ON HYPERBOLIC CAPACITY AND HYPERBOLIC LENGTH

Ch. Pommerenke

1. INTRODUCTION

Let G be a simply connected region with at least two boundary points, and let
¢ = Y(z) be a function that maps G conformally onto { |C| < 1}. Let E be a com-
pact subset of G. Tsuji [8] has introduced the hyperbolic capacity of E with respect
to G, which can be defined by

Y(zy) - Yz, |V/E-1)

1 - Yzyp) gz

caph E = 1lim max :
n—oo z1,°**,2, €€ UFY

It does not depend on the choice of ¥(z). Also, it is invariant under conformal map-
ping of G. For many purposes it is thus sufficient to choose G = {IL[ <1} and
Y(z) = z. Then

1/n(n-1)

Z“_—ZV

(1) caph E = lim max ITI1 T -7z,

n—oco z1,"*",Zzn€E gy

It is always true that 0 < caph E < 1. The circle {|z]= p} has hyperbolic capacity
p.

Let E be a compact set in { |z| < 1} . Together with caph E we can consider
the logarithmic capacity, cap E. From (1) and the corresponding definition of cap E
we immediately obtain the following lemma.

LEMMA 1. If Ec {|z|<8} (0<86< 1), then

cap E cap E
T+o2 S caphE S 7.

Hence caph E = 0 if and only if cap E = 0. If F is any compact plane set and if
R is so large that F c { |z| < R}, we can consider the hyperbolic capacity caphr F
of F with respect to {|z| < R}. Since

caphp F = caphl(R‘1 F) and cap(R"!F) = R-lcapF,

Lemma 1 implies that Rcaphr F — cap F as R — .

Let E be a connected compact set in G, and let S be the doubly connected re-
gion between E and the boundary 8G of G. If z = f(s) maps {p < |s| <1} con-
formally onto S, then [8]

(2) p = caph E.

Hence the modulus of S is log(1/caph E).
The hyperbolic metric in G is defined by the length element
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1- |p@ P v(@)]]az].

For G ={|z| < 1} the length element becomes (1 - |z|?)~!|dz|. In this case the
geodesic through two given points z, and z, is the circle through z, and z, that is
perpendicular to { |z = 1} . The arc of the circle between z, and z, will be called
the geodesic segment between z, and z,. The hyperbolic distance between z, and

Zy,

1 Z, - Z Z, - Z
3 d - =1 (1 __1_:_2_) (1_ __1.___._2_)
(3) (21, 2,) = glog 1+ 1-2,2, / 1-2,2z21/"°

is a monotone function of |z, - z,|/|1 - Z,2,].

We denote by p(A) the hyperbolic capacity of a geodesic segment of hyperbolic
length A, It is given by

p() = exp [ -ZRK/K®W) |,

where
k = tanh A = (eM - e N)/(eM + e~N).

Here K(k) denotes the complete elliptic integral of first kind and ' = (1 - k?)¥/2,
Let X = A(p) be the inverse function. Then

Mp) = 4p+ O(p?) as p—0,

(4

o) -}I'ITZ(I -p)"t+0O(1) as p—1.

In Section 2, it will be proved that the hyperbolic capacity is not increased by
certain projections. As a consequence, we obtain a new proof and a generalization
of the following theorem due to Grotzsch [4]: If E is a continuum in the unit disk
which contains the points 0 and a, then the modulus of the ving-vegion between E
and {|z|=1} becomes smallest if E is the segment [0, a].

In Sections 2 and 3, the hyperbolic length A,(E) of the shortest curve enclosing
the given continuum EcC G is estimated from below and from above in terms of
p = caph E. We shall find, for instance, that

27
A o®)/ 120

lies between two positive absolute constants.

2. PROJECTIONS

A subset H of G is hyperbolically convex if the geodesic segment between any
two points of H lies in H. Let K be a compact hyperbolically convex subset of G.
For a point z € G we define its hyperbolic projection z* on K as the point in K that
is nearest to z in the hyperbolic metric. The projection E* of E on K is defined
as the set of the projections z* of the points z € E. The concept is invariant under
conformal mapping of G.
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THEOREM 1. Let E be a compact set in G,and let E* be its projection on the
hyperbolically convex set K. Then

caph E* < caph E.

This is a generalization of a result about the Euclidean projection of the log-
arithmic capacity [6, Th. 1.]. We shall first prove three lemmas.

LEMMA 2. If z;=x;+iyj, |2j| <1, then

Zy - Zy X, - X
1-2Z;2,1 = 11-x;X,
Proof. Computation shows that
|Z1 - Zzl2(1 - X, %,)% - ll = Elzz‘z(xx - Xp)?

=1 - |Z1|2)(X1 - X,)%y3+ (1 - |Z2|2)(X1 - x,)%y5 + (1 - x§)(1 - x2)(yy - ¥2)2
+ (%, - %)%y3y3 > 0.

LEMMA 3. Let K be a hyperbolically convex set in { |z| < 1}, and let z’; be
the projection of z; (|zj| < 1) on K. Then

(5) l Z; - Zyg z*l - z¥
1-2,2, | = {1-32¥z¥|°

Proof. Since both sides of (5) are invariant under linear transformations of
{ |z| < 1}, we may assume that z¥ = -a, z¥ = a. The geodesic segment between -a
and a is then the real segment [-a, a]. Because K is hyperbolically convex, it fol-
lows that [-a, a] ¢ K. Since -a = z¥ is the point of K nearest to z,, we easily see
that x, = 91z, < -a. Similarly, x, = 9%z, > a. Therefore

d(x,, x;) > d(-a, a) = d(zF, z¥).

By Lemma 2, d(z,, z,) > d(x,, x,), which implies inequality (5).

LEMMA 4. Let E and F be two compact subsets of {|z|< 1}. If there is a
mapping w = ¢(z) from E onto ¥ such that

(6) ¢(z) - o(z") z -z
1-3@ez) — 11 -2zz'
for all z € E, z' € E, then caph F < caph E.
Proof. Choose wy, **-, Wy in F so that
w w
I 1|
Ly 1-w,w,

has its maximum possible value. Because ¢(z) maps E onto F, there exist points
z, € E such that w, = ¢(z,). Now (6) and (1) immediately imply that
caph F < caph E.
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Proof of Theorem 1. We consider the mapping of E onto E* that assigns to
each z € E its projection z* € E*, Because of Lemma 3 we may apply Lemma 4.
Doing so, we obtain the inequality caph E* < caph E.

THEOREM 2. Let E be a compact subset of G with p = caph E. Let b be the
hyperbolic (linear) measuvre of the hyperbolic projection of E on a given geodesic.
Then b < NMp), and equality holds if E is an avc of the geodesic.

By the remark made after Lemma 1 and by (4), this is a generalization of a
theorem of Pélya [5], who proved that the Euclidean projection of a compact plane
set F on a line has measure no greater than 4 cap E.

Theorem 2 also generalizes a result of Grotzsch [4], which is (by (2)) equivalent
to the following theorem: Of all connected compact sets of given hyperbolic capa-
city, the segment has greatest hyperbolic diameter.

There is a corresponding theorem for Euclidean (orthogonal) projections: If E
is a compact set in {|z| < 1} and E' its Euclidean projection on the veal axis,
then caph E' < caph E, and E' has hyperbolic measure no greatey than A(p). This
is another generalization of P6lya’s theorem. The proof uses Lemma 2 and 4 and is
otherwise analogous to the following proof.

Proof of Theorvem 2. We may assume that G = { |z| < 1} and that E is pro-
jected on the real axis. Let P be the projection, let L(x) be the hyperbolic measure
of [-1, x] N P, and let ¢(x) = tanh L(x). Then

L) = 3log (1 + $(x)/(1 - $(x)).

For x, < X, (x, and x, € P) the hyperbolic measure of [x,, x,] N P is

_ 1 (i’(xz) - ¢(X1) ¢(X2)_- ¢(X)
L) - Lix) = glog (1+ {2 ey ) /(1 - £ -

On the other hand, this measure is no greater than d(x,, x,). It follows that

P(x,) - o(x,) X, - X
(7) - o)) =~ 1o %%

The function ¢(x) maps P onto the segment [0, tanh b]. In view of (7), we can apply
Lemma 4. Using Theorem 1, we obtain the inequalities

caph [0, tanh b] < caph P < caph E = p.

Since [0, tanh b] has hyperbolic length b, this completes the proof of Theorem 2.

3. LOWER ESTIMATES OF LENGTH BY HYPERBOLIC CAPACITY
THEOREM 3. If C is a curve in G of hyperbolic length A and p = caph C, then
A > NMp). Equality holds if C is a geodesic segment.

This is a generalization of the result [6, Th. 3] that every plane curve C has
length at least 4 capC.

Proof. Let z = x(L) be a parametrization of C in terms of the hyperbolic length
L. The function
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8(8) = x(Flog (1 + £/ - ©))

maps [0, tanh A] onto C. If &, < &,, z, = ¢(§,), and 2z, = ¢(£,), then

1. 1+§, 1-& 1 £, - &, £ - &
d(zy, 2,) < Ly - Ly = glog3—2 1+gj-§1°g(1+1-gzgl)/(1‘1-£2£1)’

which by (3) implies that

1-2,z,| —1-E&,¢&;°

Therefore, an application of Lemma 4 yields the inequality
p = caph C < caph(0, tanh A] = p(A).

We shall consider now only the case where E is connected. Let A,(E) denote
the infimum of the hyperbolic lengths of the closed curves that separate E from 2G.
Thus Ay(E) is the hyperbolic perimeter of the hyperbolically convex hull of E. Let
K(k) again be the complete elliptic integral of the first kind, and let k' = (1 - k2)V2,

THEOREM 4. Suppose E is connected. If k is determined from the velation

(8) p = caph E = exp[-7K(x)/K(k')],
then
(9) Ao(E) > 2 (1 - KK,

The quantity Ay(E) is invariant under conformal mapping of G (not under con-
formal mapping of the doubly connected region between E and 9G). Therefore we
may assume that G={ |z| < 1}. We shall compare A, (E) with the hyperbolic
length 27p/(1 - p?) of the circle { |z| = p}, which has hyperbolic capacity p. For
0<p<1,let

. 2
a(p) = int Ag(E)/ 7255,

where the infimum is taken over all connected compact sets E with caph E = p, and
where

q(0) = lim inf q(r), q(1) = lim sup q(r).

r—0 r—1

Then q(p) < 1 always. It is possible that ac;cually q(p) = 1. Theorem 4 only gives
the following result.

COROLLARY 1.
a0) = 1, 1> q(1) > /4.

Computation shows that, for instance,
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q(0.25) > 0.94, q(0.50) > 0.84, q(0.75) > 0.79.

LEMMA 5. Let z = 1(s) be the univalent function that maps p < [sl < 1 onto
the doubly conmected region between E and { |z| = 1}, and for veal t let

i jefield f(e't) + £(s)
(10) 8(s, B) = ge feit)  H(eh) - £(s)

If t is fixed, g(s, t) is univalent and analytic if p < |s|< 1/p except for a simple
pole at s = et where

ielt + s
(11) g(s, t) = §e1t — + by + oo
Also, g(s, t) is real for |s| = 1. If L(r, t) is the Euclidean length of the set
{g(s, t): |s| = r} andif A(r) is the hyperbolic length of {f(s): |s|=r}, then for
p<r<l1,

27
Alr) = o= SO L(r, t)dt.

Proof. By the Schwarz reflection principle, g(s, t) is univalent and meromorphic
in {p < |s|< 1/p}. Hence g(s, t) has only a pole at s = €it, and (11) follows by
computation. By (10), the image of { |s| =1} under g(s, t) is a straight line that
has to be the real axis by (11). From (10), we obtain the identity

0 ieit f1(eit)f'(s)
'(s, t) = = y ) = - 5
g'(s, t) 35 8(ss t) o - 1(3)2

hence

1 (27

1l

1 (27 2m .
51—7—5 L(r, t)dt rS [g'(relg, t)ld@ dt
0 0

27 Jg
(12)

27 27 £1 it .

rS (%—i} | (e ),.9 2dt) |f'(re19)|d9.
o m | £(eit) - f(ret?)]

Since |f(eit)| = 1 and since f(eit) is univalent, we may substitute el7 for f(eit).

Because [f(reif)| < 1, we find that

1 27 |f(elh] 1 o 1 1

- - - = 5— - - dr = - .
27 o |f(e1t) _ f(rele) |2. 2T o |e1‘r _ f(reaﬁ) |2 T 1 - If(re19) IZ.

Hence (12) implies that

1 27

2 1 if
L(r,t)dt:rS17 [£ e | do = A(r).

2r Jy 0 1- |f(rel®)[?
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Let A be a plane compact set. Its analytic capacity (see, for example, [1] or [7])
is defined to be

a = a(A) = sgp|a1[,

where the supremum is taken over all functions g({) = a, + a, £~ + --- analytic in the
exterior of A that satisfy the inequality |g(§')| <1.

LEMMA 6. If 0< p< 1,
P p
Sl-pz}u{ 51-92}

- .1+ p?
A= {I €- 17 P>

has analytic capacity a = (2m)~1(1 - k) K(k'), wheve « is defined by (8).
Proof. The function

.1+ p?
+1i
g T

1/w
(13) w = FT{IS‘S] [(1 - udA - k2 u?)]"1/2 du = K(T{')%Jr

maps the w-plane, cut along [-1, +1], onto the rectangle
{|®tw| < 7K(k)/K(x"), | Sw| < #},

where [-1, -k] is mapped onto the left side of the rectangle, [~k, -] onto the lower
and upper sides, and [k, 1] onto the right side; see for instance [2, p. 17]. There-
fore

t = -;:i(l +eM)/(1-e %)

maps the w-plane, cut along [-1, -k] and [k, 1], onto the exterior region H of A.
Near ® =« (13) implies that

¢ = %i(z + )/ (TK(K) Tw™t + «o0) = i7" K(K)w + o=

Hence the function
(14) w* = i7" KEKDYw = €+ ---

maps H onto the w*-plane, cut along two segments that lie on the imaginary axis and
that have total length 27-!(1 - k)K(k'). Since the analytic capacity of a linear set is
one quarter of its measure [7] and since the analytic capacity is invariant under a
conformal mapping of the form (14), it follows that A has analytic capacity

a=02m) (1 - K)K(K").

Proof of Theorem 4. (a) Let us assume first that the function f(s) of Lemma 5
is analytic and univalent for [sl = p. Since g(s, t) is real for ,sl = 1, the annulus
{p < |s| < p~'} is mapped by g onto a region symmetric with respect to the real
axis. Its complement consists of two compact components, F; and its conjugate ft.
The transformation
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¢t = %i(eit + 8)/(elt - s)

maps {p < lsl < p~'} onto the exterior region H of the set A of Lemma 6. Let

s = s(£) be the inverse of this transformation. Then g(s(¢), t) is univalent in H
and analytic, except for a pole at £ = « where g(s(f), t) = £ + «-- by (11). It follows
that Fy U F; has the same analytic capacity @ as A. Therefore [3] the (Euclidean)
perimeter of Fy U F. is at least 2ma, and the perimeter L(p, t) of F; is at least
7, From Lemma 5, it follows that

(15) A1) > 7.

(b) Given € > 0, let C be a closed analytic curve of hyperbolic length less than
Ao(E) + ¢ that separates E and 9G = {|z|=1}. By (15), the hyperbolic perimeter
of C is at least #f, where B has the same relation to caph C as @ has to caph E.

Hence Ay + € > 3. Since E lies in the interior of C, we see that caph C > caph E
and therefore that 8 > @ and A, + € > 7ma for every £ > 0.

4. UPPER ESTIMATES OF LENGTH BY HYPERBOLIC CAPACITY

THEOREM 5. If E is connected, then

0 1/2
211' nrén rZ
16) Ay(E) <  inf > + ,
( 0 - p<lr<L 1(2 log r/P)I/Z l:n=11 -r4n (1 —1:'2')Z
and also
72 p1/2
o 8B < 105 175

The first inequality is better than the second one for small p; the second one is
better than the first for p near to 1. Inequality (17) follows almost immediately
from known principles. We could have obtained a slightly better bound. Again, tak-
ing G={|z|< 1}, we compare A, (E) with the hyperbolic length of {|z|=p}. For
0<p<1,let

Q(p) = sup Ay(E)/ 1—2_“%5,

where the supremum is taken over all connected compact E with caph E = p, and let

Q(0) = lim sup Q(r), Q(1) = lim sup Q(r).

r—0 r—0
Then
1.31 < Q(0) < 1.46.
This is only another way of writing some results on the logarithmic capacity of a

plane set [6, Th. 5], as Lemma 1 shows. By computation, it follows from Theorem
5 that, for instance,
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Q(0.25) < 1.85, Q(0.50) < 2.50, Q(0.75) < 3.19,

where inequality (16) is used for p = 0.25 and 0.50 and inequality (17) is used for
p = 0.75. For p =1, Theorem 5 implies bounds for Q(1).

COROLLARY 2.

W

< Q) < 7.

The case where E is a geodesic segment gives the lower bound, as (4) shows. The
upper bound follows immediately from (17).

Proof of Theorvem 5. (a) We shall first prove (16). By Lemma 5, the function
g(s, t) - 5 (€' + 8)/(e* - o)

is analytic if p < |s| < 1/p, and is real for |s| = 1. Hence, its Laurent expansion
has the form

- o0 00
= qlt
g(syt)‘%e_ +S= E Ens—n+b0+ Ebnsn.
elt - S n=1 n=1
For p < |s| < 1 this implies that
«© oo
g(S, t) = Z) an_n + (%1 + bO) + E (bn + ie—lnt)sn.
n=1 n=1

Therefore the region enclosed by the curve {g(s, t): |s| = r} has (Euclidean) area

o] [+ o]
Alr, t) = -7 Enlbnlzr'zn + TTZI> n|b, + ie'intl2 £
1
(18)
o0 o0 [ove) 2
< 12 nlbn|7‘r'2‘n + wEn]bnlz rZn + 212 nlbnlrzn + _m'___.
- 1 1 1 (1 - r2)2
Schwarz’s inequality implies that
« °° 4n 1/2 o0
nr 2 2, -2 2
Zl)nlbnlrzn _<_ B(r) (?m) , where B(r)” = Zl>n|bn| (r "_or n).

Therefore (18) yields the result

[~ o]
6n 2
(19) Alr, t) < 722 nr s UES .
— 11-p (1-1r?%)2
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Let L(r, t) again be the Euclidean length of {g(s, t): ls] =r}. Applying
Schwarz’s inequality, we find that

2

r 5 .1 r 2w ] )
L(u, t du = "(ueif)| do d
S (u, )" u " du Sp (50 | g (uelf)] udu

o
r 2T
< 2715 S |g' (ueib, t)|2 udodu
p 0

= 27(A(r, t) - Alp, 1) < 27A(r, 1)

because g(s, t) is univalent. By Lemma 5 and Schwarz’s inequality, we thus obtain

the result
r r 2m 2
("aw*utau = § (—215 Ly, t)dt) uldu
w
P P 0

r 27
< §1—S ‘S‘ L{u, t)z uldtdu
T ), o

2m
< A(r, t)dt.
0

Since Ag(E) < inf A(u), it follows that
p<u<l

5 2m
Aglog r/p < S A(r, t)dt,
0

and (16) may now be obtained from (19).
(b) To establish (17) we shall prove that for |s| = pV2,

If'(s)l < T .
1 - |f(s)]P = 2p'2log 1/p

We may assume s = pl/ 2, The function

#(8) = exp[ (%logi—t—g-—%) log l/p] = pt/z (1+121-Ti10g 1/p-€ + )

is analytic for |§] <1 and maps { |C| < 1} onto the universal covering surface of
{p< lz! < 1}. Hence, the function h,

n(e) = JOE) - £V £V 2ip¥?

S o R ) D A

is analytic for |§| < 1 and satisfies the inequality Ih({’)l < 1. By Schwarz’s lemma
the coefficient of £ has absolute value no greater than 1.
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