THE EXISTENCE OF OPTIMAL CONTROLS

Emilio Roxin

1. INTRODUCTION

In the theory of optimal control (see references [1], [6]) it is commonly assumed
that the solution of the optimization problem exists, and therefore only necessary
conditions are obtained. It is our aim to give here sufficient conditions of rather
general type which assure the existence of the solution.

We shall study the system

’

(1.1) 1= i, x1, e, x®, ul, ) u™) i=1,2,:-n),
'where, as usual, x = dx/dt. We write
(1.2) X=t, =1,

and we introduce the vectors

(1.3) f= (gL, -, 9,
£=0, L, =300,

u=(ul, -, u™
in euclidean vector space, with the usual norm | x||? = =(x!)2. Equation (1.1) then
becomes

(1.4) %= 1, &, u)
or
(1.5) X = f(x, u).

The following assumptions are made:

i) f(t, X, u) is defined in I x X X U, where I is the real line (the positive hali-

line could be used, alternatively), X is the X-space, and U is a compact set
in u-space.
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ii) ‘f:(‘t, X, u)ais continuous in (3;, u) and integrable with respect to t for each
(x, u) €eXxU.

iii) The Lipschitz condition holds: there exists a constant K such that for any
(t,uw)eIXU

£, X, w) - £(t, X, W] < K- % - %,].
iv) For all u € U (uniformly)
i, x,, il < w@ -l %)),

x|) is

where the function p(t) is integrable in every finite interval, g(| [
|x|) for

bounded in each bounded region of the x-space, and g(”?{") = Of

|X|—->oo.

We shall consider the parameter u as a function of t. A function u(t) will be
called an admissible control function if

v) u(t) is measurable;
vi) for each t, u(t) € U.
On the set U we impose the convexity condition
vii) #(t, X, U) = {I(t, X, u)| u € U} is a convex set for each (t, X) € I x X.

. We note that since U is compact and f(t, X, u) is continuous in u, the set
f(t, x, U) is also compact. The same is true of the set f(x, U), which differs from
the former by the component f° = 1.

According to well-known theorems (see [2], [8]), these conditions guarantee the
existence and uniqueness of the solution of (1.5) for any admissible control function
u(t). In particular, a finite escape time is ruled out by the assumptions made in (iv).
The importance of the convexity condition (vii) will appear in the proof of the
theoreém.

2. THE ATTAINABLE SET

Definition. Given the equation (1.5), we shall say that the point x, is atfainable
from x, if there exists an admissible control function u(t) defined in the time inter-
val (t,, t,) = (%3, X}), where t, > t,, such that equation (1.5), with u = u(t), together
with the initial condition

x(to) = %,
has the solution x(t) satisfying
x(t) = x,.

The set of all points x that are attainable from x, will be called the set attain-
able from x,, and we shall denote it by Rxo. When there is no possibility of mis-

understanding, the subscript x, will be dropped.

In many simple cases it is easy to see which points are attainable and which are
not; the linear case has been treated in detail in [4], [6]. Here we are concerned
with rather general properties of the attainable set.
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THEOREM. If the equation (1.5) fulfills the conditions (i) to (vii), then for each
initial x,, the attainable set Rxo is a closed set. (A similar theorem under less
general assumptions was proved in [7].)
Without loss of generality we may suppose that x, = 0, and we write simply R
for R, .
0
We shall prove that if &,, &,, £,, --- is a sequence of points of X such that £ € R
and limj e &5 = £, then &, € R,

Since & belongsto R for i =1, 2, 3, -+, there exist admissible control func-
tions u;(t) such that the corresponding solutions x;(t) of (1.5), which start at
x;(0) = 0, satisfy

t
(2.1) x;(t) =SO f(x;(t), ut)dt (O <t< Ty i=1,2,3,-)
with
(2.2) x)(T) = £ (T;=£)  (=1,2,3, ).
Now we take some interval (0, T) which includes all the intervals (0, T;) (this
is possible, since lim;— T; = 58 =T, and for i =1, 2, 3, --- we define the func-
tions

£(x;(t), ui(t)) for 0 <t Ty,
(2.3) ;(t) =
£(x;(T;), u;(T;)) = const. for T; <t < T.

We also extend the definition of the x;(t) to the interval (0, T) by
t
(2.4) Xi(t) = SO ¢1(t) dt (i =1, 2,3, -ev) ’

which coincides with (2.1) in (0, T;).

The functions x;(t) are uniformly bounded. In fact, assumption (iv) assures us
that the equation

%Lttl =put)gn), n0)=0

has a solution in the whole interval (0, T), where it is therefore bounded. Besides,
the inequality

dx.
Ll < | S5 < s, s w9l < O &l 1)

shows in a well-known manner that since xi(O) = 0,
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x| <n®,

proving that the x;(t) are uniformly bounded in (0, T).

Since the x;(f) are uniformly bounded, we can write
|2t x5, wp|| < w*@),

where p*(t) is integrable. The functions f(t, xj, u;) are measurable and therefore
integrable, and the same applies to the ¢;(t). The inequality

Sll%(t) fat < Su*(t) at

shows that, considered as elements of the L,-space of the interval (0, T), the func-
tions ¢;(t) form a bounded sequence. By weak completeness of L, ([3]), we can
select a subsequence which converges weakly to a certain measurable function ¢,(t).
In the following, we suppose that the indices have been changed in such a way that
i=1, 2, 3, -~ refers to the weakly convergent subsequence mentioned above. There-
fore, for each measurable set E, E c (0, T),

(2.5) lim SE $5(t) dt = SE $o(t) dt.
Let
(2.6) T, = £9= lim T,.

If the measurable set E is contained in an interval (0, 7) with 7< T, then
E c (0, T;) for almost all i, and according to (2.3)

(2.7) lim SE £(x;(t), u;(t) dt = SE bo(t) dt,

i— o0

this equality being valid in any interval (0, 7) with 7 < T,.

We now define the function
t
(2.8) %o = soat  (O<t<m.
0

Combining (2.1) and (2.7), we see that for each value of t less than T,,

lim x;(t) = x(t) 0<t<Ty).

1—>00

The proof that also

lim x(T) = x,(T)

1—> 00
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is immediate, since in
To T;
s - 5ol < 1§ (640 - eolatl a0l

the first integral tends to zero according to the weak convergence, and the second

one because T; — Tg, the functions ||¢i(t) " being majorized by the integrable func-
tion p*(t). Hence

(2.9) Xo(Tp) = &3.

It remains to prove that x,(t) is the trajectory corresponding to a certain admis-
sible control function uy(t). According to (2.8), this means that

(2.10) Bo(t) = K(xot), Uot)) (0 << Ty).
From the weak convergence we deduce that, for every vector y of the space X,
(2.11) lim sup[y - ¢;(t)] > y-do(t) > lim inf[y - ¢;(t)]

almost everywhere in (0, T,). In fact, if we suppose, for example, that on a set E
of positive measure

lim sup[y - ¢;(t)] < y-oo(t),

then we obtain immediately

lim sup[y-jE $i(H) dt] <y - SE $o(t) at,

in contradiction to (2.5).

For any value of t (0 < t < T,;) and almost every i,

3(t) € 1E(xi(t), U} ;
therefore, for almost every value of t of the interval (0, T,),

.lim sup[l.u.b. (y - £(x;(t), U))] > y-¢o (t) > lim inf[g. 1. b. (y - £(x;(t), U))].

i1— o0 1— o0

By continuity of the function f(x, u) = £(t, X, u) in (%, u) (the value of t remains
fixed), we may write

(2.12) 1w b. [y - £(x,(t), U)] > y- o) > g. 1.b. [y - £(xo(t), U)].

This equation, valid for every vector y, implies that ¢,(t) belongs to the closed con-
vex set f(x,(t), U); that is, there exists a value u, € U such that

(2.13) ¢o(t) = f(x,(t), up) .

In this way we have defined a function u,(t), on almost every point of the interval
(0, Ty,). Obviously we may extend the definition to the remaining points in any
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convenient way (for example, putting u, = 0 at these points), without affecting the in-
tegral of f(x,(t), uy(t)).

Having proved that u,(t) takes its values in U, we need only show that the values
of u,(t) can be selected so that, as a function of t, uy(t) is measurable. In this con-
nection, we observe that it may happen that for some values of t, uy(t) is not unique-
ly defined by the value of f(x,(t), u,).

We proceed to construct the function u,(t) in the following manner.
1) Take some & > 0.

2) The function ¢,(t) is integrable in (0, T;). Therefore, we can determine a
bounded function ¢,(t) which coincides with ¢,(t) in the interval (0, T,) with the ex-
ception of a set of measure less than € . We shall call A the set of values of t
where ¢4(t) = ¢o(t).

3) Divide the set A into measurable subsets A; (i=1, 2, 3, -+, p) such that the
oscillation of ¢,(t) on each Aj (this is the l.u.b. H G0 (t,) - ¢o (tz)“ for ty, tp € Ay
is less than €. This can be done, since ¢,(t) is measurable and bounded on A.

4) Take a sequence u; (i =1, 2, 3, *») which is dense in U (U is a compact set
in euclidean space). .

5) In each set A; (i=1, 2, -+, p), take a value t; € A;. Call a; = ¢o(ty).
6) Denote by Aj;j the subset of A; where

II f(XO(t), uJ) - ai" < 2g.

The sets Ajj are measurable, since f(x,(t), u) = £(t, Z,(t), u) is measurable in t and
continuous in X,, while X,(t) is also continuous.

7) Now we can prove that
o0
Uag=4 d-1,2-9.
j=1

In fact, if t € A; we have

6ot - ¢t = [0 - a5l <e.

Besides, as proved above, there exists a value v € U such that f(x,(t), v) = ¢,(t).
Since f(x, u) is continuous in u and the sequence {ui} is dense, there exists some

u; such that

| £6xo(0), uy - £xo®), V| = [£&o®), u) - @[ <e.
Hence '
| #xo(), up) -o; || < 2¢,

and t € Ajj for that value of j.

8) A certain value of t may of course belong to several sets Ajj. In order to de-
fine the function ug (t), we shall therefore use the sets
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j-1
Ajj=A N C{ U Aik},

k=1
where the C indicates the complementary set. Note that t € A{j‘ if t belongs to Aij
but does not belong to some Ajx with k < j.

9) We are now in a position to define the function
ug(t) = uj for t e Ajj.

As shown above, this function is defined on the whole interval (0, T,) less a set of
measure smaller than €. If has the property that

oo - £xo®), ue @ < [So® - oy | + [ £xo®), v)) - ;|| <& + 26 = 3¢.

10) If we make this construction for a nullsequence of values of £, we obtain a
sequence of functions ug (t) such that

(2.14) Lim f(xq(t), ug (t)) = ¢(t)
£-—0
almost everywhere on (0, T,).
11) For defining the corresponding limit function u,(t) we may, for example, put

for each component of the vector uy(t)

(2.15) u%)(t) = lim sup ué(t) .
£—0

The value ug(t) belongs to U, and since U is compact, uy(t) € U for each t.
(The formula (2.15) defines uy(t) almost everywhere, but the definition may obvious-
ly be completed in a convenient way.)

As upper limit of a sequence of measurable functions, u,(t) is measurable [5].
Finally, by continuity of f(x, u) with respect to u, and by the equalities (2.14) and
(2.15),

(2.16) £(x0(t), uo(t)) = Po(t)

almost everywhere, and our theorem is proved.

Remark 1. The convexity condition (vii) on f(x, U) is essential in our theorem.
The following example shows that without this condition the result is no longer true,
even in very simple cases.

Consider the system

u

2
1+ (x3)

|uf

X2 =

=1, x'= "
1+ (x3)

with the admissibility condition lu(t)| < 1 {for the scalar u.

The set f(x, U) consists of two segments (as shown in Figure 1)
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Figure 1 Figure 2

Figure 2 shows several possible trajectories in the (x!, x?)-plane, for reaching
the point x! = 1, x% = 0 from the origin, the path making constantly an angle of +45°
with the x'-axis.

The corresponding time, that is, the value of x° at the end point, will be smaller
for trajectories where (x2)? is smaller, in other words, for trajectories nearer to
the x!-axis. The lower limit is not attained because the limit trajectory, which is
the x!-axis, is not admissible.

Remark 2. We now give an example of an attainable set which is not closed; here
there exist trajectories going to infinity in finite time (condition (iv) is violated).

If in the equation
x=2x%1-t-1+u (Jul<1)
we put u = 1, we obtain % = 2x3(1 - t). The trajectories of this equation, given by

ee 1
T{t-12+c¢?

are shown in Figure 3.

If we start at P, (t = 0, x = 1), the attainable set is limited on its upper side by
the curve for which c = 0, because we can always proceed along the curves shown in
Figure 3, for ¢ > 0. The first branch of the curve c = 0, between P, and infinity, is
attainable, but the branch from infinity to the right is not (without passing through
infinity) because once we are on a curve c = € > 0, we can no longer reach the curve
c = 0. A point like P is thus not attainable from P, in spite of the fact that it is on
the boundary of the attainable set.
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Remark 3. Sometimes equation (1.5) is given in the form
(2.16) % =1,(x) + B(x)v (v evV),

where x and f, are n-vectors, v is an m-vector, and B is an n X m matrix.

In general, equation (1.5) can be written
(2.17) % = £(x, uy) + [f(x, u) - £(x, uy)] = £;(x) + v,
with
v e V(x) = {f(x, U) - f(x, u))} .

The main difference between (2.16) and (2.17) is that in equation (2.17) the set V
depends on x. Under the assumption that V(x) is convex for each value of x, it is
contained in a linear subspace of some dimension m, so that (2.17) can be written
exactly like (2.16). The set V can then be taken independently of x if and only if
for each x, the set f(x, U) in (2.17) is the linear image of some fixed set W, more
precisely, if in (2.17) we can write

(2.18) v =v(x, w) = B(x)w (w e W).
On the other hand, if we start with the most general statement
(2.19) % = {(x, u) (u(x, t) € V(x))
and suppose that the set V(x) is continuous in x, in the sense that there exists a con-

tinuous function ¢ = ¢(x, w) such that V(x) is the image of the fixed set W:
V(x) = ¢(x, W), then (2.19) can be written also as
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X= f(X, ¢(Xs W)) = g(X, W) (W € W) ’

which is of the form (1.5).

3. APPLICATION TO PROBLEMS OF OPTIMIZATION

A typical formulation of the optimal control problem is the following.

Given equation (1.5) subject to the conditions stated there, given the initial con-
dition
(3.1) x(0) = x,
and the final condition

(3.2) x(t) € E,

where E is a given closed set in x-space, we are required to find an admissible
control function u(t) and a value t, > 0 such that (1.5), (3.1) and (3.2) are satisfied
and some given function Y¥(x), evaluated at the final point x(t,), has the least
possible value.

Sometimes we are interested in minimizing a functional of the form

tl
S o(x, u) dt s
0

but we can easily reduce this case to the preceding one by introducing a new coordi-
nate x™t! related to equation (1.5) by

kn+1 = ¢(x’ u) ’

and minimizing Y(x) = x0+1,
I En Rx , 1s a compact set and Y(x) is continuous, we can assert that there
exists a point x; € EN RXo where Y(x) attains its minimum. This gives us the

solution to our problem. In general, if all the previously mentioned conditions hold,
one can only assert that E N R, is closed, and this is not sufficient for insuring the

existence of the minimum of Y (x). Nevertheless, in many cases one may restrict
the attention to some bounded domain, and then the desired result follows.

An important example is the time-optimization problem, where ¥(x) =x°=t. In
this case, if E N R’Xo is not empty, for example, if x, € EN RXO, we may look for the

minimum of t in the interval 0 <t <t, = xJ. We call this interval T, and we see
easily that E N Rxo N T is bounded and therefore compact, so that the existence of

the minimum follows.
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