HOMOTOPICALLY HOMOGENEOUS POLYHEDRA

M. L. Curtis
1. INTRODUCTION
If X is a space, let
X={(x, x)| % # x5} € XXX,

and define p: X — X by p(x;, x,) = x,. We say that X is homotopically homogeneous
(abbreviated h.h.) if (X, X, p) is a Hurewicz fiber space,that is, if (X, X, p) has the
covering homotopy property for maps of any topological space. It follows immedi-
ately that if y, z are points of a path-wise connected h.h. space, then X - y and

X - z have the same homotopy type.

A homogeneous polyhedron is clearly a manifold, and h.h. polyhedra turn out to
be a kind of homotopy manifold. In particular, an h.h. polyhedron is a Kosinski r-
polyhedron [5], and also a homotopy manifold as defined by Griffiths [4]. Thus h.h.
polyhedra of dimensions 1, 2, 3 are manifolds, and 4-dimensional h.h. polyhedra are
manifolds if the Poincaré Conjecture is true. No example is known of an h.h. poly-
hedron which is not a manifold.

Section 2 gives some examples. Manifolds, groups, and loop spaces are h.h.,
and closed cells are not. In Section 3 a class of locally conical spaces is considered,
so that results are a little more general than for polyhedra. Some lemmas on cover-
ing homotopies for locally conical h.h. spaces are proved. The results of Section 3
are applied in Section 4 to show that locally conical h.h. spaces are Kosinski r-
spaces, homotopy manifolds, and (hence) homology manifolds. Section 5 is devoted
to the consideration of locally conical homology manifolds. A different proof is
given of the theorem of Kwun and Raymond [6] that 3-dimensional locally conical
generalized manifolds are locally euclidean. Combining these results with those of
Section 4 shows that, modulo the Poincaré Conjecture, 4-dimensional h.h. polyhedra
are manifolds.

2. EXAMPLES

Example 1. Any n-manifold (separable metric locally euclidean space) is an h.h.
space.

We shall show that if M is an n-manifold, then (IVI, M, p) is a locally trivial
fiber space. It will then follow from [2] that (M, M, p) is a Hurewicz fiber space.
Let B be the open unit ball in E”, and let C be the ball concentric with B and with .
radius 1/2. Given a point m in M, there exists a homeomorphism h of B into M
sending the origin to m. Let h(B) = P and h(C) = Q. We need to define a homeo-
morphism

£: QX (M-m) — p~HQ)
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such that pf(x, y) = x for each x in M - m and each y in Q.

If D is the diagonal of Q X Q, then p~}(Q) = (Q X M) - D, and we define f to be
the identity outside of Q X (P - m). For each x in Q, let f, be the map of P - m to
P - x induced by changing the representation of P from a cone over m to a cone
over x. Then f is defined to be f, on each p~!(x). The resulting f has the required
properties, and M is h.h.

Example 2. Topological groups and loop spaces are h.h.

Let e be the identity of a topological group G. Consider the diagram
G X (G - e)

il
G

0 —
o]

where q(g, h) = g. Define ¢: G X (G - e) — G by ¢(g, h) = (g, gh). It is easy to verify
that ¢ is a fiber-preserving homeomorphism. Hence (G, G, p) is a fiber space
equivalent to the product (G X (G - e), G, q).

In the space 2 of loops from X, in a space X, let w, be the null loop wy: I — x,,.
We shall show that (sz Q, p) is a fiber space w1th the same fiber homotopy type as
the product fibering (2 X (2 - w,), €, q). First, to see that (2, €, p) is a fiber
space, consider an arbitrary covering homotopy situation:

2 9
o
Q

Let the loop ¥(y) be denoted by f;, and let the path ft| [0, 7] be denoted by f; .-
Define &,(y) = (f, fff, ! g), where f, = f and ¢(y) = (f, g). One verifies that 3" maps
into SZ and clearly p® = .

Y><I\Ir

Now consider the diagram

a >~
B
a) P
Q id. Q

\

where a(w,, w,) = (w,;, w,w,) and B(w,, w,) = (w,, wi'w,). Then
Ba(w,;, wy) = B(w,, W, w,) = (w,;, WT'w,; w,)
and
oB(w,, w,) = a(w,, witw,) = (w,;, wilw,).

Now wilw,w, # w, and w,w;'w, # w,. Hence @ and B map into appropriate subsets
of @ X &, and it is easy to see that they constitute a fiber homotopy equivalence.

Example 3. A closed n-cell is not h.h.
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We shall show that any contractible space X which is h.h. cannot have the fixed-
point property. Choose x, in X, let ¥': XX I — X be a contraction of X to x,, and
let ¥ = ¥} _;. Let ¢(X) = (x,, xl) with x, # X, Then we have a covering homotopy
situation

¢:X-—'}2

lp

P: XXI — X .

We are assuming that X is h.h., so that there exists a covering &: XX I — X of ¥.
Define f to satisfy &,(x) = (x, £(x)). Then f is continuous, and if x = f(x) for some
X, we contradict the fact that &, maps X into X. Hence f is a map of X with no
fixed point, and our assertion is proved.

Note that if X is the 0-cell, then X is empty, so that X is not h.h.

3. LOCALLY CONICAL SPACES

Definition 1. Let N denote the boundary of a closed neighborhood N of a point x
in a space X. We say that N is a conical neighborhood of x if there exists a homeo-
morphism of N onto the cone CN which is the identity on N and sends x to the cone
point. The space X is locally conical if each point of X has a conical neighborhood.

A conical neighborhood can be shrunk uniformly along rays toward the vertex of
the cone, and when one conical neighborhood can be so obtained from another, we
shall refer to them as concentric neighborhoods.

LEMMA 1. If N and M are conical neighbovhoods of x, then their boundavies
N and M have the same homotopy type.

Proof. Represent N and M as homeomorphs of CN and CM. Let NDO M, D N,
where M, is concentric with M and N, is concentric with N. A deformation of N
first outward along rays of M to Ml, and then along rays of N to N, gives a de-
formation of N to N, and the homotopy paths all lie in N - x. Let o be the homo-
topy obtained by followmg the shrinking of N to N, by the homotopy just described.
Then the homotopy paths of « all lie in N - x and so can be pushed out to a deforma-
tion of N. This shows that M dominates N. Dually, N dominates M, and the lemma
follows.

Notation. 1f U C X, we let Uy = {(y, z)] zeU,z# y} That is, Uy is a copy of
U - y in the fiber of X above y. Of course, if y ¢U then Uy is homeomorphlc with
U.

If X is h.h., then (X, X, p) is a Hurewicz fiber space, so that it is possible to
choose at once covering homotopies for all covering homotopy situations [2]. This
construction has a continuity property in that nearby covering homotopy situations
yield nearby covering homotopies.

Let y € N. Then there exists a unique path @ from x to y and a chosen homo-
topy of X, into X covering a. We denote this homotopy by Py Xy XTI — X and its
final stage by . We also have a chosen homotopy Ty XY X I — X covering the in-
verse path a-!, and we denote its final stage by Yy Let Yy * Xy X1 — X, denote the
homotopy between Yy ¢y and the identity obtained by shrinking the path o to the null
path at x. This notatlon will be used in the remainder of this section and in Section
4.
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Since X is a cartesian product, away from the diagonal, we should be able to
choose covering homotopies (when X is h.h.) so that, beyond some distance from the
diagonal, the second coordinate of a covering homotopy path will be constant. The
next lemma gives such a result in the special case which we need later.

LEMMA 2. Let N be a conical neighbovhood of x in an h.h. space X. Then
theve exists a concentvic N" such that, for each y € N", there is a coveving homo-

topy
F: X, XI — X

coveving the path a from x to y in such a way that F| N = @, and, for z ¢ N,
F,(x, z) = (a(t), z) for all t.

Proof. Shrink N to concentric neighborhoods N"c N'c N such that for each t
‘I’Y(Nz'é, t) th(t) .

Now F is already defined on (X - N) XI and on N§ X I, by the conditions of the
lemma. The remaining part of X, namely Ny - N}, consists of segments A, of
rays of N with a in N and b in N". Let 8: I — A, be linear, with B(0) = b, and
let B(1) be the midpoint of x_;, Let p: N' X I - X be such that

@Y(W, t) = (a (t)s p(W) t))

for each w in N!. Finally, we can define F, on A, as follows:

F, stretches the part [a, B(t)] of A,y linearly onto X}, and it maps the part
[8(t), b] by p| [0, t].

4. r-POLYHEDRA

Definition 2. A point x of a space X is an r-point if x has arbitrarily small
(closed) neighborhoods U such that for each y € U, there exists a (strong) deforma-
tion retraction of U - y onto U (see [5]). Such ne1ghborhoods are called canonical
neighborhoods. An r-spaceis a finite-dimensional compact metric space in which
each point is an r-point.

LEMMA 3. Lel M C N be concenivic conical neighborhoods of a point x in a
space X. Su[)po se that for each 'y in M theve exists a deformation rvetvaction of
N - y onto N. Then M is a canonical neighborhood.

Proof. Let y € M, and let W be the concentric conical neighborhood of x with y
in its boundary W. For each ray )}, from x to a point b in N, we define an isotopy
which stretches the part of A, between W and M to the part of Ap between W and
N. These isotopies on rays combine to give an isotopy p which stretches M - W
onto N - W.

By hypothesis there exists a deformation retraction p of N - y onto N. Then
p~!up is a deformation retraction of M - y onto M, and the lemma is proved.

Of course, if some conical neighborhood is canonical, then so is every concentric
neighborhood.

LEMMA 4. If X is a locally conical r-space, then conical neighborhoods are
canonical,
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Proof. Given a conical neighborhood N of x, choose a concentric neighborhood
M and a canonical neighborhood W such that Mc W N. If y is in M, then there
exists a deformation retraction of W - y onto W, and this can be pushed out to give
a deformation retraction of N - y onto N. By Lemma 3, M is canonical, and hence
so is N.

THEOREM 1. A locally conical point of an h.h. space is an r-point.

Proof. We shall show that a conical neighborhood is canonical. By Lemma 3 it
suffices to show that if N is a conical neighborhood of x, then there exists a con-
centric neighborhood M such that to each y € M, there corresponds a deformation
retraction of N - y onto N.

We choose concentric neighborhoods M c N" ¢ N' ¢ N such that
@) for y € M, (M) C Ny,
(11) qby(N:;:’.) o N;f - MY:
(iii) homotopies in N' can be patched with the identity outside of N, as in Lemma

Now we map My into Nx by ¢y and follow it by the standard deformation retrac-
tion of N} - x onto N%. Next Ny is mapped back into Xy by ¢y. By shrinking the
path a (from y to x), we obtain a homotopy in X, which deforms My out to ¢y (N3).
By (i) the image does not contain x, and hence we can retract out to N' by a deform-
ation. We patch this with the identity outside of N and can then get a deformation
retraction of Ny - y onto N as required. Hence N is a canonical neighborhood, and
the theorem is proved.

COROLLARY 1. If X is a compact, metvic, finite-dimensional locally conical
h.h. space, then X is an r-space.

Kosinski [5] has proved that for an r-polyhedron, the boundaries of star neigh-
borhoods of points have the homotopy type of spheres. It follows that such a space
is a homotopy manifold [4], and hence also a homology generalized manifold. So we
have the following proposition.

COROLLARY 2. An h.h. polyhedron is an r-polyhedron, and a homotopy
manifold, and hence a homology genevralized manifold.

5. POLYHEDRAL GENERALIZED MANIFOLDS

We shall use gecm to mean “generalized closed manifold defined over a field of
coefficients” (see Wilder [7]). An n-gcm is spherelike if it has the homology of Sn,

THEOREM 2. Let X be a locally contvactible melvic continuum. Then X is a
sphevelike n-gcem if and only if ils suspension SX is an ovientable (n+ 1)-gem.

Proof., Suppose SX is a spherelike n-gcm. Now SX is a product of X with a
line, except at suspension points, and the product of gem’s is a gem. The local
homology at the suspension points can be based on neighborhoods homeomorphic
with a cone over X. Since X is spherical, the suspension points have the right
local homology, and SX is an (n+ 1)-gem. Clearly, SX is orientable.

Now suppose SX is an (n+ 1)-gem. SX is easily seen to be locally contractible
and simply connected. Also, X is deformation-free in SX, and therefore we may
apply Theorem 1.1 of [1], which implies that under these circumstances X is an



60 M. L. CURTIS

n-gem. Since the homology works as in the first half of the proof, it follows that X
must have the homology of S™.

COROLLARY 3 (Kwun and Raymond). A locally conical 3-gcm is a manifold.

Proof. Let N be a conical neighborhood of a point s in a 3-gcm X. Take
another copy N' of N, and identify N and N’ along the boundaries N and N'. The
result M is the suspension of N, and it is an orientable 3-gcm, since X is a gem.
By Theorem 2, N is a spherehke 2-gem, and hence N = §2 (see [7]). It follows that
N is a 3-cell and X is a manifold.

Exactly the same type of argument shows the following.

COROLLARY 4. If X is a polyhedral n-gecm, and B is the boundary of a star
neighborhood of a point in X, then B is a sphevelike (n - 1)-gem. Similarly, the
boundary of a star neighborhood in B is a sphevelike (n - 2)-gcm, efc.

Combining the results above, we see that if X is a connected n-dimensional h.h.
polyhedron, and B is the boundary of a star neighborhood of a point x in X, then f
is an (n - 1)-gcm with the homotopy type of Sn-1,

THEOREM 3. If the Poincaré Conjecture is tvue, then each 4-dimensional con-
nected h.h. polyhedvon is a manifold.

Proof. If B is the boundary of a star neighborhood, then B is a polyhedral 3-
gcm with the homotopy type of S3. By Corollary 3, 8 is a manifold, and by the
Poincaré Conjecture it is S3. Hence the space is locally euclidean.
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