(ab)[(eb)" b"] = aeb(eb)"b™ = aebbt = aef = af.
By Lemma 24, (eb)" b' is *-regular. Also,
[.((eb)" b+)*]|] — (b+*(eb)||)|| —_ (b"(eb)")ll = (eb)"'

In Theorem 18, replace a by (ab), b by (eb)"b*, e by (ab)" = (eb)", and f by (eb)".
Since (eb)"(eb)" = (eb)" is *-regular in S, af = (ab)[(eb)" b*] is *-regular in S, and

@f)* = (af " [(eb)" b*]*(eb) "(ab)* (fa*)n.
Invoking Lemma 24 again, we see that
(af)t = (ef)" b(eb)"(ab)*(fa*)".
Since [(ab)*]" = (fa*)" and [(ab)**]" = (eb)", we obtain the desired result
(af)™ = (ef)" b(ab)*.

THEOREM 26. If ab is *-vregular in a Baer *-semigvoup S, then ef is *-regu-
lar in S, and

(efyt = (af)t a(fe)" = (ef)" b(eb)r = (ef)" b(ab)t a(fe)".

Proof. Suppose that ab is *-regular in S. By Theorem 25, both af and eb are
*-regular in S. Since eb is *-regular in S, Theorem 25 (with a replaced by e) im-
plies the *-regularity of ef and the formula (ef)* = (ef)" b(eb)*. Invoking Theorem
25 again, we see that (eb)™ = (ab)* a(fe)"; hence,

(ef)* = (ef)" b(eb)™ = (ef)" b(ab)* a(fe)" .

Finally, since (af)* = (ef)" b(ab)*, (ef)t = (af)* a(fe)".

COROLLARY. If a and b are *-regular elements of a Baer *-semigroup S,
then ab is *-vegular if and only if a"(b*)" is *-vegular.

Because of the above corollary, the question of *-regularity of the product ab
of the *-regular elements a and b is reduced to the question of *-regularity of the
product ef of the closed projections e and f. If L is an orthomodular lattice and if
e, f € L, then *-regularity of the product ef in a coordinatizing Baer *-semigroup
S for L seems to depend strongly on S; that is, we cannot decide whether ef is *-
regular merely on the basis of our knowledge of L, e, and f. Of course, in view of
Lemma 8, a necessary condition that ef be *-regular in S is that both ef and fe
be range-closed in S. We shall show (in the next lemma and theorem) that ef is
range-closed in S if and only if (e', f) is a modular pair in L.
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LEMMA 27. Let e, f and g be closed projections in a Baer *-semigroup S, and
put h = (gf)". Then the following two conditions ave equivalent:

(1) [(efe)'ef]" = g' A (eD)".

(i) (hVe) Af=hV(e'A D).

Proof. By part (xii) of Theorem 1, (gfe)" = (he)"; hence, (gfe)' = (he)'. Using
the latter equation and part (xv) of Theorem 1, we see that (i) is equivalent to the
statement

[(he)ref]r = g AL (e V1),

By part (xi) of Theorem 1, (he)'e = h' A e. Thus, using part (xv) of Theorem 1, we
find that

[(he)' ef]" = [(' Ae)f]" = [(h Ae)V ]Af.
Consequently,
1) e ['Ne) VIIANE = (g N N(e V'), that is,
i) eo[hve)AflVE = (gVvi) V(e Ni).

Taking the meet of both sides of the last equation with f and using the distributive
law which is part (iii) of Theorem 2, we conclude that

(hve)YNf=[gVIE)ANT]V(e'AD.

Conversely, taking the join of both sides of the latter equation with f' and using part
(iii) of Theorem 2, we obtain the result

[(hve) AffVEI = (gVI) V(' AT
again. It follows that
D ehve) Nf=[gVIVANL]V('AT.
By part (xv) of Theorem 1, (g V ') A f = (gf)" = h. Consequently
(i) @ hVe)Af=hV( Af.
THEOREM 28. Let e and f be closed projections in a Baer *-semigroup S.

Then the element ef is vange-closed in S if and only if (e', ) is a modular paiv in
the lattice P'(S).

Proof. By parts (i) and (ii) of Theorem 6, ef is range-closed in S if and only if
condition (i) of Lemma 27 holds for every element g € P'. Hence, by Lemma 27, ef
is range-closed if and only if

(hVe)Af=hV('Af

for every element h of the form h = (gf)" with g € P'. But the set of all sub-ele-
ments of f is the set of all elements
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= (gh" = (gVIINTL

corresponding to the elements g in P'. It follows that ef is range-closed if and
only if (e', f) is a modular pair.

8. CONCLUSION

In this final section, we set forth a few results which follow easily from the
material developed in the previous sections and which are of some interest in con-
nection with matrices, operators on a Hilbert space, and Baer *-rings.

THEOREM 29. A bounded opevatov on a Hilbert space H is *-vregular if and
only if its range is a closed linear subspace of H. Let A and B be *-regular
operators in B(H). Then the relative inverses At and BY of A and B coincide
with theiv Moore- Penrose generalized invevses [7]. Let M be the vange of A, and
let N be the orthogonal complement of the null space of B. Then AB is *- Vegula‘r
in B(H) if and only if (M N) is a modular pair in the lattice of closed linear sub-
spaces of H. Finally, a necessa'ry and sufficient condition that AB be *-regulayr in
#B(H) with (AB)*t = Bt At is the fulfillment of the following thvee conditions:

(G MO NA*¥A=MDN N,
(ii) (M N N)BB* = M N N, and
(iii) MN (M N N)L is orthogonal to N N (M N Nyt

Proof. The first assertion of the theorem has already been established in the
remark following the corollary to Theorem 11. The second one follows directly
from the definition of the Moore-Penrose generalized inverse. The third conclusion
follows directly from Theorem 28 and the corollary to Theorem 26. The final as-
sertion of the theorem is a direct translation of Theorem 23 in the situation where
S is the *-cancellation Baer *-semigroup #(H). Condition (iii) of Theorem 23 be-
comes condition (iii) of the present theorem because of Lemma 3.

COROLLARY. Let A and B be *-vegular (that is, range-closed) operators in
#B(H). Let M be the range of A, and let N be the orvthogonal complement of the null
space of B. Put K= M N N. Then AB is *-yegular in B(H) with (AB)t = Bt A+ if
and only if the following conditions hold: (i) K reduces A* A, (ii) K reduces BB¥*,
and (iii) M N KL is orthogonal to N n KL,

Proof. Clearly, it will be sufficient to show that KA*A c K implies KA*A = K.
Put A*A = C. In Theorem 30 (part (ii)) we shall prove that if A is *-regular then
C = A¥A is *-regular. Also,

C" = (C*¥)" = (A* A)" = A" = the orthogonal projection of H onto M.

Let P be the orthogonal projection of H onto K, and note that P < (C*)". In Lemma
17, we replace g by P, b by C, and f by (C*)"; thus, we conclude that PC is
range-closed. But the range of PC is KC; hence, KC is closed. Now, suppose that
K reduces C, and let C, be the restriction of C to the Hilbert space K. Since

KC M and since M is the orthogonal complement of the null space of C, {0} is the
null space of C,. It follows (since C, is Hermitian) that the range of C0 is dense in
K. But the range of C, is the closed subspace KC of K; hence, KC = K. We con-
clude that the condition KA* A = K is equivalent to KA*A c K, so our proof is com-
plete.
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THEOREM 30. Let A be a bounded operatoy on the Hilbert space H.
(i) If A is *-regular, then AA* is *-vegular, and (AA*¥)* = A¥T A*,
(ii) A is *-vegular if and only if AA* is *-regular.
(iii) If A= A*, if A> 0, and if A is *-regular, then AT > 0.
(iv) If A = A* > 0, then that A is *-regular implies that AY? is *-yegular
with (A1/2)+ - (A+)1/2.
(v) A is a partial isometry, (that is, AA* is a projection) if and only if A is
*_yegulay with A* = AT,

(vi) If A is normal and *-regular, then At is normal.

Proof. Part (i) follows immediately from Theorem 29. (ii) One of the impli-
cations in (ii) follows directly from (i). In order to prove the converse implication,
it will be sufficient to prove that if AA* is range-closed, then A* is range-closed.
Suppose that E is a projection with E < (A*)" and (EA)" = A". Then,

E —<— (AA*)II = (A*)"’ and (EAA*)II = ((EA)“ A*)ll — (AIIA*)H = (A*)" = (AA*)" .

Since AA* 'is supposed to be range-closed, E = (AA*)" = (A¥)", so A* is range-
closed. (iii): Since A = A* > 0, there exists a B = B* with A = BB. Since A is
*_regular, B is *-regular by part (ii) of the present theorem. By part (i) of the
present theorem, A* = B* BY, hence,

At = A¥F = AYE > 0,

Part (iv) follows immediately from (i), (ii) and (iii). (v): Suppose AA* = E, a pro-
jection. It is well known that this implies A* A = F, a projection. Then

E - Ell - (AA*)" - (A*)“ .
Similarly, F = A", so A* = A*, The converse is clear. Part (vi) follows imme-
diately from (i).

THEOREM 31. Let A be a bounded operator on a Hilbert space H, and let
A = BU be the polar form for A so that B = (AA®Y2 and U is a partial isometry
with U" = A", (U¥)" = (A¥)". Then A is *-vegular if and only if B is *-vegular;
and if A is *-vegular, then A+ = Ut Bt = U* B,

Proof. That A is *-regular if and only if B is *-regular follows from parts
(ii) and (iv) of Theorem 30. The remainder of the theorem is a direct consequence
of Theorem 29.

LEMMA 32. If S is any Baer *-semigroup, if a, b € S, if a is *-vegular, and
if a commutes with both b and b*, then a* commutes with both b and b*.

Proof. Clearly, aba' = baa' = b0 = 0, so ba' = a'ba'. Similarly, b¥a'=a'b*a',
so a'b = a'ba' = ba'. By part (ix) of Theorem 1, a"b = ba". By a similar argument,
(a*)" b = b(a*)". Thus,

+ _ + " T +
aba’ = baa” = b(a*)" = (a*)" b=aatb,

SO

ataba® = ataatb=atb,
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that is, a"bat = atb. Thus, a*b = ba" a* = ba*. A similar argument shows that b*
commutes with a*.

The following theorem generalizes [6, Lemma 7, p. 526]:

THEOREM 33. Let S be a Baer *-sewmigroup, let M be a non-empty subset of
S with M = M*, and let a be *-regular in S. Then, if a € Z(M), at € Z(M). In
particular, then, if S is *-vegular, so is Z(M).

Proof. The theorem follows directly from Lemma 32.
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