DENSE SUBSETS IN THE SPACES 1;

Dragisa Mitrovié

It is well known that the space 1, is defined, for 1 < p < «, as the linear space
of all sequences x = {£y} of scalars for which Zp-; | £c|P is finite. If we set
"x” = (Zk=1 l&klp)l/ P we get a Banach space. Every linear continuous functional
x* in lp is determined in one and only one way by a sequence x* = {ak}, with

[>e)
Elaqu<oo (-]i+—1-=1),
k=1 b q
by means of the relation x*(x) = Zjc=; o & -

If § is a subset of 1, and if the only linear continuous functional which vanishes

on S is the null functional, then S determines a dense subspace of 1, (see [1, p. 57],
[5, p. 9], and [6, p. 61]).

Inspired by M. V. Subba Rao’s paper [6], we obtain, by means of Dirichlet series,
a number of propositions concerning dense linear subsets in lp.

PROPOSITION 1. Let x={&} €1, p>1, & #0 for every k; let {s,} bea
sequence of complex numbers (s, — « as n — ) lying in the region Rs > 0,
|arg s| < ¢ < 7/2, and let x,= {£ e *k5n} (n=1,2,-..), where

0 <A <o <A — (k — o).

Then the linear manifold determined by {xn} is dense in 1,

Proof. Let x* = {ay} be a linear continuous functional in 1, such that
e o]
LS
(1) x*(xn) = E ak‘gke k”n _ ¢ (n=1, 2, --4).
k=1

Since
1 1

oC oC ’ E [+ o] q
2 |ak5klﬁ(z lgklp) <Z lak|q> <o,
k=1 k=1 k=1

the Dirichlet series 2= ay & e-)\ks is absolutely and uniformly convergent in the
closed half-plane % s > 0. Hence it represents an analytic function

[+ o]

@) f(s) = X oy e K5 (s=o0+it)
k=1

which is certainly holomorphic in the half-plane o > 0. Furthermore, from (1) we
see that the function f(s) has infinitely many zeros s,, s,, **+ lying in an angle
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|arg s[ < /2 and tending to . Together with Theorem 6 of [3, p. 6], this implies
that oy £ =0 (k=1, 2, ---). Since £i #0 by hypothesis, we conclude that oy = 0
for every k, and x* = 0. This completes the proof of Proposition 1.

PROPOSITION 2. Lef x, = {(-1® g \Ee K} (n=0,1, 2, ...), where & # 0 for

every k and 0 < A1 < A<+ <Ax— 0 (k— ), If x= {ng} € 1p, p> 1, then the
linear manifold determined by {x.,} is dense in Ip.

Proof. Let x* = {a } be a linear continuous functional in 1, such that

o0

(3) X*(x )= 2 (-DPap e k=0 (n=0,1,2 ).
k=1

Since 21°<°=1 |ak £k[ < oo, the series

h(s) = 22 oy &y e~ kS
k=1

is absolutely and uniformly convergent in the closed half-plane o0 > 0. Therefore the
function h(s) is an analytic function holomorphic in the half-plane ¢ > 0, and its
derivatives there are given by the formula

W (g) = 2 (-l)nakﬁkhﬁe'hks (@>0; n=0,1, 2, --).
k=1

From (3) we see that the function h(s) and its derivatives vanish at s = 1. Hence
h(s) = 0.

We shall now show that o, =0 (k=1, 2, :--). By the theorem for the evaluation
of the coefficients of a Dirichlet series [4, p. 170], which states that

T
akéke_}\kol = lim %Sto h(o; + it) e M gt k=1, 2, ),

T—o0

where o, > 0 and t, are arbitrary, the relation h(s) = 0 implies that axéx =0
(k=1, 2, --+). But no £y vanishes, by hypothesis. Hence ayx = 0 for every k. Con-
sequently, x* = 0, and Proposition 2 follows.

PROPOSITION 3. Let xp= {(-D™&caBe X} (n=0, 1, 2, -+), where £y # 0 for
every kK and 0 < A <Az < =+ <A — 0 (k — ). If

lim sup log k _ 0 and lim sup l_oﬁk_‘ =0,
k—c0 Ak k —w Kk

then the linear manifold determined by {x,} is dense in 1, Jor each p > 1.

Proof. According to Theorem VII of [4, p. 166], the series Z3_; gke_hks con-
verges absolutely in the half-plane o > 0. Also, each of the derived series
Zr=y (D™ & A e~ NS (n=1, 2, ---) converges absolutely in this half-plane. For
this reason we have, at s =1, - l'fkl AR e-)\k <, and x, € 1lp for each p > 1.
The remainder of the proof is as in Proposition 2.
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PROPOSITION 4. Let x, = {(-1)"&x AL} (n=0, 1, 2, -++), wheve £x + 0 for
every K and 0 <A <22 < <A — o (k). If

lo
lim sup ek _ o  and lim sup —g—lglf—l- = -o0,
k—eo Ak k—o Ak

then the linear manifold detevmined by {xn} is dense in Ip, Jor each p > 1.

Proof. By virtue of Theorem VII of [4, p. 166], the series Zolzzl &ke'Aks con-
verges absolutely in the whole plane. Hence, at s = 0, we have Eﬁﬂ |£k ‘?\ﬁ < oo,

and x5 € 1, for each p > 1. The remainder of the proof is evident from what has
been shown in Proposition 2.

PROPOSITION 5. Let x,= {(-1)" & A2} (n=0, 1, 2, -+-), wheve & # 0 for
every k and 0 < ) <Ay < o < N — oo (k— ), If

V=k

(4) lim sup—)\llogz |£V|er7\”<0 (Fo <1 <),
k— oo k v=1 -

then the linear manifold determined by {xn} is dense in 1y, for each p > 1.

Pyroof. The condition (4) impliés the absolute convergence of the series

PN Eke_hks in the whole plane [2, pp. 7-8]. The remainder of the proof is as in
Proposition 4.

PROPOSITION 6. Let

n A
Xp = %('1) f(Tk_:_alSE)} (n=05 1’ 2: '")’

wheve a > 0, &k # 0 for every k, and 0 < Ay < Ay < s A — o (kK — ), If

She1 |Ek| < <, then the linear manifold determined by {x,} is dense in L,, for each
p>1

Proof. The series 2. gke_lks converges uniformly in the half-plane o > 0.
This implies the uniform convergence of the series

o0 _h' s
gke k

k=g T+ adg)

in the whole plane [2, p. 184]. The remainder of the proof is as in Proposition 4.
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