AN ANALYTICAL APPROACH TO THE DIFFERENTIAL
EQUATIONS OF THE BIRTH-AND-DEATH PROCESS

J. H. B. Kemperman

1. INTRODUCTION

This paper presents a purely analytical approach to the problems of uniqueness
and existence of solutions (separate or simultaneous) for the forward and the back-
ward differential equations of the so-called birth-and-death process. The conditions
imposed on the solutions {p,,,(t)} are of the types

1 if m=n,
(1.1) Pmn(0) = 0 mn =

0 if m# n,
(1.3) 22 Pran () < 15

no attention is paid to the so-called semigroup property (compare [6] and [9]). The
variable t is usually restricted to a fixed finite interval; this is definitely more
general than the case 0 < t <« which is considered by most authors, mainly in
order to permit use of the Laplace transform of p, (t).

In our method of proof, neither uniqueness nor existence offers any great diffi-
culty. The major effort is spent in obtaining, for many cases of interest, an explicit
representation of all the possible solutions. In particular (see Theorem 9.3) such a
representation is obtained for the case where the required solution is to satisfy both
the forward and the backward differential equations, in addition to the conditions
(1.1) to (1.3) above. An explicit representation for a certain subclass of such solu-
tions in 0 < t <« was already obtained in the interesting paper [7] by Karlin and
McGregor.

The conditions involved are highly redundant. In view of this, the problems on
hand can be approached from many different directions. Our approach is probably
closest to that of Arley and Borchsenius [1] and that of Reuter and Ledermann [10].
An approach involving the analytical theory of continued fractions was announced by
Koopman [8]. A great variety of other methods, often for more general situations,
can be found in the papers of Feller [2] to [6].

2. STATEMENT OF THE PROBLEM

In this paper, A, and g, (n= 0, 1, 2, ---) denote given nonnegative real numbers.
By T we denote a fixed positive number (allowing occasionally that T = +w),.
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322 J. H. B. KEMPERMAN
We shall study the uniqueness and existence of a system {p,n(t)}
(m, n =0, 1, --+) of infinitely differentiable functions defined on the interval

0 < t < T, satisfying the initial conditions

(2-1) pmn(o) = ‘Smn

and satisfying,also for 0 < t < T, one,or more of the following conditions [each for a
specified (possibly empty) set of pairs (m, n) of nonnegative integers]:

First, the so-called forward differential equations
(Dmn (An + Bn + D)Pmn = Ano1 Pm,n-1+ 4n+1Pm,n+1-

Here, D = %: The case n = 0 is to be interpreted as

(Dmo (Ao + Lo + D)Pmo = H1Pm1l-
Second, the so-called backward differential equations
(D mn Am + Um + D)Pmn = AmPm+l,n*+ EmPm-1,n-
The case m = 0 is to be interpreted as
Mon (Ao + Mo + D)Pon = X0Plin-

Finally, the conditions

(2.2) Pmn() > 0,

(2.3) lPmn® ] < 1,

and

(2.4) | 22 prmj®) < 1.
j=0

As was first shown by Feller [3] (see also Section 6), there always exists a well-
defined system {p,n(t)} satisfying each of the above conditions for all 0 <t <
and all m, n. This system will be denoted by {¢,,n(t)}. It moreover has the so-
called semigroup property

Smnlt + ') = 22 dmj(t) djnlt').
j=0

Assuming that A, > 0 for n> 0 and that yu, > 0 for n> 1, and using known re-
sults from the theory of moments and orthogonal polynomials, Karlin and McGregor
[7, p. 529] proved that {¢,n(t)} is the only system satisfying all of the above con-
ditions Dynn, M mn, (2-2), (2.3) and (2.4) for all 0 <t < « if and only if
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(2.5)

= Ag--Apn_1 1 + au-l'"p-n-—lix_l
Hi**HKn_1 Hn Ap ** Ap_1 Ay

n=1

In Sections 7 to 9, using totally different methods, we shall obtain a generalization of
this result. We shall also study the explicit form of all solutions in case (2.5) does

not hold.

The remaining part of this section consists of some more or less obvious re-
marks indicating the pattern of reasoning to be followed in subsequent sections. In
the following, the argument t is restricted to the interval 0 < t< T with T> 0 and
fixed.

Let n > 0 be fixed, and consider the question whether or not the conditions
(2.1)pyn and (I (m =0, 1, ---) together determine the p,,,(t) (m =0, 1, ---)
uniquely, in other words, the question whether or not

(2.6) Am + Bm + DUy, = AUy + EpUpyo1 (m> 0, u_y =0),
together with
U@ =0 (m>0),

implies that u,(t) =0 (m=0,1, --; 0 <t < T).

The answer is clearly affirmative if A, = 0 for infinitely many m. ¥For if
An-1= 0, then (2.6) for 0 < m < M is a system of the form Du = Au, with
u = (ug, *--, upg-1) and with A as an M X M matrix of constant coefficients. Thus
it suffices to consider the case where A, > 0 for m > p. Let p> 0 be minimal,
that is, either p=0 or else p> 1 and A,_; = 0. In particular, u,,(t) = 0 for
0<m< p- 1. Therefore, if we let v, = upyy, (m=0,1, ) and

(2.7) B = ”rn+p/7‘m+p2 0, Ym = 1/)\m+p> 0 (m=0,1, --),

the question above leads to the following problem, which will be studied in Section 4.

The basic uniqueness problem. Let B, > 0 and vy, > 0 (n=0, 1, --+) be con-
stants. Let the system {vh,(t)} (n=0, 1, ---; 0 <t < T) satisfy

(1 +Bn +nD)Vn = Vnt1 +BnVn1 (0> 0, v =0),
va(0) =0  (n> 0)

and some additional condition (say, ]vn(t) f < 1). Determine whether this implies
that vn(t) =0 forall 0<t< T (n=0, 1, ---). If not, find all possible solutions

{va®}.

Next, let m be a fixed integer (m > 0), and consider the question whether or not
the two conditions (2.1),, and (), (n =0, 1, *>*) determine p,,(t) (n=0, 1, --*)
uniquely. Put

n-1

t
(2.8) mn(t) = uoS Pmo(7) d7 + Pmjt),
0 o

J=

in particular,
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t
admo t) = Ko SO Pmo (r)dr.

Then the condition (2.1)_ ., (n> 0) is equivalent to
Ann(0) = 0 if m<n,
=1 if m>n.

Further, (I),,, (n=0, 1, --+) and (2.8) imply that, with q, = q,,,(t) and p, = p_ (1),

n-1

Dq, = Mg Py + jZi) (M joaPjo1+ 1Pyl - AR5 - B D))

= HpPp - An_1Ppo1 = p'n(qn+1 - qn) - >Ln—l(qn - qn—l)
when n=0, 1, --- (x_; = 0). Consequently, the q,,,(t) satisfy
(2.9) (An—l + lpt D)qmn = Ap-1 Om,n-1* Hndm,n+l (nZ 0, AQm,-1% 0);

conversely, (2.9) and (2.8) imply (I),,,,, for n> 0. In particular, as to the unique-
ness problem for the forward differential equations (I) it suffices to consider the
system

mn?

(Ap_1+ Bp+Duy = Xy quy  + U,y (>0, u_;=0),
with the initial conditions
un(o) =0 (nZ 0) .

If p, =0 for infinitely many n, then u,(t) = 0 for all n> 0. Thus, it suffices to
consider the case where p, > 0 for n> q with q > 0 minimal. In particular,
u,(t) =0 if 0 <n< q- 1. Consequently, letting v, (t) = um+q(t) (m=0,1, ---) and

(2-10) Bn = An_:[-i-(;l/IJ'Ij-}-q2 0, Yn = 1/Hn+q> 0, (n =0, 1, ".)’

we again have the basic uniqueness problem above (note that A_, = 0).

In dealing with the problem whether or not, under certain side conditions, (2.1)
combined with both (I),,, and (II),,, (all m, n) determines the system {p,,,(t)}
uniquely, one may clearly assume that A, > 0 for n> p and g, >0 for n> q. In
order to avoid certain minor complications, we shall assume in this case that p=0
and that q = 0 or q = 1; thus

(2.11) Ay >0 for n>0, >0 for n> 1.

Suppose that (2.11) holds. Let the polynomial Q,(s) of degree n be defined by

and
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Ap+ M+ 8)Qy = Ay Qpy1 + UnQp_) (n>0).
Then the system
(2.12) Ap+ pp+D)uy = Aqupyy + B, g (0<n<N, u_;=0)
is equivalent to the system

uy(®) = QuD)up® (O < n< N).

Further, if
(2.13) Ap+ tpn+D)vy = An_1Vn_1+ Un+lVnel (0<n<N, v,;=0),
then
1°°" Hn
(2.14) u (t) = m v, (t) (n>0, uy =vy),

satisfies (2.12). Hence, the system (2.13) is equivalent to the system

V() = 7, Q. (D) vy(t) (0<n<N),

where

A‘O e An—l

i = —
n “1 ...un ’

mo=1;

(here, and throughout the paper, we adopt the standard convention that an empty
product shall have the value 1; thus, if a; = bj;y--b for j <k, then a, = 1).

In particular, (I),,, for n=0, 1, -, N - 1 and m fixed is equivalent to

Similarly, (I),,,,, for m =0, 1, -=-, M - 1 and n fixed is equivalent to
(2.16) Pron ) = QD) Pog® (O <m< M.

Thus, the combination of (I) and (II),,,, for all m and n is equivalent to

mn
(2.17) Prn®) = T Qm(D) Qu(D) poo®)  (m, n> 0).
This in turn implies the well-known symmetry relation

1 1
If one adds to (2.17) the condition (2.1), then all derivatives of pgg(t) at t = 0 are
prescribed (in a noncontradictory manner, for ¢y, (t) will do). Actually, if (2.17) is

given, it would suffice to require (2.1) only for n = 0, say.

One also concludes that the uniqueness problem for (2.1), (I),,,,,, and (II) . com-

bined can be formulated as follows. Let uoo(t) be an infinitely differentiable
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function on 0 < t < T, having at t = 0 all its derivatives equal to zero. Suppose
further that

umn(t) = T, Qm(D) Qn(D) uoo(t)
satisfies certain conditions (say 2, |u mn| < 2 for each m). Determine whether this

implies ugp(t) =0 (0 < t < T). If not, find all solutions ugg(t). In case one only al-
lows functions on 0 < t <« having a representation

Pool) = § e u(@) (0L t<w),

with v as a finite and regular Borel measure, one is led to the problems considered
by Karlin and McGregor [7].

We mentioned that (2.17) implies (I),,, and (II),, for all m and n. Conversely,
(2.17) is implied by each of the following, (compare (2.15) and (2.16)).

(i) (DD, for all m, n and (II),,o for all m.
(ii) (I1),,, for all m, n and (I)p, for all n.
(iii) \ (D), for m>n + 2 and for m = 0,
(I1) n for m <n - 1 and for n=0.
This shows that the simultaneous conditions (I) nn and (II) ;i (all m, n) are highly

redundant. Given these conditions, each of (2.1) to (2.4) is also quite redundant. For
(2.2) and (2.3) this can be seen from the following result.

Let n> 1 be fixed, and assume only (II)p,, for 0 <m <n -1 and ppyn(0) =0
for 0 < m < n - 1. Then the condition pun(t) >0 (0<t L T) implies that
Pran(t) > 0, (0 <t < T), for all 0 <m<n. Further, |pnn(t)| <1, (0<tLT) im-
plies that |pmn(t)| <1(0<t<T forall 0< m< n.

We shall omit the proof, since it would use formula (3.31) (with q = 0, L, = Q).

3. AUXILIARY RESULTS

In the next few sections, T and Bh, yn (0 =0, 1, 2, --*) denote fixed real numbers
such that T > 0 and

(3.1) Ba>0, vo>0 (u=0,1,2, ).
Consider the infinite system of differential equations
(3.2) (I+B,+¥YaDu, = u, .y +B8,u, n=0,1, --).
Equation (3.2) with n'= 0 is to be interpreted as

(1+ By +vgDug =u;.

A system {u,(t)} (n=0, 1, ---) of real- or complex-valued functions defined for
0 < t< T is called a solution of (3.2) in (0, T) if (i) each ux(t) is continuous for
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0 < t< T and differentiable for 0 < t < T, and (ii) equations (3.2) hold for 0 <t < T.
Then, in fact, each uy(t) is infinitely differentiable for 0 <t < T, and (3.2) also
holds at t = 0 and at t=T.

We want to study the uniqueness and existence of solutions {uy(t)} of (3.2) in
(0, T) with initial values

(3.3) u,(0) = 8yj,

(j > 0 a fixed integer), and such that one or more further conditions (such as uni-
form boundedness) are satisfied.

Let L (s) (n=0, 1, 2, --*) denote the polynomial of degree n defined by L =1
and

(3.4) (1+B,+vns)Ly, = Ly +BpLiy_1 n=0,1, --).

For n = 0, (3.4) is to be interpreted as (1 + Bg + YoS)Lg = Lj; in view of this, it is
convenient to define L_; = 0. Observe that (3.2) is equivalent to

(3.5) LaD)up(t) =un(t) (@=0,1, ).
Let us first study the polynomials L,(s). By (3.4),
syjLj= (Lj+1 - Ly - B5(Lj- L)) (G3=0,1, -, k).

Multiplying by Bj+1-+-Bx (=1 if j = k) and adding, one obtains

k
(3.6) Lit1 - Ly = BoBr-+Br+ 8 2 (Bje1-+-Br) VL.
j=0
This in turn implies
n-1 k
(3.7) Ly(s) =1+ 27 [ BBy +s 2 (ﬁjﬂ---sk)ijj(s)).
k=0 j=0
Let
] n
(3.8) L(s) = 27 Ay, = 20 a,r8°  (Aprp=0 if r>n).
r=0 r=0
Then, by (3.7),
n-1
(3.9) Apo = 1+ 27 Bg-+Br> 1
k=0
and
n-1 k n-1 n-1
(3.10) Anr = 20 (Bir1 BOYiNg o1 = 20 ¥y N,ro1 24 By B
k=0 j=0 j=0 k=j



328 J. H. B. KEMPERMAN

if r > 1. By induction, Apr> 0. Taking only the term with j=n -1 and k = j, we
see by induction that x,,.> 0 for n > r. Hence, the first inner sum is at least
Yk k,r-1 (and is therefore positive) if k > r - 1 thus, for r > 1 fixed, A pr is
Strlctly increasing for n > r, with An-=0 for n<r. In part1cular by (3.8), Ln(s)
is strictly increasing in both n and s (except that Lg(s) = 1), for s real and posi-
tive; (this much is also a direct consequence of (3.7)).

LEMMA 3.1. If the series

\

(3.11) 22y LiBje1 " Br
j:o =

diverges, then

(3.12) lim L,(s) = for each s> 0.

n—00
On the othev hand, if the series (3.11) converges, then the limit

lim L,(s) = Ly(s)
n—oo

exists for each complex number s, in fact uniformly in each bounded set.

It follows from (3.18) below that (3.12) in turn implies that {L(s)} is unbounded
for each s =0 + iT with 0> 0. A certain special case of Lemma 3.1 was already
used by Karlin and McGregor [7, p. 504]. Their proof does carry over, but in any
case the following demonstration seems simpler.

Proof. Let M denote the value of (3.11). If M = «, then (3.10) with r = 1 and
Aj0 = 1 implies that A,,; — < as n—; but Ly(s) > r,;s for s> 0.

Conversely, suppose that M <. Let € = ¥ Z;;J- Bjﬂ ***By; then E;°=0 €; = M.
By (3.10),

Anr < 27 €3N, ro1 if r> 1.

i<n
Hence, A, ,. is not larger than A, times the sum of 831 i, €5, over the sets of
nonnegative integers (j;, -+, j.) satisfying j; < j, < --- < j,.<n. Consequently,

r
A < Ao Z<) sj) /rl < A M/rl.
J n

Finally, by (3.9), with j = 0 in (3.11)),
A.no S 1+ (Bo/’}/o)M.

In view of (3.8), this yields the second assertion. As a by-product we find the in-
equality

|Loo(®) | < [1+ Bg/vg)MleMlsl,
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LEMMA 3.2. Let n > 1 be a fixed integerv. Lel m denote the largest inleger
with 0 <m<n-1 and Bm = 0, and let m = 0 if no such integer exists. Then the
polynomials L, _;(s) and L,(s) have L, (s) as a common divisor of maximal de-
gree. Let

(3.13) L, _i(s) = L_(s)A% _;(s) and L (s) = L_(s)A_(s).

Then the n - m zevos of A (s) are distinct negative veal numbers. The same is
true for the n - m - 1 zevos of A% _i(s). Finally, if m < n - 1, then the zevos of
A, (s) and A% _q(s) separate each other.

Proof. By (3.4), if 8,_1=0 or n = 1, the assertion holds trivially with
m=n-1,AY _;=1,and Ayj=1+8,_1+7n_1S

Let n > 1 be fixed and suppose that the assertions above hold. In proving the
assertions for n replaced by n + 1, we may assume that g, > 0. Let

(3.14) Api1(s) = -BpA¥_1(s) + (1 + By + vy 8) Ap(s)

and A%(s) = Apy(s); then it follows from (3.4) that (3.13) holds with n replaced by

n+ 1. If we apply (3.14) with s as a zero of Ay(s), our induction assumption, to-
gether with A;“I_I(O) > 0 and A, ,,(0) > 0, easily implies that the n+ 1 - m zeros of
A ;1(s) are distinct negative real numbers separated by the n - m zeros of

A (8) = AX(s).

LEMMA 3.3. Let m, n be integers (m < n). Then there exists a (unique) in-
finitely diffeventiable bounded function k. ,(t) on t > 0 such that

(3.15) ko) >0 if t>0, lim k.(t) =0,
t—— o0
and
(3.16) Soo Stk (H)dt = Lm(® if %s> 0
: o & Kumn Lnls) 2 0.

It follows that

Soo AmO
k. (H)dt = =20 < 1
o mn Ano —

and for ¢ andy real (o > 0),

L (o + iy) L (o)
L, (o + iy) < L (o) <1 (m <mn);

(3.17)
in particulay (with m = 0),

(3.18) |L(o+iy)] > Ljo) > 1.

Movre precisely, let
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Ln-—l(S)

(3.19) An(S) = _-I::—l-(?)—

o0
= SO e Std (t)dt (> 1).
Then |Ay(o + iy)| is strictly decreasing in |y| (0> 0). Further,
[>e]
a0 > o, SO dt)dt = A0) < 1.

Finally, for 0 < m <n,
(3.20) Konn(t) = dpp1(t) * do(t) * --+ % d (),

wheve a star denotes convolution.

Proof. In view of the relation
Lo(8)/Ly(s) = A 1(8) A 4a(8) A (s)  (0<m<n),

it suffices to prove that d,(t) > 0, together with the fact that |A,(o + iy)| is de-
creasing in Iyl

Let n > 1 be fixed, and let m < n satisfy the condition in Lemma 3.2. By
Lemma 3.2,

p-1
PRI

(3.21) Dn(8) = —form— = e
II s+ &)

1

Here, ¢ is a positive constant, and p=n - m > 1. Further, -§; > =+ > - '§P and
-7m1 > =+ > -np-1 denote the distinct real and negative zeros of A, (s) and A’;_l(s),
respectively. Moreover,

(3.22) 0<E, <n,<§,,; (W=1,-,p-1).

By (3.19) and (3.21),

P
-t
aM = Te e v,
v=1

where

cop = AL _1(E)/ALE) > 0,

ny
by (3.22) and A,(0) > 0; this proves that d,(t) > 0.

Moreover, one easily sees from (3.21) that
p-1

—aa;lOgIAn(U+1y)| = - IS"‘ gpl_z_ E {IS—}- gl/l‘z_ IS+77V1—Z},
v=1

AR
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where s = o + iy. By (3.22), the latter right-hand side is strictly negative when
o > 0, and this proves that |An(0 + iy)l is strictly decreasing in [y .

The following lemma is essentially known. Lemma 3.5 is an easy consequence
of it.

LEMMA 3.4. Let u be a finite vegular Borel measure carvied by [0, T]
(T > 0). Further, let p> 0 be a fixed integer, and let k(t) be a function on
0 < t< T having theve a continuous p-th devivative. Suppose that

kKM ©)=0 for 0<v<p
if no point t, € [0, T] carries a nonzevo u-mass; otherwise, suppose that
kM@ =0 for 0<v<p.

Then the function

e(t) = S Kt - Hp@r) (0<t<T)
0<T <t ==

(defined by a Lebesgue- Stieltjes integval) has a continuous p-th devivative. More-
over, for 0 <t< T,

eW® = §  x0e-np@n  @=0,-,0);
o<7<t

thus,
g0 =0 for 0<v<p.
Proof. It suffices to consider the case p = 1. We can write

(g(t, + h) - g(ty))/h=d, + J,,

where

fo )
J; = So k'(tg- 7+ 6h) p(d1) — 5(‘) k'(ty - 7) u(d7)

by the bounded convergence theorem. Further,

1 tyth
J, = E‘S‘to k(tg + h - 7) p(d7) — 0

if either k(t) = O(t) (that is, k(0) = 0) and t, is a point of continuity for pu, or
k(t) = o(t) (that is k(0) = 0).

LEMMA 3.5. Let k(t) be a function on 0 <t< T having theve a continuous p-th
derivative and satisfying

kKM@ =0 for 0<v<p.
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Let further f(t) be a function on 0 <t < T having theve a continuous q-th deriva-
tive and satisfying

) =0 for 0<v<q.

Then
t
g(t) = S kit - n)f(r)dr (0<t< T)
o St

has a continuous (p + q)-th derivative and satisfies
g(V)(O)=O for 0<v<p+q+1.

Move precisely
t
(3.23) g0y < S kMt - )£y ar
0
if A< p and v < q. Hence, for v<q,
t
(3.24) g(PTLH) 4y _ SO kP - ) i) () ar 4 kP)0) £ Wy |

provided that, moreover, k(t) has a bounded (p + 1)-th derivative.

Definition. If f(t) is a continuous function on 0 < t < T, then by Lyx(D) “1f we
denote the unique solution g(t) of the differential equation L,(D)g(t) = f(t) (0 <t < T)
for which g(¥)(0) =0 for 0 < v < n.

We assert that
‘ 1 t
(3.25) L, 't = So ko (t - 7) E(r)dr = ko * £.
After all, by (3.16) and L, = 1,

(3.26) S: e Stk, (dt = L_(s)"' (3> 0).

Here, L,(s) is a polynomial of degree n with leading coefficient \,, > 0; thus,
-1
(3.27) kW =0 for 0<v<n-2, k& o)=1/,,.

Integration by parts in (3.26) gives

sV

Ln(s) - Gm/ Ann

(3.28) 5:0 e-stkl(pat =
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if v=0, 1, -*-, n. Hence, L (D)kgpn(t) has its Laplace transform equal to zero; thus,
L (D) kgu(t) = 0.

It now follows from (3.23), (3.24) and (3.27) (with k =kgp, P=n-1, v =q = 0) that
the right-hand side of (3.25) has all the properties required of g = L, (D) 11.

Observe that, by (3.15), (3.16) and (3.28),
(3.29) k n(t) =L Dkgy(t) > 0 (0<m<n, all t> 0).
Further, for m < n < n + j we have, by (3.20), Km,n+j = Kn,n+j * Kmn, hence, by

(3.16),

(3.30) ‘S‘Oakm,n+j(t) e Stat < [Ln(s)/Ln+j(s)] ‘S:' kmn(t) e Stat < 5‘0 Kn(t) e “Stat

whenever m<n<n+3j, s> 0,and a> 0.

Finally, if £(t) has for 0 < t < T a continuous g-th derivative and £(v) (0) = 0 for
0 < v < q, then, by (3.23), (3.25), (3.27) and (3.29),

-1
(3.31) Ly(D) Ly, (D) Ly(D) T'f = kppp(t) * {Lo(D) £(t) }
whenever 0 < m <n and 0 <t < T; in particular,

Lg(D) Ly(D) "' = Ly(D) 'Ly (D)t.

4. UNIQUENESS THEOREMS

We are now in a position to treat the uniqueness problem stated at the beginning
of Section 3.

Let T > 0 be fixed, and let {u,(t)} be a solution of (3.2) in (0, T) satisfying
(4.1) u,(0) =0 n=0,1, ).
Then, by (3.5), uy,(t) is an infinitely differentiable function in 0 <tLT,
un(t) = LyD)uplt) m>0, 0<t<T),

and finally all derivatives of u,(t) are equal to 0 at t = 0.

In other words, by (3.25), {u,(t)} is a sequence of continuous functions in
0< t< T, such that

4.2) ug(t) = kg (D) * u,(t) (0<t<T)

for all n> 1. Letting

t
(4.3) @ () = L(s) SO Koo (r) e 5T dr
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(s> 0 fixed), we see that this implies
t

(49 an®) x [wn®e ™ = Ly(s) | woMe™Tar > 1, 0<t< ™.
0

But, by (3.15) and (3.16),
(4.5) 0<a,t)<1 (@>1,t>0),

and consequently
t t
‘S‘ lun(T)]e—STdT > Ln(s)l 5 uo(7) e ~37dr|.
0 - 0

In particular, uy(t) = 0 (0 < t< T) if at t = T the left-hand side tends to 0. More-
over, from Lemma 3.1 we obtain the following result.

THEOREM 4.1. Let {uny(t)} be a nontrivial solution of (3.2) in (0, T), satisfy-
ing (4.1). Suppose moreover that, for infinitely many positive integers n, either

T
(4.8) SO luplat< 1

or
lu]<1 (O<t<T).

Then the sevies (3.11) converges.

Refining the proof of Theorem 4.1, one obtains the following generalization.
However, we shall not make any use of it.

THEOREM 4.2. Let {e,} (n=1, 2, ---) be a fixed sequence of complex con-
stants. Suppose that there exists a nontrivial complex-valued solution of (3.2) in
(0, T), satisfying (4.1) and

T N
(4.7) S | 2 e u (®]dt < 1
, 0

n=1 .

for all N> 1. Then, for each real number s> 0,

N
(4.8) sup | 27 e, L(s)| < .
N n=1

That Theorem 4.1 is implied by Theorem 4.2 can be seen as follows. Let s> 0

be fixed, and suppose that (3.11) diverges; then, by Lemma 3.1, L_(s) — = as
n — «_ Letting

T
L (s)e, = SO Ju, @) |dt,
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we see from (4.6) that lim inf e, = 0. Let 1 <nj, <ny;; <--- be such that ¢; <1

and e < e_ /2, and define e, b
Npy1 = T y y

e L (s)e. =e -e ,
ny, Ny ny, ny

en=0if n#ny, (v =1, 2, --*). Then (4.7) holds for all N > 1, but (4.8) does not
hold—a contradiction.

Proof of Theovem 4.2. Let
t
(“9) va® = § e Tusmar.
0
Then, by (4.4),
t £!
an(®) * vy () = Ly(s) S at' S uO(T)e'STdT.
0 0
Hence, letting
N t
(4.10 en(® = 2Zre,Ly(s) S (t - Dug(r)e > dr,
n=1 0

we find that

N N-1
(4.11) gN(t) = 2, a *g Vo= 2 (an—an+l) * W+ Ok W,
n=1 n=1
where
N
w ()= 2 e v (.
m=1

By (4.7) and (4.9), fwn(t) ] <1 (0<t< T). Moreover, by the first inequality (3.30)
(with m =0 and j = 1) and (4.3),

a (t)-a, @t >0 n>1,t>0).

Hence, together with (4.5), (4.11) implies that |gN(t) [ <t+t=2t forall N> 1,
0 < t< T. By the definition (4.10) of gn(t), this implies (4.8). For otherwise
u,(t) = 0, hence un(t) = Ly(D)ug(t) =0 (0Kt T).

We shall now investigate the case where (3.11) converges. Here (Lemma 3.1),
the limit

(4.12) L,(s) = lim L_(s)

n—oco

exists for each complex s, uniformly on bounded sets. By (3.17),
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(4.13) |Lo(9)|"! < [Ln®) ]! < [Lm(e)]| < 1

if 0<m<n, %s> 0 (if s # 0, then the inequality signs hold in (4.13)). Recall that
L,(s) is a polynomial of degree n (n=0, 1, 2, ---).

Now, consider the function kgn(t) defined by (3.26). Putting
(4.14) ko) =0  if t <0,

we see from (3.27) that kon(t) admits a continuous derivative of order n - 2
(-0 < t < ). In fact, by (3.28),

o = 5 (7 e
27 —joo
for v=0,1, «*-,; n - 2, —~e0o< t< e, It follows, since (4.12) holds uniformly in
bounded sets, and by (4.13), that for each fixed v > 0,

(4.15) im k2@ = K0

n—s oo
uniformly in t (- <t < «), where
(4.16) kW) = L - s’L_(s) ! estds

) Qe0 2miJ_; o0 )
Consequently, kgg (t) is precisely the v-th derivative of the function kg (t) = (0)(t)
Observe that, by (4.14) and (4.15),

Kgo() =0 if t< 0,

hence,
(4.17) k((,”)(o) =0 (v=0,1,2, ).

Finally, letting

(4.18) K o) = L (D) kg, (D),

we deduce from (3.15), (3.29) and (4.15) the relations

(4.19) Kpeo® >0,  lim ky,(t) =0,
- t —co

while, by (4.16),

o0

(4.20) SD K () e Stdt = L, (s) Lo (s)™!

if 9s>0 (m=0, 1, -**). In particular, by (3.8),
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(4.21) 0 < SO k__ (dt = xp/A 0 < 1,

where A., is given by (3.9) and

[c e}

Neoo = 1+ 23 By By *** By -
k=0

We conclude from (4.17), (4.18), (4.19) and (4.21) that {uy,(t) = koo (D)} defines a
nontrivial solution of (3.2) in (0, «), satisfying (4.1), and satisfying further (4.6) for
all n> 0 and all T> 0. More precise results are contained in Theorems 4.4 and
4.5.

LEMMA 4.3. Suppose that (3.11) converges. Let T > 0 be fixed, and let g(t)
be any integrable function on 0 < t < T such that

t
(4.22) { Koot - Deg(nar =0 for 0<ELT.
0

Then,
g(t) =0 for almostall 0 <t T.
Proof. By Lemma 3.4, (4.17), and (4.18), it follows from (4.22) that

t
(4.23) kK ot-7g(m)dr=0 for 0<t<T, n>0.
0 ‘ - = -

Now, consider the nonnegative measure

(4.24) Lo (A) = S k(1) dt
A

of total variation at most 1 on (0, «). By (4.20) and (4.12), its Fourier transform
L (iy) /Lo (iy) tends to 1 as n — «. Thus, [n converges weakly to the measure of
mass 1 at 0; in particular,

t
(4.25) lim 5 knoo(t) dt = 1 ift>0.
n— oo 0
Consider further the bounded and continuous function

g(T)dr if 0t T,

0 if t<o0.
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By (4.14), (4.23) implies
T
SG(t—T),U.n(dT)=O for 0<t<T, n>0.
0

It follows from the weak convergence mentioned above that G(t) = 0 for 0 < t < T;
hence, g(t) = 0 for almost all 0 < t< T.

For later use, we have, (assuming that (3.11) converges),
(4.26) k>0 forall t>0, n> 0.
In particular, by (4.20),

L(s) = O(eEIS I) for each € > 0.

Proof. By (4.20) and (3.16),

t
(4.27) Knwo® = |t - 7)o (1) dr
0
for n < N. Now let n and tyg > 0 be fixed, and suppose that k,(tg) = 0. By (3.29),
(4.19), (4.27) and the continuity of Ko (1),
Kkno(t) =0 for 0 <t <ty and all N> n.

But this clearly contradicts (4.25).

THEOREM 4.4. (i) Suppose theve exists a nontrivial solution {u,(t)} iz (0, T)
of (3.2), satisfying (4.1) and the condition
s

T
(4.28) lim inf [, () [dt <oo.
0

n—oo

Then the series (3.11) converges.

Movyeover, theve exists a finite and vegular Borel measure | on [0, T] such
that, for n> 0 and 0 <t< T,

t
(4.29) - uy(t) = SO k, (t - 7) p(dr).

(ii) Conversely, suppose that the sevies (3.11) converges, and let (. be any
regular Borel measure on [0, ). Then (4.29) defines a solution of (3.2) in (0, =)
that satisfies (4.1) and the inequality

T T
§loa®lat < §  u@n]
0 0

Jor all n > 0 and all T > 0.
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THEOREM 4.5. (i) Suppose there exists a nontrivial solution of (3.2) in (0, T),
satisfying (4.1) and the inequality

(4.30) [lu®]<1  (O<t<LT)

for infinitely many positive integers n. Then the series (3.11) converges.

Moveover, theve exists a unique measurable function i(t) on 0 < t < T such that

(4.31) £ | <1  for almostall t in 0 <t T,
and

t
(4.32) u,(t) = S Kpeo (t - T) £(7) 4T .

0

In fact, £(t) is equal to the weak limit in L,[0, T] of {u,()}, in the sense that for
any bounded and measurable function g(t) on 0 Lt T,

T T
(4.33) " lim SO g u,(t)dt = SO g(t) £(t) dt.

In particular, if uy(t) > 0 (0 < t < T) for infinitely many n, then £(t) > 0 for almost
all 0< t< T.

(ii) Conversely, suppose that the series (3.11) converges, and let £(t) be any
measurable function on 0 < t < T satisfying (4.31). Then (4.32) defines a solution
of (3.2) in (0, ) that satisfies (4.1) awnd the inequality

lun®] <1 foralln>0,t>0.

Note that (t) > 0 (t > 0) implies uny(t) >0 (n> 0, t> 0).

Remark. Assuming that (3.11) converges, one can choose f(t) on 0 <t < ¢, so
that (4.32) defines a system {un(t)} satisfying (4.1), satisfying (3.2) for 0 < t < t,,
and so that {un(t)} is uniformly bounded in 0 < t < T for each 0 < T < t,, but not
uniformly bounded in 0 < t < t,. Indeed, it is sufficient to let f(t) be bounded in each
interval 0 < t< T < t, and to tend to » sufficiently fast as t — t,.

Proof of Theovems 4.4 and 4.5. Recall that {un(t)} is a solution of (3.2) in
(0, T), satisfying (4.1), if and only if

(i) uy(t) is infinitely differentiable in 0 <t < T and has at t = 0 all its deriva-
tives equal to O,

(ii) for n=0,1, «-- and 0 <t < T,
(4.34) u,(t) = L(D)ug(t).

Taking here T = «, we easily obtain the assertions (ii) of both theorems from
Lemma 3.4 and the properties (4.17), (4.18), (4.19), and (4.21) of the k___ (t).

Now, let u,(t) be a nontrivial solution of (3.2) in (0, T) (T < «), satisfying (4.1)
and either (4.28) or (4.30) for infinitely many n. By Theorem 4.1, the series (3.11)
converges. Thus, the functions k, (t) are well-defined and, in fact, positive for
t> 0 (compare (4.26)). By (4.2), (4.14) and (4.34),
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T - T
(4.35) u,(t) = SO Kon(t - Dup(Mdr = | konlt - 7) palan)
0

(n>1, 0<t< T), where p,, denotes the finite and regular Borel measure on [0, T]
defined by

pn(8) = fAunm dt.

There exists a sequence of integers 1 < n, < ny4) < --+ such that the K, are of
v
uniformly bounded vaviation, so that { L, } contains a weakly convergent subse-
v

quence 1M in the sense that
{w,, } inth th
v
tim {g®n, @) = § g p@
n-—oo 14

for each continuous function g(t) on [0, T], u denoting the corresponding weak
limit, a finite and regular Borel measure on [0, T]. But, for n — «, kg, (t) con-
verges uniformly to kg ,; hence, (4.35) implies that

T t .
400 = § o €= I an) = § gt - 7 utan.

By (4.17), (4.18), (4.34),and Lemma 3.4, this in turn implies (4.29).

In the case of Theorem 4.5, much more can be said. For here, for each se-
quence 1 <n, <n, ;< with

lu, ®]|<1  for 0KtL T,
UARS

the sequence of elements {u, } in L,(0, T) is weakly sequentially compact and has
v

a subsequence that is weakly convergent to a function f(t) in L,(0, T) which thus
necessarily satisfies the inequality |f(t) | < 1. In this case, (4.29) reduces to (4.32).
It follows that Iun(t)l <1 forall n> 0 and all 0 <t< T. Therefore, each sequence
{uny} contains a subsequence converging weakly to a function f(t) such that the

representation (4.32) holds. But from Lemma 4.3, the function f(t) in this represen-
tation is necessarily unique. This proves that u,(t) converges weakly to f(t) in the
sense of L,(0, T).

5. EXISTENCE

Let j > 0 be a fixed integer. We now turn to the existence of a real solution
{u,(t)} of (3.2) in (0, ) that satisfies the initial conditions (3.3) and for which
0 < uy(t) < 1. '

Let N > j be a fixed integer. By Lemma 3.2, the polynomial Ly(s) has all its
roots real and negative. Thus, the general solution of Ly(D)u(t) = O is of the form
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P k,
ut) = 27 27 cyktk'le-th (c, constant),
v=1 k=1

where &3, -+, £, are the different (positive and real roots) of the equation
Ln(-s) = 0, and where k;, is the multiplicity of §,,, =k, = N.

Let nig j denote the unique solution of

(5.1) Ln(D) nfojt) = 0,

such that

(5.2) L, (D) nfojt) = pdpnjt)  (say)
satisfies

(5.3) NEj(0) = 0,5 (@=0,1, -, N-1).

For brevity, put Ninj (t) = u, (). By (3.4) and (5.2),
1+ By + Y D)uy () = upyy () + Bru, (1)
(the last term being zero if n = 0). Let
o

S e *fu_(Hdt = U, (s) (%s > 0).
0

Then, using u,(0) = 6,5 (n=0, 1, -*+, N - 1), we obtain for n=0, 1, «=-, N - 1, the
relation

(5.4) (1 +Bn+Yn8)Up - 50,5 = Upyy + B Up g

(for n = 0 the last term is equal to zero). Now consider the polynomial an(s)
(n=0, 1, --*) defined by

Bhi(s) =0 if n<j,
(1+ B+ v;9)Bjj+ 75 = Bjpy 5 + B Bjy
(thus Bj.'_l’j(s) =% ), together with
(5.5) (1+ Bn+ ¥Yns)Byj = Bn+1,j+ BnBn-1,; i n>j.

Bpj(s) is a polynomial of degree n - j - 1, for n> j. Using (3.4) and L,=1, we
deduce from (5.4) that

Un = UgLp - By if n< N.

If we invoke condition (5.1), that is, Un(s) = 0, this yields, for N> max (n, j),

o st BN(S) Bn'(s)
(5.6) ‘S;) e " Nk, at = Ln(s){ LNJ(S) - LnJ(S)} )
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Letting n > j, multiplying (5.5) by L, and subtracting (3.4) multiplied by Bnj, we
obtain the relation

Bn+laj Ln - BnJ Ln+1 = Bn (BnJ Ln_]_ - Bn—l,j Ln),

But Bjj =0, BjH,J- =75 thus, for n > j,

B B L;

ntl,j Baj o oy, L
Torr ~ L - Bl BT T

Hence, from B,; =0 for n<j we see that

B,
i(s) 1
= L: 25 L] eee . .
Ln ZSS J(S) icken (BJ-I—I Bk) ')’J Lk(S) Lk+1(S)
Consequently, by (5.6),
°° " By B
(5.7) 5 &St \IpDdt = LL, 2D HL Tk
Y k=max(n,j) k™k+1

for N> max(n, j); here L., = L, (s).

The relation (5.7) supplies an explicit formula for the solution of (5.1), (5.3).
From (3.16) we see, for k > max(n, j), that L, L;/Lj Li+) is the Laplace transform
of a nonnegative function [namely, k. (t) * Kj k1 t)]. It follows that

(5.8) 0 < ninj®) < nsafnj®)

for N> max(n, j) and for each t> 0.

Next, let us consider (5.7) when N is large. Let j and o > 0 be fixed and such
that

Cjo) =C = oLj(o) + BO"'Bj/?’j > 0.

Then either 0> 0 or 0 =0 and By > 0, -+, 8; > 0. By (3.7),

k-1
L) > 1+ 27 (Bo By + 0(Bjs1 ** By) ¥ L5(0))
v=j
k-1
=1+C 2 Bj+1 =B Y; = Px,
v=j

say, for k> j. Hence, (8j+1°**BRY ;= (Pk+1 - p1/C; thus,

— Bir1--BR) ¥j 1
kE:j L@ 1@ = T@ ©

Next, let n and j be fixed, let ¢ be as above, and let p = 1 + max(n, j). From (5.7)
we obtain, for p < M <N,



THE BIRTH-AND-DEATH PROCESS 343
1 Orico st
where

Ly (s) Ly(s) "y [Lp(s)]?
Gy () = W k=EM Bje1 i) 7; Ly (8) Ly 1 (8) "

By (3.17), the absolute value of the k-th term in the latter sum at x = o + iy (y real)
is at most equal to its value at s = 0. Consequently, for p< M < N,

L _(s)L.(s)

IGMN(G + iy)l S [LP(S)]Z

SM’

where

°° (B'+l ...Bk)—y.
— 2 J J
SM = [Lp (0')] k?M Lk(o-) Lk+1 (0.)

can be made arbitrarily small by choosing M sufficiently large. Hence, by (5.9), the
limit

(5.10) lim _f (t) = f (t) (say)
N nj nj

N-—co
exists uniformly in each finite intevval, and even uniformly for all t > 0 if ¢ can
be chosen as zero, that is, if B > 0, -+, 8; > 0. In view of this uniformity, we see
from (5.2) that £y J-(t) is infinitely differentiable, while
Further, by (5.3),
and by (5.8),
(5.11) fnj(t) > 0.

Finally, by (5.7),

© g 2 (Bir1 " B Y
5.12 F_.(s) = tf (Wdt = L L. > jitl PRV
(5.12) nil® = § e ey L M o o

(where Iy = Ly(s)), for %s> 0, (for RNs> 0 if By > 0, ---, By > 0).

We further assert that

(5.13) £ < 1.
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In fact, much more can be said. Let s be real and positive. Then, by (5.12),

B o0 0
% Foots ?OFHJ(S) = L'k Lk+ (B{) By + 8 E (BJ+1 Bk)'}’j Lj)
(5.14)
L
=L, Z) 1 ) =1-—.
k=n Lk Lk+1 LOO

Here we have used (3.6) and the fact that L (s) is increasing in n. We have
L(s) <« or L,(s) =« according to whether (3.11) converges or diverges; (com-
pare Lemma 3.1). Let

(5.15) k(1) =

if (3.11) diverges; otherwise, let k,(t) be defined by (4.20). Dividing (5.14) by s
and using (5.12), we see that

B t t x
(5.16) -)% SO £ o(m)dr + 50 k. (1) dr + jZ=)O £, = 1.

By (5.11) and (4.19), each of the terms on the left-hand side is nonnegative; this im-
plies (5.13).

THEOREM 5.1. Let j> 0 be an integev. Then (5.12) defines a solution
{f,0} (n=0,1,2, ) of (3.2) in (0, =) that satisfies
£,500) = 655, and  0< £4(t) < 1.

In fact, even (5.16) holds.
Movreover, if {u,(t)} is any real solution of (3.2) in (0, T) such that u,(0) = Onj
(n=0, 1, '")’ and
(5.17) un() >0 Sfor 0<t<T,
for infinitely many positive integers N, then
(5.18) u,(t) > f_nj(t) Jorall n>0, 0<t<T.
Proof. Only the last statement remains to be proved. It is closely related to

results of Feller [3], [5, p. 536] and of Ledermann and Reuter [10, p. 254].

Let there be given an infinitely differentiable real function uy(t) on 0 < t< T
such that up(t) = Ly(D)ug(t) satisfies the initial condition un(0) = 65j. Now consider
AN(t) = uo(t) - Nij(t); by (5.2),

(5.19) Ln(D) AN(t) = un(t) - Nfl’l_](t) .
By (5.3), this reduces to zero when t = 0 and 0 < n < N - 1; thus, A(V) (0) = 0 for
v=0,1, -, N-1. Further, by (5.1), Ln(D) An(t) = up(t). Consequently,

An(D) = L) lun®,
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and hence, by (3.31) (with q = 0) and (5.19),

if 0< n< N-1. From k,N(t) > 0, we see that if (5.17) holds for infinitely many N
then u,(t) > anj(t) (0 < t< T) for infinitely many N, and (5.10) thus implies (5.18).

THEOREM 5.2. Let j > 0 be a fixed integer, T > 0 a fixed numbeyr. Then, by
taking hj(t) as any measurvable function on 0 < t < T satisfying

(5.20) 0<hih<1 (O<t<D,
and letting

t
(5.21) uy(® = L300 + SO Ko (£ = 7) hy(7) T

(n>0, 0 <t T), we obtain precisely all the solutions {unj(t)} (n> 0) of (3.2) in
(0, T) such that

(5.22) unj(o) = an (n=0, 1, -+
and
(5.23) 0<u, (<1 forn>0, 0<t<T.

Note that k.. (t) = 0 if (3.11) diverges. If (3.11) converges, theve is a one-to-one
correspondence between such systems {unj} and the functions hj(t) satisfying (5.20);
it is determined by (5.21) and the fact that hj(t) is precisely the weak limit in the

sense of L,(0, T) of the corvesponding sequence \Uy;

Proof. If (3.11) diverges, then by the convention (5.15), the formula (5.21) merely

states that unj(t) = fnj(t). That this is sufficient follows from Theorem 5.1. That it
is also necessary follows from Theorem 4.1 applied to the system

(5.24) an(t) = unj(t) - fn_](t) (0 _<_ t S T) .

Now assume that (3.11) converges. That (5.20) and (5.21) are sufficient is a
consequence of Theorem 5.1, the second assertion of Theorem 4.5, and the inequality

t
fnj(t) + SO k (ndr <1,

the latter following from (5.16).

Conversely, let (3.11) be convergent, and let {upn;(t)} be a solution of (3.2) in
(0, T) that satisfies (5.22) and (5.23). By the condition f,j(t) > 0 and the last asser-
tion in Theorem 5.1, the function v,j(t) defined by (5.24) satisfies the relation
0L vnj(t) <1 forall n>0, 0<t< T. Now apply the first assertion of Theorem
4.5 to the system {an ®}.

THEOREM 5.3. Let hy(t) (j =0, 1, ---) be a sequence of veal and measurable
Sunctions on 0 <t < T (T > 0, fixed), satisfying (5.20), and let u,;(t) be defined by
(5.21) (n, j >0, 0< t< T). Then



346 J. H. B. KEMPERMAN

(5.25) j%)unj(t) S % jotfno(r) ar + S; (h(r) - Dl (t - ) dr
for n> 0, 0< t< T, where
(5.26) h(f) = zi)hj(t) <w (0Kt T).
i-
I
(5.27) % W) <1 (0<t<T)
j=0

fov infinitely many n, then either (i) (3.11) diverges or (ii) (3.11) converges and
h(t) <1  for almost all t o<t T).

In either case, (5.27) holds for all n> 0.
Finally, suppose that (5.27) holds for all n> 0. If

(5.28) E un_](t) =1
j=0

for one paiv of numbers n=n,> 0, t=1t,> 0, then (i) Bp = 0 for some p
(0 < p < ng), (ii) the equation (5.28) holds for all n (n>p) and all t (0 <t < ty),
(even for n>p and t > 0 if (3.11) diverges); also, h(t) = 1 for almost all t
(0 <t <L ty), if (3.11) converges.

Proof of Theorem 5.3. Note that (5.25) is an immediate consequence of (5.16),
(5.21) and (5.26).

Suppose, for the moment, that either (3.11) diverges (thus kj(t) = 0) or (3.11)

converges and 0 < h(t) < 1 for almost all t (0 < t < T). Then (5.25) implies (5.27).
Moreover, by (5.25), at n = n,, t=t, >0 the equality sign in (5.27) can hold only if

tO
(5.29) (BO/yO)SO £, o®dt = 0.

If (3.11) converges, one moreover needs, by (4.26), the relation h(t) = 1 for almost
all t (0 <t<ty). By (5.12) with j = 0, (3.15), and (3.16), it follows from (5.29) that
BoB1 Bk = 0 for all k > n,, in other words, that g, = 0 for some p (0 < p<ny.
The latter in turn implies, by (5.12), that Bgf,o(t) = 0 for all n > p and all t. This
yields the last conclusion of Theorem 5.2.

Finally, consider the case where (3.11) converges and (5.27) holds for infinitely
many n. Put

t
vnj(t) = So k, (t-7) hj('r) dr 0<t<T),
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uy(t) = 27 v (0<t< T
j=0
By (5.20) and (5.26), vu;(t) > 0 and
t
(5.30) un® = |k t-Dhmar  ©<Lt<T.
0

Moreover, by (5.21), the relations fhj (t) > 0, and (5.27), the condition
(5.31) 0<u <1 (0<t<T)

holds for infinitely many n.

We must prove that the nonnegative function h(t) satisfies h(t) < 1 for almost all
0<t<T. Let us first assume that

T
(5.32) | SO h(t) dt < e .

Applying Lemma 3.4 to (5.30) with n = 0 (and using (4.17), (4.18)), we see that (5.30)
defines a solution of (3.2) in (0, T), satisfying (4.1). Using (5.31), we deduce from
assertion (i) of Theorem 4.5 that this solution has a representation (4.32) with

[£(t)| < 1. In particular, by (5.30) with n = 0,

SookOw(t DM - K)dr=0 (O<t<T).
0

Hence, from (5.32) and Lemma 4.3, we see that h(t) - £(t) = 0 for almost all t
(0 < t < T); thus, |h(t)| < 1 for almost all t (0 < t< T).

It remains to prove (5.32). Let h,(t) denote any integrable functions on
0 <t < T satisfying 0 < hy(t) < h(t). From (5.30) and (5.31), we see that

t
Skmo(t—v')hl(*r)d1"< 1 o<t< T,
b = =t
for infinitely many n. Hence, letting

t
S h(Ndr i 0<t<T,
H,(t) = { V0
0 if t<o,

we see that

T
( mE-Du@) <t (0<t< T
0
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for infinitely many n. Here, the measure pun, is defined by (4.24). For n — « it
converges weakly to the measure of mass 1 at 0. But H,(t) is continuous, conse-
quently, H,(t) <t (0 <t < T). Taking the supremum over all possible functions
h,(t), we obtain (5.32).

6. THE SOLUTION {¢n;(t)}

Let us now return to the problems mentioned in Section 2. We are given the
constants

>0, pp>0 (n=0,1, ),

Then a solution in (0, ) of (I, (IDn, and (2.1) to (2.4) is given by

>

Tete Mdt = D () (g o i) e
So $nj( ke rran(o.) Attt A1) (B R R

R,R;

where R,,, = R, (s) denotes the polynomial of degree m defined by R_, =0, R, =1,
and

Rn'1+1 = (Am + oy * S)R‘m - Am—l 'u‘ran—l (m _>_ 0).
In order to avoid some tedious proofs, we shall show this only for the case where
(6.1) Am > 0 for m > 0.

Assume (6.1), and let the polynomial Q,(s) of degree n be defined by Q_, = 0,
Q, =1, and

(6.2) Ap+ Un+8)Qn = AnQn+l + UnQn-1 (nZ 0)
(thus, Ry = A9 """ Ap_1 Qp). If we let

then (3.1) and (3.4) hold, and we can use all the results of the previous sections.
In particular, by (5.12), (see also [6, p. 315]),

o0

(=] jI ves yk Q Q
_st B jt+1 n-j
(6.4) ‘S;) e gyt at = k=m§((n’j) Ajeer Ak QkQk+1

defines an infinitely differentiable function such that

(6.5) $n3(0) = 045,
0<dn <1 (0Kt <),

(6.6) Qn(D) $oj(t) = dpjt) (0 < t< ).

Finally, by (5.16), (see also [6, p. 315]),
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t t ©
(6.7) Ko SO ¢ o (M) dT + So k (T dr+ 22 ¢nj(t) =1,
j=0
where
(o} _ S)
(6.8) S e ko (B) dt = gn((s) (sts > 0)
0 )
if the series
e oo u cee lu'
j=0 k=j "I k

converges (compare (3.11)), and k_. (t) = 0, otherwise. In particular, by (4.26),
k,,t)>0 fort>0

if (6.9) converges.
By (6.2) and (6.6), {¢mjt)} satisfies (I}, for all m, n, that is,

A + B + D)orpp = AmPm+l,nt Em®m-1,n

(6.1, = 0). Further, {¢,;(t)} satisfies (I, for all m, n; that is,

(6.10) (Ap+ Hn + D)bryy = Agy ¢m,n—l + Ent+l Pm,n+l

(qu _1 = 0). This is particularly easy to show if p,, > 0 for all m; for then ¢mn
and ¢nm differ only by a constant factor, and one can use the transformation (2.14).
Otherwise, the result follows on taking the Laplace transform of both members of
'(6.10) and using (6.2), (6.4) and (6.5); note that by (6.6), it suffices to consider the
case m = 0 of (6.10).

As was shown in the proof of Theorem 5.3, the condition

o0
(6.11) 27 $;(0) =
=0
for some fixed n and some fixed t > 0 can only be satisfied if
(i) the series (6.9) diverges,
(ii) g, = 0 for some m (0 < m < n).

Conversely, if this is true, then (6.11) holds for all t > 0 (n fixed). In some sense,
it would have been more reasonable to ask for

" | o
(6.12) o 50 b (M AT + 27 ¢p() = 1,
j=0
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(the first term being equal to the “probability of absorption in the -1 state during
(0, t)”). Clearly by (6.7), (6.12) holds for some fixed n and some fixed t> 0 if and
only if (6.9) diverges.

Finally, from the second part of Theorem 5.1 (with 8,, v, as in (6.3)), we see
that, for j > 0 fixed, the solution {¢n5 ®} (> 0) of u,(0) =5,;and

(6.13) (Ap + tn + D)uy = Myupgy + Bpup g (nz 0, u_; = 0)

has the property that, for each nonnegative solution of (6.13) in (0, T) with
un(O) = an’

(6.14) u,® > ¢,50  @>0, 0<t<T).
For convenience, suppose that
Apn> 0 for n> 0, Hn > 0 for n> 1.
Let {v,} be a nonnegative solution of v,(0) = 6_,, and let
M+ By +D)V, = A 1V, 1+ Bpei Vsl n>0,v ;=0 0<t<T).
Then the system defined by (2.14) satisfies (6.13), hence, by (6.4) and (6.14),

A’O.-. A’l’l-l

(6.15) vy (t) > TR

bpm®) = ¢ m>0, 0Kt T).

7. THE BACKWARD DIFFERENTIAL EQUATIONS

Consider the uniqueness problem for the backward equations (I),,, (n fixed) to-
gether with the initial conditions (2.1). As was mentioned in Section 2, these equa-
tions have a unique solution, namely {¢,,,(t)}, if A, = 0 for infinitely many m.
Otherwise, the problem can be reduced to that of the system (3.2) with g, and y, as
in (2.7). Applying Theorem 4.1, we obtain our next result.

THEOREM 7.1. Suppose that either )\, = 0 for infinitely many m or Ay, > 0
Jor m> p and

e e M cee UL
(7.1) Z) -l- + —!;_].T'}:_k = o,
I A S T

Letn> 0 and T > 0 be fixed. Then {¢pmn(t)} (m > 0) is the only solution
{pn®} >0 in 0Kt T of (2.1) and (II),,, (m =0, 1, ---) such that

mn

T
(7.2) ' inf‘S[‘) lpmn(t) | dt < «,
- ,

On the other hand, if Ay > 0 for m > p and (7.1) does not hold, then there are
many solutions satisfying (7.2). For convenience, in order to avoid certain tedious
complications, let us assume that
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(7.3) Am> 0 for m > 0.
Let Qu(s) again be defined by (6.2), and let

L, =Q,, Bp==dy1,, 7v,=1/2,.

Then (3.1) and (3.4) hold and, thus, the Theorems 5.2 and 5.3 where fnj(t) = ¢nj(t)
(compare Section 6). A consequence is the following.

THEOREM 7.2. Suppose that (1.3) holds and, moreover,

(7.4) z;(i+ > fgf_l_._ffl:) < e

520 \ M k=jr1 MMk

Let k, ., (t) denote the positive function on t> 0 defined by

Let T > 0 be a fixed constant, and let h;(t) (j ='0, 1, --+) be real-valued, measurable
Junctions on 0 < t < T, satisfying the inequalities

(7.5) hi) >0, 2h®<1l (OLtLT.
j=0
Then
t
(7-6) an(t) = ¢n3(t) + S knoo(t - T) hJ(T) dr (n Z O, ] Z 0, 0 S t S T) ’
0

defines a solution {pn;} of (2.1) and (W, (all m, n) in 0 < t < T satisfying the
inequalities

Pp;(t) > 0, jZ=)0 g1 (0L<t<T).

Conversely, if {pmn()} (m, n> 0) is a system of veal functions satisfying these
conditions, then

(i) for n — » (and j fixed), pnj(t) tends weakly (in the sense of L,[0, T]) to a
function hj(t) (0 <t < T);

(ii) these functions satisfy (7.5) for almost all t (0 <t < T);

(iii) the system {pmn} admits the vepresentation ('1.6), for all n, j, and all t
(0 < t< T).

Finally, for n> 0 and t,> 0 fixed,
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[~ o]
Z) pnj(to) =1
j=0

holds if and only if

_Z)Ohj(t) =1 (0<t<ty, IMoky " Hy=0.
J:

8. THE FORWARD DIFFERENTIAL EQUATIONS

The forward equations (I),, (m fixed) together with the initial conditions (2.1)
have a unique solution if g, = 0 for infinitely many n. Otherwise, the corresponding
uniqueness problem can be reduced to one for the system (3.2) with B, v, as in
(2.10), namely, by means of the transformation (2.8). Applying Theorem 4.1, we ob-
tain the following result.

THEOREM 8.1. Suppose that eitherv i, = 0 for infinitely many n ov > 0 for
n > q, and that

(8.1) > (i+ > ﬁJ___ﬁ‘:_l_) -

j=q K Kk=j+1 Hj = Uk

Let m > 0 and T > 0 be fixed, Then {¢,,,(t)} (n> 0) is the only solution
{p O} @>0) in 0<t< T of (2.1),,, and (D, (n=0, 1, ---) such that

T

n
(8.2) infS | 20 pp;t)] dt <o
n Q0 j=0

On the other hand, if p, > 0 for n> g and (8.1) does not hold, there exist many
solutions satisfying (8.2). To show this, it is necessary and sufficient to find a non-
trivial solution {u (t)} (n> 0) in (0, T) of the system ~

Ap+ by + D)un = Ap_1Up.] + B+l Untdl (nz 0, u_1=0)
such that u,(0) = 0 and
T n
infS |27 u.(®)] dt < e
n 0 j=0 J

(to see this, consider p,,n -~ ¢mn = CmUn, Where c,, is a constant). Or, equivalently
(compare (2.8)), if we let k

t n-1
Vn(t) = Mg j(; uo(T) d7 + Eouj(t) (nz 0,0 _<_ tS T),
J:

we must have a nontrivial solution {Vn(t)} (n> 0) in (0, T) of the system
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(8.3) An-1+ Bn+ Dy = Ap_1Vy_ 1+ UnVn+l (n_>_ 0, A_1=0),

such that v,(0) = 0 and
T
inf‘S‘ v, ()] dt < .
n Yo

We may assume that q > 0 is minimal with respect to the condition that p,> 0, for
n> q; thus, if q > 1, then pq_3 = 0. Hence, by (8.3) and the condition v,(0) = 0, we
necessarily obtain the conclusion

v(t) =0 for n<q.

If we let w, =v and

n+q
(8.4) Bn = }‘n+q—l/“n+q’ Yn = 1/!in+q (n=0,1, ),

we thus must have a nontrivial solution in (0, T) of the system

1+B, +¥,DW, = W1+ BnWn_1 (n>0, w,; =0,

such that w,(0) = 0 and
~ T
inf | [w,®]dt <.
n *o

By (8.4), the assumption that (8.1) does not hold is equivalent to the convergence
of (3.11). Thus, Theorem 4.4 applies and yields many (in fact, all) such solutions

{wn}.

More precisely, let L, (n= 0, 1, ---) be defined by (3.4) (8,, vn as in (8.4)) and
let

L, _4(8) if n> q,
(8.5) gl = { 4 -
0 if n<q;

in particular, Hla) = 1 (the upper q is an ordinary index; it does not refer to differ-
entiation). We note three consequences of the results of Sections 3 and 4: First, we

observe that, by (3.4),

ST (CUNIP YRS :{C TS - 4 B

n-1 n+l

In particular, for n > q, ng) is a polynomial of degree n - q. By Lemma 3.2, all

its zeros are real and negative. Further, by (3.6) and the condition Bq-1= 0, we see
that

n-1
(8.6) (LS { CURNIF SR S M. S Y

nq qu uJ see un_l J

if n> q. Second,
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1) = 1im HD(s)
n —00

exists uniformly on each bounded set (compare Lemma 3.1). Further (see (4.20)),
the equation

(8.7) B D (s)/8Y(s) = Soohﬁgzo(t)e'stdt (s> 0)
0

defines a nonnegative, infinitely differentiable function h§g20 (t) (equal to 0 if m < q)
all of whose derivatives vanish at t = 0. Moreover, for m > q (see also (4.26)),

(8.8) n® >0 ift>o0, Soohf;}zo(t)dt <1.
0

Also (compare (4.18),
n® ) = H{9D) hgg ).

Finally, from Theorems 4.4 and 4.5 we obtain the next proposition.

THEOREM 8.2. Suppose that p, > 0 for n> q, with q > 0 minimal, and that
Sfuvther

z; 1 z; EL'_‘&;!)QO,

j=q i k= j+i I

Let m > 0 and T > 0 be fixed. Then the most general solution {p (1)} (n> 0)
in 0<t< T of (2.1),,, and (1), (n> 0), that satisfies (8.2) is of the form

(q) (a)
P -6 (1) = S B9 -1 -0 - DluEn @>0,0<t< ™,
where . is an arbitvary finite vegular Borel measure on [0, T].
Moreover, if condition (8.2) is replaced by the stronger condition
in

(8.9) inf sup |2 pmj(t)
n 0<t< Tlj=0

then the most general solution is of the form
(8.10) p__ (1) - o_ (1) = S(h(‘” - @)t - Nar (>0, 0<t< T,

wheve f(t) denotes a bounded, measuvable function on 0 < t < T. In fact, if {pmn}
is a system on 0 < t < T satisfying (2.1), (Dmn (0> 0), and (8.9), then the
corresponding function £(t) is precisely equal to the weak limit, in the sense of
L,(0, T), of the sequence { Vn} defined by the equation
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n-1

t
(8.11) o) = T By + g | Apo(n)dr,
j=0 0

where

For convenience, suppose that
A,> 0 for n>0, KLp>0 for n> 1.

Let us apply the above theorem with
t
. f(t) = S g(r)dr, where
0

(8.12) 0<gt) < bgdpe® + Ky, (B

We assert that the resulting solution {pm n(t)} (n>0) of (2.1) and (I),,,, (n> 0),
(m fixed), also satisfies

o0

(8.13) Pran(®) >0, 27 p () <1,

n=0

The first inequality follows from the fact that the right-hand side of (8.10) can be
written as the convolution of g(t) and the function

St(h (@ - h(r?ol(r)) ar,

o n+l,

which is nonnegative by (8.6), and (8.8). Further, by (8.10) and (6.7),

N-1 t t
1- 25 Prn(® > 1y i ¢ mol(m) dr + S kmoo('r) dr
n=0 0

_ Sotg(t - Mdr SOT(hf\?;(x) - () ax.

Here, by (8.8), the inner integral is not greater than 1, hence, by (8.12), we obtain
the second inequality (8.13).

The resulting solutions {p,,,} can be chosen to be distinct from {¢,,,} if and
only if (8.1) does not hold and, moreover, the right-hand side of (8.12) is not zero
almost everywhere (in other words, is positive for t > 0), which happens if and only
if either (7.4) holds or p,> 0.

On the other hand, if either (8.1) is true or (7.1) is true and p, = 0, then there
does not exist any solution {p,,(t)} (n >0,0<t<T, m>0,and T> 0, fixed)



356 J. H. B. KEMPERMAN
distinct from {¢,,,(t)} of the forward equations (I),,, and the initial conditions

(2.1) such that (8.13) holds for 0 < t < T. After all, by (6.15), pmn(t) > ¢mn(t)-
(8.1) holds, the assertion follows from Theorem (8.1). Otherwise, we see by (6.7) that

O
226 (=1 (all t>0).
n=0
This type of proof has already been used by Reuter and Ledermann [9, p. 255].

9. THE FORWARD AND BACKWARD DIFFERENTIAL EQUATIONS

We now come to the most interesting problem concerning the existence of sys-
tems {ppn(t} (m,n>0) on 0<t< T distinct from the system {¢,,,} and satis-
fying all of the conditions Dmns (H)mn, (2.1), (2.2), (2.3),-and (2.4) for all m, n. By
Theorem 7.1 and Theorem 8.1, such existence is possible only if Ay > 0 for m > p,

; eoe L
(9.1) (——-+ X‘“ 5 k) < e,
j=p k=jt1 97T
K, > 0 for m > q, and finally
. CIA’
(9.2) (_+ ____5__1 < oo,
ji=q k=j+1 Hic

For convenience, we shall assume that
A,> 0 for n>0, Mp >0 for n> 1;

thus, p=1 and q=0 or q =1 (depending on whether u,> 0 or pu,= 0). Letting

’\0"'7\11 1
m= — o=1,
n ul -ao“

o = (“1 M 1) [ |
n PP WY A W W

we see that (9.1) and (9.2) are equivalent to the conditions

and

27 7rjpk<°o and . 22 TP < ©,
0<j<k >k >0

respectively. Together they are equivalent to the conditions

(9.3) ?nn<w, ZOJpn<°o.

From now on we assume (9.3).
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Let us first collect some of the formulae that will be needed or are helpful for
better understanding. First, there is the polynomial Q,(s) defined by the recur-
rence relation

(An+ Hn+ S)Qn = }‘nQn-i-l + “‘nQn—l (n._>_. 0)

and the conditions that Qg(s) = 1, Qu(s) = 0 for n < 0. Further, (compare (6.8),
(4.17) to (4.21), (4.25), and (4.26)),

Qm(s) * -st 1
e - ‘i k__(Destat (s> 0),
where
>0 for t> 0,
kB = Q (D) ky_(©)
=0 for t< 0
(9.4) . i) K, (Ddt < 1;  and

t
lim kmoo(t) dt =1 for t> 0.

Im->co

Also, by (6.7),

t t o
(9.5) “OS quO(T) dar + ‘S‘ kmoo('r) ar + 2 ¢mn(t) =1.
0 0 n=0

Let q=0 if uy,> 0, q=1 if p, = 0. Further, let Hflq)(s) be defined by the relations

(9.6) Onor + g+ 9EY =, B s 1Y @>0,2,-0),
(9.7) Hflq) =1, HY-0i n<q.

Completely similar to the above formulae, there are the relations (see (8.5)),

H(q)(s) o (
o = Q) -st . )
(9.9) hlgzz _ ngq)(D)h((li? >0 for t>0, n>q,

=0 for t< 0;

(9.10) S (Dt < 1;
0
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t
(9.11) lim 5 hW@ddat=1 ift>o0.
0 oo
n—o

Further (see (8.6)),

N Az (g) |

gl -5 +s T {

q<J <n_1 ﬂj ee .LLn—l

hence, by (9.8) and (9.9),

t
(9.12) S (2, @ - 9 (m)ar>0 in>o0, t>o0.
0 ’

n+l,c

Also notice that, by (9.7) and (9.8),
WU =0  if q=1 (that is, if pg = 0).
DEFINITION 9.1. Witk T > 0 fixed, we shall denote by 2 the collection of sys-

tems {ppn(} (m, n> 0) of infinitely differentiable functions on 0 <t < T such
that (__, ()___, (2.1), (2.2), (2.4) hold for all t (0< t<T) and all m, n> 0.

DEFINITION 9.2. We denote by K, the collection of veal, bounded, and measur-
able functions Y on 0 < t < T such that

t
(9.13) SO (hﬁ)l’w(r) - w2, (T))tp(t -7)dr >0
Jorall n > 0, 0 <t< T, and such that further
t
(9.14) 0< YO <1+ 5 h{r) (- ) ar
0

Jor almost all t (0< t
tion Y(t) on 0 <t T

< T). In particular, any nonnegative and nondecveasing func-
such that

St ©T (a)
1- ()dx)d\p('r)<1—1p(0)
0+( S;) oo o i

Jor 0 <t < T necessarily belongs to Q, (note that the expression in squave brackels
is less than 1 if pu,> 0, equal to 1 if py, = 0). Functions ¢ in R, differing only on
a set of measure 0 will be identified.

THEOREM 9.3. Corresponding to each system {pon} in Q therve exists a uni-
que Y € , such that

(9.15) B ® = 6 ® + k0 *(0(D - 1 D0) * po

Jor all 0 <t T andall m, n > 0 (the star denotes convolution). Conversely, for
each Y € Q,, (9.15) defines a system {p,,,} belonging to Q. Moreover,



THE BIRTH-AND-DEATH PROCESS 359

> {Comomar - (e, - nu, @
9.16) (t) =1 - 0] dr - k t- 7T d
( =0 pmn u’O 0 moO T ar o Moo ¥ T ar

(0<t< T, m>0), wheve Y,(t) denotes the (nonnegative) difference of the third and
second members of (9.14). It follows that, for m > 0 and t,> 0 fixed,

pmn(to) =1

=}
VA

can hold only when Ly = 0 and Y(t) =1 for 0 <t < i,

Proof. Note that the last assertion in Definition 9.2 follows from (9.12) and an
integration by parts.

First, let ¥ € Q,, and let p,,,, be defined by (9.15). Further, let

(9.17) Donn® = Pon® - dpon® = ko * £,
where
.19 L0 - (b)) vy = 0

by (9.13); thus (2.1) and (2.2) hold. Moreover, (II),,,, holds, (say) by (9.4) and Lemma
3.4. That (I),,,, holds follows, for instance, from Theorem 8.2, (see (9.15) and (8.10)).
It remains to prove (2.4). By the definition of Y,

N-1 N-1
2 B = 20k xf =k x (hﬁi . hf)‘j:) * Y

n=0 n=0

@ v ¥ -k x @y, - D).

m

But by (9.10) and (9.11), the first term tends to the continuous function k., * ¥, as
N — «. Hence, (9.5) and (9.17) imply (9.16), which in turn implies (2.4). The last
assertion of Theorem 9.3 follows from the properties ¢ __,(t) > 0 and kK o >0
for £> 0.

As to the uniqueness of ¥ (given {p,,,}), it follows from Lemma 4.3, (9.16) and
the definition of Y, that it suffices to prove that x(t) =0 for 0 <t L T if x(t) isa
bounded and measurable function on 0 < t < T such that x(t) = hoilg(t) * x(t) for
0 < t< T. But this readily follows on interation of this equation, with the help of the
conditions h{®(t) > 0 and (9.10).

Conversely, let {pmn} be a system belonging to €. Further, let

(9.19) A ® =p ) -d_ (0.

By the second part of Theorem 7.2, there exist measurable functions £ (t) on
0 < t < T such that

(9.20) £ (>0, <1,

where
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B(t) = 2 £,

n=0

and such that, moreover,
t
(9.21) A = 50 K (t- T, (r)dr
for all t (0 <t < T) and all m, n > 0. Indeed, by the second part of Theorem 8.2,
9.22) A @ = ( (n@ n{® () d
( L4 mn( - 0 n+1,OO(T) - n,OO(T gm(t = T) T

forall t (0<t<T)andall m, n> 0. Here, g, (t) is equal to the weak limit (in the
sense of L,(0, T)) of the sequence defined by (8.11). Consequently, by (9.20) and
(9.21),

t
(9.23) 8m = Ko ¥ (f + g 50 fo(7) d'r).
Now put
t
(9.24) vt) = f(t) + u05 fy(r)dr.
0

Then, in the first place, (9.22) and (9.23) imply the representation (9.15). Clearly,
by (9.24), ¥ (t) is a nonnegative and bounded functionon 0 <t < T.

In the second place, comparing (9.15) and (9.21), we see from Lemma 4.3 that

(9.25) (h(q) - hg}z) ¥ =f (0<t<T).

n+l,c0

Hence, (9.20) implies (9.13). It remains to prove (9.14). By (9.20) and (9.24), this
inequality is obvious when p, = 0, for then hg?o = 0. Thus suppose that p,> 0.
Then, by (9.6) and (9.7),

g (H(lq)(s) - ng)(s)) = s;

thus, by (9.9) and (9.25),
t t (q)
Mo S) fo(r) dr = S ho () it - 7)dr.
0

Hence, (9.20) and (9.24) imply (9.14).
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