THE COHOMOLOGY OF A SPACE ON WHICH AN
H-SPACE OPERATES

Edward Halpern

INTRODUCTION

An H-space consists of a topological space X with base point e € X and a (con-
tinuous) map A: XXX — X such that

(1.1) Al =1, Aj =1,

where I is the identity map, i and j are defined by i(x) = (x, €) and j(x) = (e, x)
(x € X), and ~ means “is homotopic relative to e.” The multiplication A is komo-
topy-associative if

(1.2) AAXT) =~ A(IXA);

it is homoltopy-commulative if

(1.3) VLAY BEWANR

where 6 is defined by 6(x, y) = (y, X) (%, y € X).
An H-space X operates (on the right, and up to homotopy) on a topological space
T if there is a (continuous) map A: TXX — T such that
(1.4) , Ai=1,
(1.5) A(IXA) =~ ANAXI).

In particular, if X is homotopy-associative we may regard it as operating on itself
by right translations. A map f: X — T is said to commute with the operations of X
on T and X if

(1.6) A(EXI) = fA.

The main theorem is as follows:

THEOREM 1. Let K be a field of characteristic zevo. Let X be an H-space
with homotopy-associative and homotopy-commutative multiplication which operates
on a topological space T, with X and T arcwise connected and HY(X, K) and Hi(T, K)
finitely genevated (all i). If f: X — T commutes wilh the operations of X on T and
itself, then f¥*H*(T, K) is a Hopf subalgebra. Moreover,

1.7 H*(T,K)=BQXC,

wherve B and C are subalgebras of H*(T, K) such that £* annihilates thz elements
of positive degree in B and is injective on C.
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If in the hypothesis of the theorem we replace homotopy-commutativity of X by
the assumption that HXX, K) is an exterior algebra, and allow K to have any charac-
teristic other than 2, we obtain a theorem of A. Borel [2, Théor&mes 3.6, 3.7]. Ac-
tually, we shall prove an algebraic theorem somewhat more general than the algebraic
formulation of Theorem 1, from which it and the Borel theorem follow. Theorem 1
may be applied to Lie groups in two situations:

(1.8) T a comnected Lie group, X a closed connected commutative subgroup, and f
the inclusion map.

(1.9) X a connected commutative Lie group, T the vight coset space of X modulo
a closed subgroup, and £ the canonical projection.

We remark that (1.8) and (1.9) are analogues of results of H. Samelson [7, Satz II]
and J. Leray [5].

2. HYPERALGEBRAS

Throughout, A will denote a commutative ring with unit 1, and all A-modules will
be unitary. As usual, HX) H' will denote the tensor product of A-modules H and H';
if the latter are A-algebras, then the former is a A-algebra with multiplication de-
fined by

(2.1) EXRxNyR®y)=xyXPx'y’.

A A-hyperalgebra consists of a A-algebra H and an algebraic homomorphism
A: H— HEH. We call A the coproduct in H; it is associative if

(2.2) AXRXDA=(IRANA,

where I is the identity map of H. A unit for the hyperalgebra is simply an algebraic
unit. A homomorphism of A-hyperalgebras f: H— H' is an algebraic homomorphism
such that

Af=(fXRDA.

A subhyperalgebra G C H is a subalgebra such that A(G) € G G.

We recall that an augmentation of a A-module consists of homomorphisms
a:H — A and 8: A — H such that ag = 1. If H* denotes the kernel of o, then H is
a direct sum

(2.3) H = g(A) + HY.

A homomorphism of augmented A-modules f: H — H' is required to satisfy

a'f =a and fg8 = B8', where (o, B) and (o', 8") are the corresponding augmentations.
An augmentation of a A-algebra is an augmentation of the module, with @ and
multiplicative.

An agugmentation of a A-hyperalgebra H is an augmentation of the algebra with
the additional properties
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IX Ba)Ax) = xX® B(1),
(2.4) (x € H)
Ba ®DAR =p1)Rx.
Let A" = A - A", where A' is defined by
x®B)+BX®x (xe HY,
B(1) X B(1) (x=B(1).

A straightforward computation based on (2.4) and (2.5) shows that

(2.5) A'(x) =

(2.6) I®Ba)A" =0, (Ba@DA" =0,
which together with (2.3) proves
(2.7) A"(x) e HF Q@ H' (xe€ H).

An element x of an augmented A-hyperalgebra H is primitive if A"(x) = 0, The
subset of primitive elements form a submodule which we shall denote by 7,. The sub-
algebra generated by m, will be denoted by n. I H = w, then H is said to be a primi-
tive hyperalgebra. If in addition 7,N D = 0, where D is the submodule spanned by de-
composable elements, then H is said to be simply-primitive.

We recall that a A-module H is graded if it is a (weak) direct sum of submodules
Hi (0 <i < ). The elements of Hi are homogeneous of degree i: H is of finite type
if each Hi is finitely generated. A map f: H — H' is homogeneous of degree j if
f(HY) € (H)*Y). A homomorphism of graded A-modules (and all subsequent graded
structures) is required to be homogeneous of degree zero. The (graded) submodules
G C H are graded by Gi = GNHi The tensor product HX) H' of graded A-modules
is graded by

HHY. = 2 HHE,

i=j+k

If H is a graded A-module, we shall tacitly assume that it has a standard augmenta-
tion (o, B), namely, B(A) = H°. Then a homomorphism f: H — H' of (graded) A-
modules will be an isomorphism in dimension zero.

A A-algebra H is graded if it is a graded A-module and the multiplication satis-
fies H*- HIcHY). The product is anticommutative if

xy = (-Yyx  (xe HY, y e HJ).
If H and H' are graded A-algebras, the multiplication in H(X) H' is defined by
(2.1) EXRxMNy Ry = -DiixyXx'y' (x' e H'Y, y e H).

A A-hyperalgebra H is graded if it is a graded algebra and A is homogenous of
degree zero. The coproduct is anticommutative if 0/ = A, where 6 is defined by

(2.8) | 0x®y) = Dy @x  (x e Hi, y e H).

Since H has a standard augmentation, it is clear that H* is precisely the submodule
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spanned by the elements of positive degree. Moreover, since A is homogeneous of
degree zero, it follows from (2.7) that we may write

k
(2.9) A" (x) = _El 7i®z (xe HY),
J:

where y; and zj have positive degrees with sum i.

By a Hopf algebra we shall mean a graded hyperalgebra with a unit and with an
associative and anticommutative product. A Hopf subalgebra is then a subhyperalge-
bra that contains a unit.

If H is a primitive Hopf algebra, it is readily proved that its coproduct is asso-
ciative and anticommutative. As a partial converse we have the following theorem
[3, Theorem 2.10]:

(2.10) If H is a Hopf algebra with an associative and anticommutative coproduct
over a field of charactevistic zevo, then it is primitive.

We also note the following theorem due to H. Samelson [7] and J. Leray [5]:

(2.11) Let H be a Hopf algebra with associative coproduct over a field. If as an
algebra H is an extevior algebra genevated by elements of odd degrees, then

it is primitive.

If H is a graded A-module, its dual is the A-module H, = Z H;, where
H; = Hom (Hi, A). (We use lower rather than upper stars, smce topologically H
wﬂl correspond to the homology module.) I H and H' are torsion-free graded A-
modules of finite type, we may canonically identify (HX) H'), = H, XH!. f Hisa
torsion-free, graded A-hyperalgebra of finite type with coproduct A, its dual H is
evidently a A-algebra with product

uv = A,(u®@v) (u, ve H,).

(Actually, H, is a A-hyperalgebra with coproduct ¢4, where ¢, is the transpose of
the product in H; but we shall not use this.) By standard duality arguments we see
that A, is associative or anticommutative if A is associative or anticommutative,
respectively, and that Hx has a unit if H has a unit. In particular, if H is a Hopf
algebra, its dual is called a Pontrjagin algebra.

Let H be a A-algebra. If x € H, its height h(x) is the least positive integer such
that xh(x) = 0; if no such integer ex1sts we define h(x) =«. If H is graded and anti-
commutative and x is a homogeneous element not in the center of H, then h(x) = 2.

Let H be an algebra over a field K. If X C H is a subset such that the inclusion
map induces an algebraic isomorphism

i: ® K[x]/xhx) ~H (weak tensor product),
x€X

we say that H is a fruncated polynomial algebra in the elemenis of X. We shall
write H = K[X, h], where h is the height function on X. If H is graded, then X is
required to consist of homogeneous elements (of positive degree), and i to be homo-
geneous of degree zero.
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A field K of characteristic p is perfect if p = 0 or if each element of K has a
pth root in K. We cite the following theorems, where H is a Hopf algebra over a
perfect field:
(2.12) We may represent H = K[X, h]; moreover, if x € X is in the center of H, then
had ' ifp= o,

pl (1<i<=) ifp=#0.

h(x) =

(2.13) If H is primitive, then we may choose the elements of X primitive, in which
case the primitive subspace w, has as basis the set

xu{1} ifp=0,
{xPxeX, 0<p <h®} fp#o0.

The former is due to A. Borel [1, Théor&me 6.1]. In the proof given in [1], H is
assumed to be of finite type, but this is easily dispensed with. When p+# 0, the condi-
tion that K be perfect may be replaced by y(H) = 0, where y: H— H is defined by
¥(x) = xP. In the proof we may then choose for X any minimal system of generators
for H, and the argument reduces essentially to the proof in the case p = 0. For the
proof of (2.13), see [3, Theorem 2.7, Corollaries 2.5, 2.6].

PROPOSITION 2.1. If H is primitive, it is simply-primitive if and only if p = 0
or v(H) = 0.

COROLLARY 2.2. If H is simply-primitive, then we may write H = K[X, h],
whevre the elements of X are primitive and togethey with 1 form a basis for m;
moreovey, if x € X is in the center of H, then

cO z:fp:o’
h(x) =
p i p+0.

COROLLARY 2.3. If H is simply-primitive and of finite type, thern we may wrile

H=K[{x;},h], Hye=K{uy}, h],

where the x; ave primitive, v; and x; covvespond under duality, and h(x;) = hy(uy).

Proposition 2.1 and Corollary 2.2 follow readily from (2.12) and (2.13); Corollary
2.3 follows from the preceding corollary and a duality theorem [4, Theorems 6.4, 6.5].

LEMMA 2.4. Let H be a simply-primitive Hopf algebra over a field K. If
G C H is a subalgebra, then we may wyite H = K[X, h], so that X consists of primi-
tive elements and (XU{1})NG is a basis for m,N G.

The proof is easy. Represent H as in Corollary 2.2. We may replace X by an
X' such that (X'U{1})N G is a basis for 7,N G. It remains to show that
H = K[X', h']. But this follows readily from the fact that the transformation X — X'
induces an automorphism of H.

Let H = K[X, h] be a graded algebra; we may assume X well-ordered in such a
way that x <y if x has lower degree than y. By a novmal monomial we shall mean
a product of the form
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m mz mt

(2.14) M= x, lx‘2 Xy (0 < m; < h(x)),
where the x; € X and x; < x;4,. Its lengthis m; + --- + my; its width is the number
of positive my; its ferminal factor is X3 if m; >0 and m; =0 fori>j.

Now let H = K[X, h] be a Hopf algebra with coproduct A, and assume each x in
X to be primitive. By induction on width, the following formula is readily proved:

(2.15) AM) =27 sg(RS)[R, SIRX S,

where the summation extends over distinct pairs of normal monomials

r r r S S S
R=X11X22'"'Xtt, S=X11X22 ...xtt (ri+ Si= mi)’
and where sg(RS) and [R, S] are defined by

t
RS=sg(RS)M, [R,S]=II m;!/r;!s,!.

i=1

PROPOSITION 2.5. Let H be a simply-primitive Hopf algebra over a field K.
A subalgebra GC H is a Hopf subalgebra if and only if it is primitively generated.

Proof. By Lemma 2.4, we may represent H = K[X, h], where each x in X is
primitive and (XU{1})N G is a basis for 7,N G. ¥ G is primitively generated, it
is clearly a Hopf subalgebra (in fact, G = K[X NG, h')).

Let G be a Hopf subalgebra. We shall first show that if M is a normal monomial
in the elements of X and M € G, then M is a normal monomial in the elements of
X'=XNG. Write M = +Nx;, where x; is a nontrivial factor of M and N is normal.
Applying (2.15), we may write

(2.16) AM) = £ [N, x;IN® x; + 25 sg®R9)I[R, SR®S.

S# X3

Since G is a Hopf subalgebra, A(G) € GX) G and hence, from (2.16), we see that
N® x; € G G. Thus x; is in G, and the assertion is proved.

A general element g in G may be written (uniquely)
g=2 kM (k;# 0, k; €K),

where the M; are distinct normal monomials in the elements of X. Applying (2.15),
we see that

M) = 27 k; sg(R, )[R, SIR® S.

Since G is a Hopf subalgebra, R(X) S € G G. By the preceding result, R and S,
and hence M, are normal monomials in the elements of X'. Thus G is primitively
generated.
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3. GENERALIZED HYPERALGEBRAS, CAP PRODUCTS

Let A be a A-algebra and H a A-hyperalgebra with coproduct A. We say that
{A, H, A} is a generalized A-hypervalgebra if A: A — A H is an algebraic homo-
morphism such that

(3.1) AR®DA = IR A,

where I is the identity map (of H or A). If H has augmentation (a, ), we further
require

(3.2) IX Ba)a(a) =a®B(1)  (ae A).

If H is a graded hyperalgebra, we require A to be a graded algebra and_}_& homo-
geneous of degree zero. If both A and H are of finite type, then {A, H, A} is said
to be of finite type. ¥ a is homogeneous, it follows from (3.2) that we may write

(3.3) A@) =a®@B1)+ 2 2;Rx%; (aj€ A, x5€ H),
j=1

where each x; has positive degree. Amap f: {A, H, A} — {A', H A"} of general-
ized A-hyperalgebras is an algebraic homomorphism f: A — A' such that

(3.4) EQ DA =A'f.
In particular, we may regard a hyperalgebra H with an associative coproduct A

as a generalized hyperalgebra {H, H, A}.

Let {A, H, A} be of finite type. Assume that A and H are torsion-free, and
let Ax and Hx be their dual module and algebra, respectively. Assume further that
H has a unit (also to be denoted by 1). We may pair Hy, and A to A as follows: For
ue H; and ae€ A) we define the cap product u —~a € Aj-i by

(3.5) <u~a, e>=<A(a),e xu> (e€Ajy,

where <, > refers to the duality pairing AXAx — A. We shall prove the following
properties:

(3.6) 1~a=a,
(3.7) uwv —~a=u.—(v.~a),
(3.8) flu ~a) =u_—£(a),

where f: {A, H, A} —» {A', H, A'} is a map.
(3.9) u—~ab=au—b)+ (-1 u__ab (ueH, be AM,

if u is orthogonal to the decomposable elements of H.

__ If we take u=1 in (3.5) and apply (3.3), we get (3.6). To prove (3.7), let Ax and
Ax denote the transposes of A and A respectively. Then ‘
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<uv~ a, e> = <A(a), e® uv>
= <A@), IR )N e@uB v)>
= <(IXA)A(a), e@QupRv>;
<u ~(v ~a), Ie> = <A _—a),e@u>
=<v—~a, AxeP@u)>
= <A(a), Axle ®u) R v>
= <A@), AP DEeR®RuRv)>
= <(Z®I)Z(a), e@uPv>.

Thus (3.7) follows from (3.1). Let fi be the transpose of f; then

<u~f(a), e'>=<A'f(a), e' ®u> (e' € Ay,

= <(f X DA(a), e' ®u>

= <B(), Ex@ De' ® >
= <Afa), fleN P u>

= <u ~a, f4(e")>

=<f(u.—a), e >,

and this proves (3.8). Finally, to prove (3.9), choose an additive basis {xl, X, -}

for H such that
<x,u>=2#0 (A€A), <x,u>=0 (E>1).
Relative to this basis, we may write
(3.10) Aa)=a® 1+2 a;x;,
(3.11) Ab) =b® 1+2 b; ®x;,
which applied in (3.5) gives
(3.12) u.—~a-=2Aa,, | u —~b = Ab,.
Multiplying (3.10) and (3.11), we get

A@b) =ab® 1+ (@aby + (DT D @x1+ L ¢ ®x + L 4; @z
i>1

where the z; are products of the x;. Applying this in (3.5), we obtain

(3.13) u —~ab = Afab, + (-1)a; b).

(ci’ dj € A) ’
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Thus (3.9) follows from (3.12) and (3.13).

Let H be a simply-primitive Hopf algebra of finite type over a field K, and rep-
resent H and H, as in Corollary 2.3. (According to the adopted convention, the
corresponding sequence of degrees of the x; is monotanically nondecreasing.) The
normal monomial (2.14) may be written

ml mz m.

(3.14) M=x; X, x5 tees (0 < m; < h(x;)),

with finitely many m; > 0. Let p(M) be the corresponding normal monomial

(3.15) ’J_(M) = uli.!ll ulz-nz Xy u;ni-.-.

Since H has an associative coproduct, we may regard H as a generalized hyper-
algebra {H, H, A}. We assert that if x;j is the terminal factor of M, then

oM
(3.16) Uj/-\M=—a‘;{g.
The proof is easy. Write M = Nx;, where N is normal; then, applying (3.5) and

(2.15), we get
<uy ~M, e> = sg(Nx;) [N, x; <N, e> (e A)).

Since sg(Nx;) =1 and [N, x;] = mj, (3.6) follows.

PROPOSITION 3.1. Let H be a simply-primitive Hopf algebra of finile type
over a field K. A subalgebra G C H is a Hopf subalgebra if and only if it is stable
undevr cap-products.

Proof. Inview of Proposition 2.5, it suffices to prove that G is stable if and only
if it is primitively generated. We represent H and H, as in Corollary 2.3; more-
over, by Lemma 2.4, we may assume that {x;}u { 1}) NG is a basis for woﬂ G.

Let g € G be a homogeneous element. We may express g uniquely in the form
(3.17) g=k1M1+k2M2+"'+ksMs (kiaéo,kiEK),

where the M; are (nonzero) normal monomials in the elements x;.

(i) Suppose that G is primitively generated. Then each M; is a normal monomial
in the elements of X' = {x } N G. From (3.16) we see that for all j >1, u; ~g €G.
In view of (3.7), G is therefore stable under cap-products.

(ii) Suppose that G is stable under cap-products. Let x; , x. , -, X;

ip? it

(i; <ip < *** < i) be the elements of X that have positive mu1t1p1101ty in some M;

in (3.17). Suppose X;j is the first of these elements which is not in X'. Let x; j occur
with maximum multiplicity in M;; then we may write M; = +X;N), where N; is a
normal monomial. By stability of G, the element gj = u(Nj) Ag is in G. We may
write

i)?

gj=1(Xj+Lj+Pj (k#O,kGK),

where Lj is a linear polynomial in those Xis **"s Xj, *=vy Xi (X; means that xj is
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omitted) that have the same degree as Xj, and where Pj is a polynomial in those
L STURMIR SH that have lower degrees. By the assumption on X; , clearly P € G; hence

kxj+ I_.j € G. Moreover, since LJ is linear, it follows that
kXJ + LJ € 7g naG.

Since X'U {1} is a basis for .71, NG we must have x; € X'. This contradicts the as-
sumption on x;, and hence Xij» Xiz’ 0y Xj € X', Thus G is primitively generated.

THEOREM 2. Let {A, H, A} be a genevalized simply-primitive Hopf algebra of

finite type over a field K with characteristic p. If f: {A, H, Z} —»{H, H, A} is a
map, then £(A) is a Hopf subalgebra. Moveover, if one of the three conditions

(@ p=0,

(b) p# 0, y(A) =0

(c) p+# 2, H an exterior algebra A (X),
holds, then
(3.18) AEBXC,

where B and C ave subalgebras of A such that f annihilates the positive degree
elements of B and is injective on C.

Proof. The first part follows at once from (3.8) and Proposition 3.1. To prove
the second part, we may therefore assume that f(A) = H. Represent H and Hy as in
Corollary 2.3. We assert that there is a sequence { yi} of elements of A with the
following properties:

(3.19) f(YI) = Xi,
(3.20) Ui —~y; =0;; (the Kronecker delta).
J 1 J

We proceed by induction. Choose yj so that f(y;) = x;. Assume that y;, y2, ***, yk
(k > 1) have been chosen so that (3.19) and (3.20) hold for all i and j less than or
equal to k. By an argument similar to the proof of (3.16) we may prove that if N is a
normal monomial in y;, y2, -**, Yk and yj is its terminal factor, then

oN
(3.21) \.l‘1 —~N = ‘a—i—
For 1<i<k, we define
(3.22) o;(@) = a - Z} ('l)m M ~a)yi™ (ae€A).

Note that o;(a) is a finite sum, since uj” ~a = 0 for m sufficiently large. In par-
ticular, if u; has odd degree, then

(3.22") g;(a) = a - (u; ~a)y;.
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We assert that
(3.23) u; ~0o3(a) = 0.
If u; has odd degree, then, by (3.9) and (3.22"),
Uj "Ui(a) =u; —~a- [(11-;l —~a) - (ui2 Aa)yi] =0.

If u; has even degree, we get

o0

S m-1 , 0™t m
uiﬂoi(a) =u; —a - m>:=;1 [(—In—:———l)! (ui Aa)yi + T(ui ’\a)Yj_ ]'

A straightforward computation shows that the summation reduces to u; —~a, and
hence (3.23) is proved.

Now choose aj,; € A so that f(a; ;) = X;,;, and define
(3.24) 5,6 = 00541 0klagy) A <ji<K).

Finally, define y), ; = ap k- We must prove that

(3.25) f(Yk+1) = Xl
(3.26) Uerl ~¥i= %141 (1<i<k+ 1),

Using (3.8), we have

L-_lf_"_l(um x,  )xM=x
m! k 7T k417 T kel

o]
£ay, 1) = 10@ger)) = Xieyp = 2
m=1

since u —~xp;y = 0. Now let 1 <j <k, and assume that f(a; ;) = Xy, . Then

_l)m-l

w0
( m m

f(aj'lsk) = foj-l(aj,k) = Xkl ~ VE]_ ml (uJ -1 Xk-i—l)xj_l = Xk+1 ’

m=

since wj_1 —~ Xk+1 = 0 for 1 <j <k. Thus, by induction on j, we have f(aj, k) = x)4,
and (3.25) is proved.

We obtain (3.26) from (3.25) as follows. Using (3.8), we have

If y; has lower degree than uj,j, then both sides of (3.28) are clearly zero. If y;
and uy,; have the same degree then, since f is an isomorphism in degree zero,
(3.26) follows from (3.28).

The proof of (3.27) is also by induction. Let 1 <i <k. Then, by (3.23), we have
U —~2; 3 =0. Nowlet 1 <j<i, and assume that u;~a; = 0. Then
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o0 (_1) _1
. ~a- = U~ O: . = 1 . m m_ _
y—~ajy k=~ 05.1(a5,0) = w3 ~ajk+ El ] (uj_lui,-\aj,k)yj_1 0
m=

by the inductive assumption. Thus by induction on j we have u; ~a; ; = 0, and (3.27)
is proved.

Let B be the subalgebra of A which is generated by 1 and all a such that
u; ~a =0 for all i. Let b € B have positive degree; then

u; Af(b) = f(ui ’\b) = f(O) =0 (all 1) .

Thus f(b) must be zero.

Let C be the subalgebra of A generated by y,, y,, ***. It is clear that y; is in
the center of A if and only if the corresponding x; is in the center of H; moreover,
from (3.19), h(y;) > h(x;). In particular, if y; is not central, then h(y;) = h(xy = 2.
Suppose y; is central; then

(a) if p=0, h(y;) = h(x;) = o,
(b) if p# 0 and y(A) = 0, then h(y;) = h(xy) = p,

(c) if p#2 and H= AK({ xi}), then y, and x; have the same odd degree, and
hence h(y;) = h(x;) = 2. ‘

Thus if (a), (b), or (c) holds, then h(y;) = h(x;)} for all i, and hence f is injective
on C.

It remains to prove (3.18). First we shall show that A = BC, in other words, that
if a€ A, then
a=bycy +-++bgecg (b€ B, cie C).
If N is a normal monomial in the yj, let u(N) denote the normal monomial obtained
by replacing each y; in N by the corresponding u;.

Clearly each a € A is annihilated by all u(N) of length j, if j is sufficiently
large. Thus it suffices to show that if a € A is annihilated by all y(N) of a given
length j, then a € BC. The proof is by induction on j. For j =1 this follows from
the definition of B. Assume it for some j > 1; let a be annihilated by all p(N) of
length j + 1, and consider the element

(3.29) at = a - 2 (L(N) ~a)N,

where the summation extends over all N of length j. Clearly p(N) —a is in B, and
hence the sum is in BC. Let N' be of length j; we have

p(N)~a'= p(N)~a - 25 p(N) ~ [(£(N) ~ a)N]
= p(N') ~a - u(N') ~a+ 25 (u(N) £(N) ~a)N =0,

the sum vanishing by the assumption on a. Thus by the inductive assumption,
a' € BC. From (3.29) it then follows that a € BC, and the induction is complete.
Thus A = BC.

It remains to show that B and C are linearly disjoint. Suppose
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(3.30) bl Nl+b2N2+ "'+th1:=0’

where the bj € B and the N; are distinct normal monomials in the y; Assume that
N, is the longest monomial; it suffices to show that b, = 0. This follows if we apply
1(N,) — to both sides of (3.30).

4, PROOF OF THE MAIN THEOREM

Let K be a field of characteristic p, and X an arcwise connected H-space with
H*(X, K) of finite type. It is well known that if A is the product in X, then H*(X, K)
is a Hopf algebra with coproduct

(4.1) A*: H¥(X, K) — H*(X, K) ® H*(X, K).

(In (4.1), and (4.2) below, we use implicitly the isomorphism given by the Kiinneth
formula.) The arcwise connectedness of X implies that H¥(X, K) K- 1, and hence
we have a standard augmentation. If we assume that X is homotopy-assoc1at1ve and
homotopy-commutative, then it follows from (1. 2) and (1.3) that A* is associative and
anticommutative.

Let T be an arcwise connected space, with H*(T, K) of finite type, on which X
operates (on the right and up to homotopy). The map A: TXX — T induces a homo-
morphism of graded algebras

(4.2) A*: H¥(T, K) —» H*(T, K) X H*X, K).

Conditions (1.4) and (1.5) then imply (3.1) and (3.2) (the latter with A* in place of A).
Thus {H*(T, K), H*(X, K), A*} is a generalized Hopf algebra of finite type over K.

Let £f: X — T commute with the operations of X on T and on itself (by right
translations). Then (1.6) implies that £*: H*(T, K) — H*(X, K) is a map of general-
ized Hopf algebras. Thus by the first part of Theorem 2, {*H*(T, K) is a Hopf
subalgebra. If we assume p = 0, then by (2.10) and Proposition 2.1, H¥*(X, K) is
simply-primitive. Thus Theorem 1 follows from Theorem 2.

If in place of the homotopy-commutativity of X we assume that H*(X, K) is an
exterior algebra and p # 2, then by (2.11) it is primitive and, moreover, simply-
primitive. Thus the theorem of Borel follows from Theorem 2.
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