THE COHOMOLOGY OF A SPACE ON WHICH AN H-SPACE OPERATES

Edward Halpern

INTRODUCTION

An H-space consists of a topological space X with base point $e \in X$ and a (continuous) map $\Delta: X \times X \to X$ such that

$$(1.1) \Delta i \simeq I, \Delta j \simeq I,$$

where I is the identity map, i and j are defined by i(x) = (x, e) and j(x) = (e, x) $(x \in X)$, and \simeq means "is homotopic relative to e." The multiplication \triangle is homotopy-associative if

$$\triangle(\triangle \times \mathbf{I}) \simeq \triangle(\mathbf{I} \times \triangle);$$

it is homotopy-commutative if

$$(1.3) \qquad \qquad \Delta\theta \simeq \Delta \,,$$

where θ is defined by $\theta(x, y) = (y, x) (x, y \in X)$.

An H-space X *operates* (on the right, and up to homotopy) on a topological space T if there is a (continuous) map $\overline{\Delta}$: T×X \rightarrow T such that

$$(1.4) \overline{\triangle} i \simeq I,$$

$$(1.5) \qquad \overline{\triangle}(\mathbf{I} \times \triangle) \simeq \overline{\triangle}(\overline{\triangle} \times \mathbf{I}).$$

In particular, if X is homotopy-associative we may regard it as operating on itself by right translations. A map $f: X \to T$ is said to *commute* with the operations of X on T and X if

$$(1.6) \overline{\triangle}(f \times I) \cong f \triangle.$$

The main theorem is as follows:

THEOREM 1. Let K be a field of characteristic zero. Let X be an H-space with homotopy-associative and homotopy-commutative multiplication which operates on a topological space T, with X and T arcwise connected and $H^i(X, K)$ and $H^i(T, K)$ finitely generated (all i). If $f: X \to T$ commutes with the operations of X on T and itself, then $f^*H^*(T, K)$ is a Hopf subalgebra. Moreover,

(1.7)
$$H^*(T, K) \cong B \bigotimes C,$$

where B and C are subalgebras of H*(T, K) such that f* annihilates the elements of positive degree in B and is injective on C.

Received November 13, 1958.

If in the hypothesis of the theorem we replace homotopy-commutativity of X by the assumption that $H^*(X, K)$ is an exterior algebra, and allow K to have any characteristic other than 2, we obtain a theorem of A. Borel [2, Théorèmes 3.6, 3.7]. Actually, we shall prove an algebraic theorem somewhat more general than the algebraic formulation of Theorem 1, from which it and the Borel theorem follow. Theorem 1 may be applied to Lie groups in two situations:

- (1.8) T a connected Lie group, X a closed connected commutative subgroup, and f the inclusion map.
- (1.9) X a connected commutative Lie group, T the right coset space of X modulo a closed subgroup, and f the canonical projection.

We remark that (1.8) and (1.9) are analogues of results of H. Samelson [7, Satz II] and J. Leray [5].

2. HYPERALGEBRAS

Throughout, Λ will denote a commutative ring with unit 1, and all Λ -modules will be unitary. As usual, $H \bigotimes H'$ will denote the tensor product of Λ -modules H and H'; if the latter are Λ -algebras, then the former is a Λ -algebra with multiplication defined by

$$(2.1) (x \otimes x')(y \otimes y') = xy \otimes x'y'.$$

A Λ -hyperalgebra consists of a Λ -algebra H and an algebraic homomorphism Δ : H \rightarrow H \bigotimes H. We call Δ the *coproduct* in H; it is associative if

$$(2.2) \qquad (\triangle \otimes \mathbf{I}) \triangle = (\mathbf{I} \otimes \triangle) \triangle,$$

where I is the identity map of H. A *unit* for the hyperalgebra is simply an algebraic unit. A *homomorphism* of Λ -hyperalgebras $f: H \to H'$ is an algebraic homomorphism such that

$$\triangle$$
'f = (f \bigotimes f) \triangle .

A subhyperalgebra $G \subset H$ is a subalgebra such that $\Delta(G) \subset G \otimes G$.

We recall that an *augmentation* of a Λ -module consists of homomorphisms $\alpha\colon H\to \Lambda$ and $\beta\colon \Lambda\to H$ such that $\alpha\beta=I$. If H^+ denotes the kernel of α , then H is a direct sum

$$(2.3) H = \beta(\Lambda) + H^{+}.$$

A homomorphism of augmented Λ -modules $f: H \to H'$ is required to satisfy $\alpha' f = \alpha$ and $f\beta = \beta'$, where (α, β) and (α', β') are the corresponding augmentations. An augmentation of a Λ -algebra is an augmentation of the module, with α and β multiplicative.

An *augmentation* of a Λ -hyperalgebra H is an augmentation of the algebra with the additional properties

(2.4)
$$\begin{cases} (\mathbf{I} \bigotimes \beta \alpha) \triangle(\mathbf{x}) = \mathbf{x} \bigotimes \beta(1), \\ (\beta \alpha \bigotimes \mathbf{I}) \triangle(\mathbf{x}) = \beta(1) \bigotimes \mathbf{x}. \end{cases} (\mathbf{x} \in \mathbf{H})$$

Let $\triangle'' = \triangle - \triangle'$, where \triangle' is defined by

(2.5)
$$\triangle'(x) = \begin{cases} x \otimes \beta(1) + \beta(1) \otimes x & (x \in H^+), \\ \beta(1) \otimes \beta(1) & (x = \beta(1)). \end{cases}$$

A straightforward computation based on (2.4) and (2.5) shows that

(2.6)
$$(\mathbf{I} \bigotimes \beta \alpha) \triangle^{"} = 0, \qquad (\beta \alpha \bigotimes \mathbf{I}) \triangle^{"} = 0,$$

which together with (2.3) proves

An element x of an augmented Λ -hyperalgebra H is *primitive* if $\Delta^{\shortparallel}(x) = 0$. The subset of primitive elements form a submodule which we shall denote by π_0 . The subalgebra generated by π_0 will be denoted by π . If $H = \pi$, then H is said to be a *primitive hyperalgebra*. If in addition $\pi_0 \cap D = 0$, where D is the submodule spanned by decomposable elements, then H is said to be *simply-primitive*.

We recall that a Λ -module H is *graded* if it is a (weak) direct sum of submodules H^i ($0 \le i < \infty$). The elements of H^i are *homogeneous* of *degree* i: H is of *finite type* if each H^i is finitely generated. A map $f\colon H\to H'$ is *homogeneous* of *degree* j if $f(H^i)\subset (H')^{i+j}$. A *homomorphism* of graded Λ -modules (and all subsequent graded structures) is required to be homogeneous of degree zero. The (graded) submodules $G\subset H$ are graded by $G^i=G\cap H^i$. The tensor product $H\boxtimes H'$ of graded Λ -modules is graded by

$$(H \bigotimes H')^i = \sum_{i=j+k} H^j \bigotimes H'^k.$$

If H is a graded Λ -module, we shall tacitly assume that it has a *standard* augmentation (α, β) , namely, $\beta(\Lambda) = H^0$. Then a homomorphism $f: H \to H^1$ of (graded) Λ -modules will be an isomorphism in dimension zero.

A Λ -algebra H is *graded* if it is a graded Λ -module and the multiplication satisfies $H^i \cdot H^j \subset H^{i+j}$. The product is *anticommutative* if

$$xy = (-1)^{ij}yx$$
 $(x \in H^i, y \in H^j)$.

If H and H' are graded Λ -algebras, the multiplication in H \bigotimes H' is defined by

$$(2.1)^{i} \qquad (x \otimes x^{i})(y \otimes y^{i}) = (-1)^{ij} xy \otimes x^{i}y^{i} \qquad (x^{i} \in H^{i}, y \in H^{j}).$$

A Λ -hyperalgebra H is *graded* if it is a graded algebra and Δ is homogenous of degree zero. The coproduct is *anticommutative* if $\theta \Delta = \Delta$, where θ is defined by

(2.8)
$$\theta(x \otimes y) = (-1)^{ij} y \otimes x \quad (x \in H^i, y \in H^j).$$

Since H has a standard augmentation, it is clear that H⁺ is precisely the submodule

spanned by the elements of positive degree. Moreover, since \triangle is homogeneous of degree zero, it follows from (2.7) that we may write

(2.9)
$$\triangle^{"}(x) = \sum_{j=1}^{k} y_{j} \otimes z_{j} \quad (x \in H^{i}),$$

where y_j and z_j have positive degrees with sum i.

By a *Hopf algebra* we shall mean a graded hyperalgebra with a unit and with an associative and anticommutative product. A *Hopf subalgebra* is then a subhyperalgebra that contains a unit.

If H is a primitive Hopf algebra, it is readily proved that its coproduct is associative and anticommutative. As a partial converse we have the following theorem [3, Theorem 2.10]:

(2.10) If H is a Hopf algebra with an associative and anticommutative coproduct over a field of characteristic zero, then it is primitive.

We also note the following theorem due to H. Samelson [7] and J. Leray [5]:

(2.11) Let H be a Hopf algebra with associative coproduct over a field. If as an algebra H is an exterior algebra generated by elements of odd degrees, then it is primitive.

If H is a graded Λ -module, its *dual* is the Λ -module $H_* = \Sigma H_i$, where $H_i = \text{Hom } (H^i, \Lambda)$. (We use lower rather than upper stars, since topologically H will correspond to the homology module.) If H and H' are torsion-free graded Λ -modules of finite type, we may canonically identify $(H \bigotimes H')_* = H_* \bigotimes H'_*$. If H is a torsion-free, graded Λ -hyperalgebra of finite type with coproduct Δ , its dual H_* is evidently a Λ -algebra with product

$$uv = \Delta_*(u \bigotimes v)$$
 (u, $v \in H_*$).

(Actually, H_* is a Λ -hyperalgebra with coproduct ϕ_* , where ϕ_* is the transpose of the product in H; but we shall not use this.) By standard duality arguments we see that Δ_* is associative or anticommutative if Δ is associative or anticommutative, respectively, and that H_* has a unit if H has a unit. In particular, if H is a Hopf algebra, its dual is called a *Pontrjagin algebra*.

Let H be a Λ -algebra. If $x \in H$, its *height* h(x) is the least positive integer such that $x^{h(x)} = 0$; if no such integer exists, we define $h(x) = \infty$. If H is graded and anticommutative and x is a homogeneous element not in the center of H, then h(x) = 2.

Let H be an algebra over a field K. If $X \subset H$ is a subset such that the inclusion map induces an algebraic isomorphism

i:
$$\bigotimes_{x \in X} K[x]/(x^{h(x)}) \cong H$$
 (weak tensor product),

we say that H is a truncated polynomial algebra in the elements of X. We shall write H = K[X, h], where h is the height function on X. If H is graded, then X is required to consist of homogeneous elements (of positive degree), and i to be homogeneous of degree zero.

A field K of characteristic p is *perfect* if p = 0 or if each element of K has a pth root in K. We cite the following theorems, where H is a Hopf algebra over a perfect field:

(2.12) We may represent H = K[X, h]; moreover, if $x \in X$ is in the center of H, then

$$h(x) = \begin{cases} \infty & \text{if } p = 0, \\ p^i & (1 \le i \le \infty) & \text{if } p \ne 0. \end{cases}$$

(2.13) If H is primitive, then we may choose the elements of X primitive, in which case the primitive subspace π_0 has as basis the set

$$\begin{cases} X \cup \{1\} & \text{if } p = 0, \\ \{x^{p^i}; x \in X, 0 \le p^i < h(x)\} & \text{if } p \ne 0. \end{cases}$$

The former is due to A. Borel [1, Théorème 6.1]. In the proof given in [1], H is assumed to be of finite type, but this is easily dispensed with. When $p \neq 0$, the condition that K be perfect may be replaced by $\gamma(H) = 0$, where $\gamma: H \to H$ is defined by $\gamma(x) = x^p$. In the proof we may then choose for X any minimal system of generators for H, and the argument reduces essentially to the proof in the case p = 0. For the proof of (2.13), see [3, Theorem 2.7, Corollaries 2.5, 2.6].

PROPOSITION 2.1. If H is primitive, it is simply-primitive if and only if p=0 or $\gamma(H)=0$.

COROLLARY 2.2. If H is simply-primitive, then we may write H = K[X, h], where the elements of X are primitive and together with 1 form a basis for π_0 ; moreover, if $x \in X$ is in the center of H, then

$$h(x) = \begin{cases} \infty & \text{if } p = 0, \\ p & \text{if } p \neq 0. \end{cases}$$

COROLLARY 2.3. If H is simply-primitive and of finite type, then we may write

$$H = K[\{x_i\}, h], H_* = K[\{u_i\}, h_*],$$

where the x_i are primitive, u_i and x_i correspond under duality, and $h(x_i) = h_*(u_i)$.

Proposition 2.1 and Corollary 2.2 follow readily from (2.12) and (2.13); Corollary 2.3 follows from the preceding corollary and a duality theorem [4, Theorems 6.4, 6.5].

LEMMA 2.4. Let H be a simply-primitive Hopf algebra over a field K. If $G \subset H$ is a subalgebra, then we may write H = K[X, h], so that X consists of primitive elements and $(X \cup \{1\}) \cap G$ is a basis for $\pi_0 \cap G$.

The proof is easy. Represent H as in Corollary 2.2. We may replace X by an X' such that $(X' \cup \{1\}) \cap G$ is a basis for $\pi_0 \cap G$. It remains to show that H = K[X', h']. But this follows readily from the fact that the transformation $X \to X'$ induces an automorphism of H.

Let H = K[X, h] be a graded algebra; we may assume X well-ordered in such a way that x < y if x has lower degree than y. By a normal monomial we shall mean a product of the form

(2.14)
$$M = x_1^{m_1} x_2^{m_2} \cdots x_t^{m_t} \quad (0 \le m_i < h(x_i)),$$

where the $x_i \in X$ and $x_i < x_{i+1}$. Its length is $m_1 + \cdots + m_t$; its width is the number of positive m_i ; its terminal factor is x_j if $m_j > 0$ and $m_i = 0$ for i > j.

Now let H = K[X, h] be a Hopf algebra with coproduct \triangle , and assume each x in X to be primitive. By induction on width, the following formula is readily proved:

(2.15)
$$\Delta(M) = \sum \operatorname{sg}(RS) [R, S] R \otimes S,$$

where the summation extends over distinct pairs of normal monomials

$$R = x_1^{r_1} x_2^{r_2} \cdots x_t^{r_t}, \quad S = x_1^{s_1} x_2^{s_2} \cdots x_t^{s_t} \quad (r_i + s_i = m_i),$$

and where sg (RS) and [R, S] are defined by

RS = sg (RS) M,
$$[R, S] = \prod_{i=1}^{t} m_i! / r_i! s_i!$$
.

PROPOSITION 2.5. Let H be a simply-primitive Hopf algebra over a field K. A subalgebra $G \subset H$ is a Hopf subalgebra if and only if it is primitively generated.

Proof. By Lemma 2.4, we may represent H = K[X, h], where each x in X is primitive and $(X \cup \{1\}) \cap G$ is a basis for $\pi_0 \cap G$. If G is primitively generated, it is clearly a Hopf subalgebra (in fact, $G = K[X \cap G, h]$).

Let G be a Hopf subalgebra. We shall first show that if M is a normal monomial in the elements of X and $M \in G$, then M is a normal monomial in the elements of $X' = X \cap G$. Write $M = \pm Nx_i$, where x_i is a nontrivial factor of M and N is normal. Applying (2.15), we may write

(2.16)
$$\triangle(\mathbf{M}) = \pm [\mathbf{N}, \mathbf{x}_j] \mathbf{N} \bigotimes \mathbf{x}_j \pm \sum_{\mathbf{S} \neq \mathbf{x}_i} \operatorname{sg}(\mathbf{R}\mathbf{S}) [\mathbf{R}, \mathbf{S}] \mathbf{R} \bigotimes \mathbf{S}.$$

Since G is a Hopf subalgebra, $\triangle(G) \subset G \otimes G$ and hence, from (2.16), we see that $N \otimes x_i \in G \otimes G$. Thus x_i is in G, and the assertion is proved.

A general element g in G may be written (uniquely)

$$g = \sum k_i M_i \quad (k_i \neq 0, k_i \in K),$$

where the M_i are distinct normal monomials in the elements of X. Applying (2.15), we see that

$$\triangle(g) = \sum k_i sg(R, S)[R, S]R \otimes S.$$

Since G is a Hopf subalgebra, $R \otimes S \in G \otimes G$. By the preceding result, R and S, and hence M, are normal monomials in the elements of X'. Thus G is primitively generated.

3. GENERALIZED HYPERALGEBRAS, CAP PRODUCTS

Let A be a Λ -algebra and H a Λ -hyperalgebra with coproduct Δ . We say that $\{A, H, \overline{\Delta}\}$ is a *generalized* Λ -hyperalgebra if $\overline{\Delta} \colon A \to A \otimes H$ is an algebraic homomorphism such that

$$(3.1) \qquad (\overline{\triangle} \otimes I)\overline{\triangle} = (I \otimes \triangle)\overline{\triangle},$$

where I is the identity map (of H or A). If H has augmentation (α, β) , we further require

$$(3.2) (I \bigotimes \beta \alpha) \overline{\triangle}(a) = a \bigotimes \beta(1) (a \in A).$$

If H is a graded hyperalgebra, we require A to be a graded algebra and $\overline{\triangle}$ homogeneous of degree zero. If both A and H are of finite type, then $\{A, H, \overline{\triangle}\}$ is said to be of *finite type*. If a is homogeneous, it follows from (3.2) that we may write

(3.3)
$$\overline{\triangle}(a) = a \bigotimes \beta(1) + \sum_{j=1} a_j \bigotimes x_j \quad (a_j \in A, x_j \in H),$$

where each x_j has positive degree. A map $f: \{A, H, \overline{\triangle}\} \to \{A', H, \overline{\triangle}'\}$ of generalized Λ -hyperalgebras is an algebraic homomorphism $f: A \to A'$ such that

$$(3.4) (f \otimes I)\overline{\triangle} = \overline{\triangle}'f.$$

In particular, we may regard a hyperalgebra H with an associative coproduct \triangle as a generalized hyperalgebra $\{H, H, \triangle\}$.

Let $\{A, H, \overline{\triangle}\}$ be of finite type. Assume that A and H are torsion-free, and let A_* and H_* be their dual module and algebra, respectively. Assume further that H has a unit (also to be denoted by 1). We may pair H_* and A to A as follows: For $u \in H_i$ and a $\in A^j$ we define the *cap product* $u \cap a \in A^{j-i}$ by

$$(3.5) \langle u - a, e \rangle = \langle \overline{\triangle}(a), e \times u \rangle (e \in A_{i-i}),$$

where <, > refers to the duality pairing $A \times A_* \to \Lambda$. We shall prove the following properties:

(3.6)
$$1 - a = a$$
,

$$(3.7) uv \land a = u \land (v \land a),$$

(3.8)
$$f(u \cap a) = u \cap f(a)$$
.

where $f: \{A, H, \overline{\Delta}\} \rightarrow \{A', H, \overline{\Delta}'\}$ is a map.

(3.9)
$$u - ab = a(u - b) + (-1)^{ik}(u - a)b \quad (u \in H_i, b \in A^k),$$

if u is orthogonal to the decomposable elements of H.

If we take u=1 in (3.5) and apply (3.3), we get (3.6). To prove (3.7), let $\triangle *$ and $\overline{\triangle} *$ denote the transposes of \triangle and $\overline{\triangle}$ respectively. Then

$$<\mathbf{u}\mathbf{v} \frown \mathbf{a}, \ \mathbf{e} > = <\overline{\Delta}(\mathbf{a}), \ \mathbf{e} \otimes \mathbf{u}\mathbf{v}>$$

$$= <\overline{\Delta}(\mathbf{a}), \ (\mathbf{I} \otimes \Delta_{+})(\mathbf{e} \otimes \mathbf{u} \otimes \mathbf{v})>$$

$$= <(\mathbf{I} \otimes \Delta)\overline{\Delta}(\mathbf{a}), \ \mathbf{e} \otimes \mathbf{u} \otimes \mathbf{v}>;$$

$$<\mathbf{u} \frown (\mathbf{v} \frown \mathbf{a}), \ \mathbf{e} > = <\overline{\Delta}(\mathbf{v} \frown \mathbf{a}), \ \mathbf{e} \otimes \mathbf{u}>$$

$$= <\mathbf{v} \frown \mathbf{a}, \ \overline{\Delta}_{+}(\mathbf{e} \otimes \mathbf{u})>$$

$$= <\overline{\Delta}(\mathbf{a}), \ \overline{\Delta}_{+}(\mathbf{e} \otimes \mathbf{u}) \otimes \mathbf{v}>$$

$$= <\overline{\Delta}(\mathbf{a}), \ (\overline{\Delta}_{+} \otimes \mathbf{I})(\mathbf{e} \otimes \mathbf{u} \otimes \mathbf{v})>$$

$$= <(\overline{\Delta} \otimes \mathbf{I})\overline{\Delta}(\mathbf{a}), \ \mathbf{e} \otimes \mathbf{u} \otimes \mathbf{v}>.$$

Thus (3.7) follows from (3.1). Let f_* be the transpose of f; then

$$<\mathbf{u} \cap \mathbf{f}(\mathbf{a}), \ \mathbf{e}^{\scriptscriptstyle{\dagger}} > = <\overline{\triangle}{}^{\scriptscriptstyle{\dagger}}\mathbf{f}(\mathbf{a}), \ \mathbf{e}^{\scriptscriptstyle{\dagger}} \otimes \mathbf{u} >$$
 $\qquad \qquad (\mathbf{e}^{\scriptscriptstyle{\dagger}} \in \mathbf{A}_{*}),$ $= <(\mathbf{f} \otimes \mathbf{I})\overline{\triangle}(\mathbf{a}), \ \mathbf{e}^{\scriptscriptstyle{\dagger}} \otimes \mathbf{u} >$ $= <\overline{\triangle}(\mathbf{a}), \ (\mathbf{f}_{*} \otimes \mathbf{I})(\mathbf{e}^{\scriptscriptstyle{\dagger}} \otimes \mathbf{u}) >$ $= <\overline{\triangle}(\mathbf{a}), \ \mathbf{f}_{*}(\mathbf{e}^{\scriptscriptstyle{\dagger}}) \otimes \mathbf{u} >$ $= <\mathbf{u} \cap \mathbf{a}, \ \mathbf{f}_{*}(\mathbf{e}^{\scriptscriptstyle{\dagger}}) >$ $= <\mathbf{f}(\mathbf{u} \cap \mathbf{a}), \ \mathbf{e}^{\scriptscriptstyle{\dagger}} > ,$

and this proves (3.8). Finally, to prove (3.9), choose an additive basis $\{x_1, x_2, \cdots\}$ for H such that

$$\langle x_1, u \rangle = \lambda \neq 0$$
 $(\lambda \in \Lambda)$, $\langle x_i, u \rangle = 0$ $(i > 1)$.

Relative to this basis, we may write

$$\overline{\Delta}(a) = a \otimes 1 + \sum a_i \otimes x_i,$$

$$(3.11) \overline{\triangle}(b) = b \otimes 1 + \sum b_i \otimes x_i,$$

which applied in (3.5) gives

$$(3.12) u \cap a = \lambda a_1, \quad u \cap b = \lambda b_1.$$

Multiplying (3.10) and (3.11), we get

$$\overline{\triangle}(ab) = ab \otimes 1 + (ab_1 + (-1)^{ik} a_1 b) \otimes x_1 + \sum_{i>1} c_i \otimes x_i + \sum_{i>1} d_j \otimes z_j \quad (c_i, d_j \in A),$$

where the z_j are products of the x_i . Applying this in (3.5), we obtain

(3.13)
$$u - ab = \lambda(ab_1 + (-1)^{ik} a_1 b).$$

Thus (3.9) follows from (3.12) and (3.13).

Let H be a simply-primitive Hopf algebra of finite type over a field K, and represent H and H_{\star} as in Corollary 2.3. (According to the adopted convention, the corresponding sequence of degrees of the x_i is monotanically nondecreasing.) The normal monomial (2.14) may be written

(3.14)
$$M = x_1^{m_1} x_2^{m_2} \cdots x_i^{m_i} \cdots (0 \le m_i < h(x_i)),$$

with finitely many $m_i > 0$. Let $\mu(M)$ be the corresponding normal monomial

(3.15)
$$\mu(\mathbf{M}) = \mathbf{u}_1^{\mathbf{m}_1} \mathbf{u}_2^{\mathbf{m}_2} \cdots \mathbf{u}_i^{\mathbf{m}_i} \cdots.$$

Since H has an associative coproduct, we may regard H as a generalized hyperalgebra $\{H, H, \Delta\}$. We assert that if x_j is the terminal factor of M, then

$$(3.16) u_{j} \sim M = \frac{\partial M}{\partial x_{i}}.$$

The proof is easy. Write $M = Nx_j$, where N is normal; then, applying (3.5) and (2.15), we get

$$<$$
u_j \sim M, e> = sg (Nx_j) [N, x_j] (e ϵ A_{*}).

Since $sg(Nx_i) = 1$ and $[N, x_i] = m_i$, (3.6) follows.

PROPOSITION 3.1. Let H be a simply-primitive Hopf algebra of finite type over a field K. A subalgebra $G \subset H$ is a Hopf subalgebra if and only if it is stable under cap-products.

Proof. In view of Proposition 2.5, it suffices to prove that G is stable if and only if it is primitively generated. We represent H and H_* as in Corollary 2.3; moreover, by Lemma 2.4, we may assume that $(\{x_i\} \cup \{1\}) \cap G$ is a basis for $\pi_0 \cap G$.

Let $g \in G$ be a homogeneous element. We may express g uniquely in the form

(3.17)
$$g = k_1 M_1 + k_2 M_2 + \cdots + k_s M_s \qquad (k_i \neq 0, k_i \in K),$$

where the M_i are (nonzero) normal monomials in the elements x_i .

- (i) Suppose that G is primitively generated. Then each M_i is a normal monomial in the elements of $X' = \{x_i\} \cap G$. From (3.16) we see that for all $j \geq 1$, $u_j \cap g \in G$. In view of (3.7), G is therefore stable under cap-products.
- (ii) Suppose that G is stable under cap-products. Let $x_{i_1}, x_{i_2}, \cdots, x_{i_t}$ ($i_1 < i_2 < \cdots < i_t$) be the elements of X that have positive multiplicity in some M_i in (3.17). Suppose x_j is the first of these elements which is not in X'. Let x_j occur with maximum multiplicity in M_1 ; then we may write $M_1 = \pm x_j N_1$, where N_1 is a normal monomial. By stability of G, the element $g_j = \mu(N_1) \frown g$ is in G. We may write

$$g_j = kx_j + L_j + P_j \qquad (k \neq 0, k \in K),$$

where L_j is a linear polynomial in those $x_{i_1}, \dots, \hat{x}_{j_1}, \dots, x_{i_t}$ (\hat{x}_j means that x_j is

omitted) that have the same degree as x_j , and where P_j is a polynomial in those x_{i_1} , ..., x_{i_t} that have lower degrees. By the assumption on x_j , clearly $P_j \in G$; hence $kx_j + L_j \in G$. Moreover, since L_j is linear, it follows that

$$kx_j + L_j \in \pi_0 \cap G$$
.

Since $X' \cup \{1\}$ is a basis for $\pi_0 \cap G$ we must have $x_j \in X'$. This contradicts the assumption on x_j , and hence $x_{i_1}, x_{i_2}, \cdots, x_{i_t} \in X'$. Thus G is primitively generated.

THEOREM 2. Let $\{A, H, \overline{\triangle}\}$ be a generalized simply-primitive Hopf algebra of finite type over a field K with characteristic p. If $f: \{A, H, \overline{\triangle}\} \rightarrow \{H, H, \triangle\}$ is a map, then f(A) is a Hopf subalgebra. Moreover, if one of the three conditions

(a)
$$p = 0$$
,

(b)
$$p \neq 0$$
, $\gamma(A) = 0$,

(c) $p \neq 2$, H an exterior algebra $\Lambda_K(X)$,

holds, then

$$A \cong B \boxtimes C,$$

where B and C are subalgebras of A such that f annihilates the positive degree elements of B and is injective on C.

Proof. The first part follows at once from (3.8) and Proposition 3.1. To prove the second part, we may therefore assume that f(A) = H. Represent H and H_* as in Corollary 2.3. We assert that there is a sequence $\{y_i\}$ of elements of A with the following properties:

$$f(y_i) = x_i,$$

(3.20)
$$u_j - y_i = \delta_{ij}$$
 (the Kronecker delta).

We proceed by induction. Choose y_1 so that $f(y_1)=x_1$. Assume that y_1 , y_2 , \cdots , y_k $(k\geq 1)$ have been chosen so that (3.19) and (3.20) hold for all i and j less than or equal to k. By an argument similar to the proof of (3.16) we may prove that if N is a normal monomial in y_1 , y_2 , \cdots , y_k and y_j is its terminal factor, then

$$\mathbf{u}_{\mathbf{j}} \frown \mathbf{N} = \frac{\partial \mathbf{N}}{\partial \mathbf{x}_{\mathbf{j}}}.$$

For 1 < i < k, we define

(3.22)
$$\sigma_{i}(a) = a - \sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{m!} (u_{i}^{m} - a) y_{i}^{m} \quad (a \in A).$$

Note that $\sigma_i(a)$ is a finite sum, since $u_i^m - a = 0$ for m sufficiently large. In particular, if u_i has odd degree, then

(3.22')
$$\sigma_{i}(a) = a - (u_{i} - a)y_{i}$$
.

We assert that

(3.23)
$$u_i - \sigma_i(a) = 0$$
.

If u_i has odd degree, then, by (3.9) and (3.22),

$$u_{i} \frown \sigma_{i}(a) = u_{i} \frown a - [(u_{i} \frown a) - (u_{i}^{2} \frown a)y_{i}] = 0.$$

If u_i has even degree, we get

$$u_{i} \frown \sigma_{i}(a) = u_{i} \frown a - \sum_{m=1}^{\infty} \left[\frac{(-1)^{m-1}}{(m-1)!} \left(u_{i}^{m} \frown a \right) y_{i}^{m-1} + \frac{(-1)^{m-1}}{m!} \left(u_{i}^{m+1} \frown a \right) y_{i}^{m} \right].$$

A straightforward computation shows that the summation reduces to $u_i \sim a$, and hence (3.23) is proved.

Now choose $a_{k+1} \in A$ so that $f(a_{k+1}) = x_{k+1}$, and define

(3.24)
$$a_{j,k} = \sigma_j \sigma_{j+1} \cdots \sigma_k (a_{k+1}) \qquad (1 \leq j \leq k).$$

Finally, define $y_{k+1} = a_{1,k}$. We must prove that

(3.25)
$$f(y_{k+1}) = x_{k+1},$$

(3.26)
$$u_{k+1} \sim y_i = \delta_{i,k+1} \quad (1 \le i \le k+1),$$

(3.27)
$$u_i - y_{k+1} = 0$$
 $(1 \le i \le k)$.

Using (3.8), we have

$$f(a_{k,k}) = f\sigma_k(a_{k+1}) = x_{k+1} - \sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{m!} (u_k^m - x_{k+1}) x_k^m = x_{k+1},$$

since $u_k - x_{k+1} = 0$. Now let $1 < j \le k$, and assume that $f(a_{j,k}) = x_{k+1}$. Then

$$f(a_{j-1,k}) = f\sigma_{j-1}(a_{j,k}) = x_{k+1} - \sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{m!} (u_{j-1}^m - x_{k+1}) x_{j-1}^m = x_{k+1},$$

since $u_{j-1} - x_{k+1} = 0$ for $1 < j \le k$. Thus, by induction on j, we have $f(a_1, k) = x_{k+1}$, and (3.25) is proved.

We obtain (3.26) from (3.25) as follows. Using (3.8), we have

(3.28)
$$f(u_{k+1} - y_i) = \delta_{i,k+1} \quad (1 \le i \le k+1).$$

If y_i has lower degree than u_{k+1} , then both sides of (3.28) are clearly zero. If y_i and u_{k+1} have the same degree then, since f is an isomorphism in degree zero, (3.26) follows from (3.28).

The proof of (3.27) is also by induction. Let $1 \le i \le k$. Then, by (3.23), we have $u_i \frown a_{i,k} = 0$. Now let $1 < j \le i$, and assume that $u_i \frown a_{j,k} = 0$. Then

$$u_{i} - a_{j-1,k} = u_{i} - \sigma_{j-1}(a_{j,k}) = u_{i} - a_{j,k} \pm \sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{m!} (u_{j-1}^{m} u_{i} - a_{j,k}) y_{j-1}^{m} = 0$$

by the inductive assumption. Thus by induction on j we have $u_i \sim a_{1,k} = 0$, and (3.27) is proved.

Let B be the subalgebra of A which is generated by 1 and all a such that $u_i \sim a = 0$ for all i. Let $b \in B$ have positive degree; then

$$u_i - f(b) = f(u_i - b) = f(0) = 0$$
 (all i).

Thus f(b) must be zero.

Let C be the subalgebra of A generated by y_1, y_2, \cdots . It is clear that y_i is in the center of A if and only if the corresponding x_i is in the center of H; moreover, from (3.19), $h(y_i) \ge h(x_i)$. In particular, if y_i is not central, then $h(y_i) = h(x_i) = 2$. Suppose y_i is central; then

- (a) if p = 0, $h(y_i) = h(x_i) = \infty$,
- (b) if $p \neq 0$ and $\gamma(A) = 0$, then $h(y_i) = h(x_i) = p$,
- (c) if $p \neq 2$ and $H = \Lambda_K(\{x_i\})$, then y_i and x_i have the same odd degree, and hence $h(y_i) = h(x_i) = 2$.

Thus if (a), (b), or (c) holds, then $h(y_i) = h(x_i)$ for all i, and hence f is injective on C.

It remains to prove (3.18). First we shall show that A = BC, in other words, that if $a \in A$, then

$$a = b_1 c_1 + \cdots + b_s c_s$$
 $(b_i \in B, c_i \in C)$.

If N is a normal monomial in the y_i , let $\mu(N)$ denote the normal monomial obtained by replacing each y_i in N by the corresponding u_i .

Clearly each $a \in A$ is annihilated by all $\mu(N)$ of length j, if j is sufficiently large. Thus it suffices to show that if $a \in A$ is annihilated by all $\mu(N)$ of a given length j, then $a \in BC$. The proof is by induction on j. For j = 1 this follows from the definition of B. Assume it for some $j \ge 1$; let a be annihilated by all $\mu(N)$ of length j + 1, and consider the element

(3.29)
$$a' = a - \sum (\mu(N) - a)N$$
,

where the summation extends over all N of length j. Clearly $\mu(N)$ a is in B, and hence the sum is in BC. Let N' be of length j; we have

$$\mu(N') \frown a' = \mu(N') \frown a - \sum \mu(N') \frown [(\mu(N) \frown a)N]$$

$$= \mu(N') \frown a - \mu(N') \frown a \pm \sum (\mu(N') \mu(N) \frown a)N = 0,$$

the sum vanishing by the assumption on a. Thus by the inductive assumption, $a^i \in BC$. From (3.29) it then follows that $a \in BC$, and the induction is complete. Thus A = BC.

It remains to show that B and C are linearly disjoint. Suppose

(3.30)
$$b_1 N_1 + b_2 N_2 + \cdots + b_t N_t = 0,$$

where the $b_i \in B$ and the N_i are distinct normal monomials in the y_i . Assume that N_1 is the longest monomial; it suffices to show that $b_1 = 0$. This follows if we apply $\mu(N_1)$ to both sides of (3.30).

4. PROOF OF THE MAIN THEOREM

Let K be a field of characteristic p, and X an arcwise connected H-space with $H^*(X, K)$ of finite type. It is well known that if \triangle is the product in X, then $H^*(X, K)$ is a Hopf algebra with coproduct

$$(4.1) \qquad \triangle^*\colon H^*(X, K) \to H^*(X, K) \otimes H^*(X, K).$$

(In (4.1), and (4.2) below, we use implicitly the isomorphism given by the Künneth formula.) The arcwise connectedness of X implies that $H^*(X, K) \cong K \cdot 1$, and hence we have a standard augmentation. If we assume that X is homotopy-associative and homotopy-commutative, then it follows from (1.2) and (1.3) that Δ^* is associative and anticommutative.

Let T be an arcwise connected space, with $H^*(T,\underline{K})$ of finite type, on which X operates (on the right and up to homotopy). The map $\overline{\Delta} \colon T \times X \to T$ induces a homomorphism of graded algebras

$$\overline{\triangle}*: H^*(T, K) \to H^*(T, K) \otimes H^*(X, K).$$

Conditions (1.4) and (1.5) then imply (3.1) and (3.2) (the latter with $\overline{\triangle}^*$ in place of $\overline{\triangle}$). Thus $\{H^*(T, K), H^*(X, K), \overline{\triangle}^*\}$ is a generalized Hopf algebra of finite type over K.

Let $f: X \to T$ commute with the operations of X on T and on itself (by right translations). Then (1.6) implies that $f^*: H^*(T, K) \to H^*(X, K)$ is a map of generalized Hopf algebras. Thus by the first part of Theorem 2, $f^*H^*(T, K)$ is a Hopf subalgebra. If we assume p = 0, then by (2.10) and Proposition 2.1, $H^*(X, K)$ is simply-primitive. Thus Theorem 1 follows from Theorem 2.

If in place of the homotopy-commutativity of X we assume that $H^*(X, K)$ is an exterior algebra and $p \neq 2$, then by (2.11) it is primitive and, moreover, simply-primitive. Thus the theorem of Borel follows from Theorem 2.

REFERENCES

- 1. A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. (2) 57 (1953), 115-207.
- 2. ——, Sur l'homologie et la cohomologie des groupes de Lie compacts connexes, Amer. J. Math. 76 (1954), 273-342.
- 3. E. Halpern, On the structure of hyperalgebras. Class 1 Hopf algebras, Portugal Math. 17 (1958), 127-147.
- 4. ——, Twisted polynomial hyperalgebras, Mem. Amer. Math. Soc. no. 29 (1958), 1-61.
- 5. J. Leray, Applications continue commutant avec les éléments d'un groupe de Lie compact, C. R. Acad. Sci. Paris 228 (1949), 1784-1786.

- 6. J. Leray, Sur la forme des espaces topologiques et sur les points fixes des représentations, J. Math. Pures Appl. (9) 54 (1945), 95-167.
- 7. H. Samelson, Beiträge zur Topologie der Gruppen-Mannigfaltigkeiten, Ann. of Math. (2) 42 (1941), 1091-1137.

The University of Michigan