RELATIONS AMONG THE LOTOTSKY, BOREL AND OTHER
METHODS FOR EVALUATION OF SERIES

~

Ralph Palmer Agnew

1. INTRODUCTION

It is our first purpose to correct and extend the development in [1] of relations
between the Lototsky and Borel methods for evaluation of series. These resulis and
known facts about evaluability of Fourier series are used in Section 6 to obtain fur-
ther information about the Lototsky method. Section 7 gives results on consistency
which imply that the Lototsky and Abel methods are consistent.

As in Sections 9 and 11 of [1], we shall be concerned with analytic extensions.
When f(z) is defined, by a convergent power series or otherwise, and analytic over
some neighborhood of the origin, we use the symbol {f(z)} * to denote the analytic
extension of f(z) along radial lines from the origin. Thus, for example, Z;f:o z"
converges to 1/(1 - z) only when |z| < 1, but { Z-gz"}* = 1/(1 - z) for each com-
plex z = x + iy which is not on the real hali-line x > 1.

2. METHODS FOR EVALUATION OF SERIES

As usual, a series uy+ u, + -« is said to be evaluable to S by the Abel method
A, and we write A(up+ u, + +-+) = S, if the series Zp-ou rX converges when lrl <1
and

o0
(1) Lim 2 u rk=§
r—1- k=0

holds. In accordance with an idea of Silverman and Tamarkin [6], the series will be
said to be evaluable to S by the generalized Abel method A* if

r—l- k=0

(2) lim J 2J urk }* =S.

As usual, the series is said to be evaluable to S by the Borel integral method BI if
the series Ty_g (4 t¥)/k! converges for each t and

0
u
(3) 5 et X Ktkat=s
0

holds. As in[1], the series is evaluable to S by the generalized Borel integral
method BI* if
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00 [~ o]
u *
(4) S e‘t{Z) —l-ftk} dt = s.
0 k=0 X
Here and elsewhere, integrals over finite intervals can be Riemann or Lebesgue in-
o h
tegrals, and S = limh__mg . The series Zu, is evaluable to S by the Borel ex-
0 0

ponential method B if

S
K _
g t=8

L

(5) lim et

t— oo k

1}
o

when s, s,, --- is the sequence of partial sums of Zu,.

As in [1], the constants p,) denote the Stirling numbers defined by the poly-
nomial identities

n

(6) P(X)=x(x+ 1)(x+ 2)e-(x+n-1)= 2 pnkxk n=1, 2, --)
k=1

with p,x= 0 when k <1 and when k > n. The principal property of these numbers
which we need is the recursion formula

(7 Pntl,k = MPn k + Pn k-1

The Lototsky method for evaluation of series was initially defined in terms of a se-
quence-to-sequence transformation involving the numbers p,k. For our present
urposes, it is convenient to use the series-to-series version given in Section 6 of
1]. After making adjustments of subscripts so that the series being evaluated has
the form ug + u, + u, ***, we see that the Lototsky method involves the transforma-
tion U, = u, and :

pn,k

(8) ‘ Un = Emuk (n = 1, 2, '").

k=1

The series is evaluable L to S if the series U, + U, + U, + -« converges to S.

3. A USEFUL FORMULA

Let uy + u, + °-» be a given series, and let

> o]

(9 f(t) = 27 ke

K=o K!

for those complex values of t for which the series converges. Supposing always that
|z| <1, 1et log[1/(1 - z)] or - log(l - z) be unambiguously defined by the elemen-
tary formula .
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-log(l -2z)=2+2%2/2+ 23/3 + «-,

and let

(10) F(z) = £(-log (1 - z)) = ¥ —r[-log (1 - 2)[¥
k=0 :

for those complex values of z for which the series converges. We assume that
there is a positive number R, such that the series in (9) converges when Itl <R,
or, equivalently, that there is a positive number R such that R < 1 and the series
in (10) converges when |z| < R. Then (10) defines a function F(z) which is analytic
when [zl < R; and accordingly,

© _(n)
(11) F(z) = 25 E—n!—(o)zn (|z] <R).
k=0

Differentiation of (10) shows that the formula

n 2 2 u 3
(12) FlP)g) = —(TTIEFJE Pnj Ejﬁﬁ[- log (1 - z)]k-J

is valid when n = 1. Suppose that (12) holds for a given n. Considering the right
side of (11) to be the product of (1 - z)™ and another function, we differentiate this
product and use the recursion formula (7) to obtain the result of replacing n by

n+ 1. Thus it is proved that (12) holds when n =1, 2, 3, *-. The use of (11), (10),
and (12) gives

o] n p .

(13) F(z) =ug+ 25 [E —I—:—:'-]uj]zn (Iz[ <R).
n=1} j=1""

This result and (8) yield the formula

(14) F(z)= 2 (n+ DU,z (Jz|<R),

n=0

which involves the terms of the Lototsky transform of the series uy+ u; + +--.
Starting with (14), replacing F(z) by the last member of (10), replacing the functions
by their analytic extensions, and integrating the result gives the formula

o0

(15) 5: {EO%[-log(l - z)]k} "z = r{ 27 Unr“}.*,

n=0

which is valid when Irl is sufficiently small. Changing the variable of integration
in (15) by setting t= -log(1 - z) and z = 1 - e~t, we find
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-log(l-r) o0 ) *
(16) S‘ ® e’t{z%tk}*dt=r{2 U;lrn} ,

0 k=0 n=0

a relation which is valid when r is sufficiently small. This is the fundamental for-
mula relating BI and L transforms of series. To make effective use of it, we need
the following lemma.

LEMMA. If one of the two sevies

%)
Uk
n=0

17) T

AVE

]

has a positive radius of convevgence, then so also does the other, and (16) is valid
when r| is sufficiently small,

We have obtained the conclusion of the lemma under the hypothesis that the first
series in (17) has a positive radius of convergence. We complete the proof by show-
ing that if the second series in (17) has a positive radius of convergence, then so also
does the first. Let Z u, be a series whose Lototsky transform Z U, is such that
Z | Un|r® < « for some fixed r (0 < r < 1). To fit the notation of [1], let
Sp=Uug+ uy + *-+uy_] and 0, =Ug+ Uy + ... + U, _3 for each n=1, 2, ---. Then
% |oy| ¥ <. Choose a constant H such that |o,| r® < H for each n. Then, with
the notation of [1, Section 5],

n n
lSnIS E kllanl I"le E kl‘an‘Hr_k
k=1 k=1

n
a _ -n , n!
SHET D Kldmd = B0 S B Gy

for some constant H'. This implies that, for some constant H",
|u,| < H'nl/(r log 2)7.

Therefore the first series in (17) converges when |t| <r log 2, and the lemma is
proved. It follows from the lemma and from uniqueness of radial analytic extensions
that, for each r in 0 < r < 1 for which one of the two members of (16) exists, the
two members both exist and are equal.

4. RELATIONS AMONG METHODS

We now state and prove some consequences of (16).

THEOREM 1. The methods BI* and A*L are equivalent methods for evaluation
of series; that is, BI* ~ A*L.,

Suppose first that Zuy is evaluable BI* to S. Then the left member of (16)
exists when 0 < r < 1 and converges to S as r — 1. It then follows from (16) that
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[+ o]
*
lim { » Unrn} - s.

r—l k=0

But Z U, r™ is the Abel transform of the Lototsky transform of Zu,, and it follows
that the series is evaluable A*L to S. Thus A*L D BI*. A similar argument shows
that if Z up is evaluable A*L to S, then it is also evaluable BI* to S. Thus

BI* D A*L, This completes the proof.

In [1], it was erroneously asserted that BI* ~ AL. The following example clari-
fies this matter. Let Zu,, be the series whose Lototsky series-transform Z Un has
terms defined by the identity

Uy + Uyz + Upz? + +oo = (1 + 22)71.

Then Z u, is evaluable A*L, and hence evaluable BI¥*; but the series is not evaluable
AL because the radius of convergence of Z Upz" is less than 1.

It is a trivial consequence of Theorem 1 that A*L D BI and BI* O AL. The fol-
lowing theorem is less obvious.

THEOREM 2. AL D BI.

To prove this theorem, let Zu, be evaluable BI to S. Then the series in (9)
must converge for each t, and it follows that the series in (10) must converge for
each z for which |z| < 1. Therefore the star superscripts can be removed from
the series in (16). The result follows.

It is not possible to modify the above argument to prove that BID AL. In fact,
the weaker relation BID L is false. Some explicit examples of series evaluable L
but nonevaluable BI are given in [1].

THEOREM 3. The methods 1. and BI are consistent,

This theorem follows from Theorem 2 and a standard argument. Suppose that
Zu, is evaluable BI to S, and is evaluable L to S,. Since A is regular, the series
is evaluable AL to S,. But AL D BI, and therefore S, = S,;. This proves the theo-
rem. Since BI D B, it follows that L, and B are consistent.

THEOREM 4. The inclusion velations BI1 D L and L D BI are both false; that is,
L and BI have overlapping evaluability fields. Likewise,L. and B have overlapping
evaluability fields.

We have already noted that the relation BI D L is false. Since BID> B, the rela-
tion B O L must also be false. The proof is completed in the next section. In[1],
the questions whether L. D BI and L D B were left unanswered.

5. AN EXAMPLE OF A SERIES EVALUABLE BI AND B BUT
NONEVALUABLE L

Let ugy+ u, + +++ be the series whose terms are defined by the identity

(18) » %tﬂ = £(t) = exp[~ie'].
n=0
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This series is obviously evaluable BI. Moreover, with the aid of formulas given by
Hardy [4, page 182], it is easy to see that the series is also evaluable by the Borel
exponential method B. In accordance with (10) and (14), the Lototsky transform

Uy + Uy + - is determined by the identity

(19) 27 (n+ 1)U, 2™ = F(z) = f(-1log (1 - z)) = exp[-i/(1 - 2)],
n=0

in which the functions are analytic and the series converges when ]zl < 1. Without
estimating the terms U,, we shall show that £ U, diverges, and hence that Z uy, is
not evaluable L. I we suppose that Z U, converges, then there is a constant M
such that |Uy| < M, and (19) implies that

20) |F@)| <M2Z @+ 1)]|z|"= M1 - |z])-2

n=0

when |z| < 1. But when 0 < 6 < 7/2 and = =%+ -;-eZiB, we find that |z| = cos6 <1,
1- |z| =2 sin2(6/2), and (1 - z)-1=1 + i cot 6. These formulas and (19) imply that

cot5 2]
51 °

(21) (1 - |20 | F()] = 4 sin® £ ecot 0> 4 sint £

Since the last member of (21) is not bounded, we have a contradiction of (20). There-
fore Z u, is not evaluable L.
6. FOURIER SERIES

The Lototsky sequence transform o,, 0,, -*- of a sequence s,, s,, *** is defined
by -

n
(22) On = 2J Pnk Sk-1 -
k=1

Starting with the familiar Dirichlet formula

dt

m/2 .
5,(%) = % go f(x + 2t) + f(x - 2t) sin(2k + 1)t

(23) 2 sint

for the partial sums of the ordinary Fourier series of a function f which has period
27 and is integrable over a period, we can replace sin(2k + 1)t by the imaginary
part of eite2kit and use (22) and (6) to find that the elements of the L transform of
the Fourier series are

(24)

Ln(t) dt,

/2
0 (x) = S'O" f(x + 2t)2+ £(x - 2t)

where
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(25) Lo() = —2——— S eit(e2it 1 1)(e2it + 2)... (e2it 4 n - 1).
nlwsint

In particular,

L,@t) = %, L,(t) =% cos? t, L,(t) = %—g cos?t,

2
Ly(t) = %%——1: [-1+4cos?2t+ 16 costt],

(26)

cos t

L,(t) = [- 5+ 48 cos*t + 64 cos® t],

Ly(t) = °°S €05 L[ 13- 20 cos? t + 64 cos® t + 192 cos® t + 128 cos® ],

The first of the formulas

m/2 /2
(27 \ 1= 51 L,(t)dt, Lp= S‘ | Lo at
0 0

is an obvious consequence of the fact that 0,(x) =1 when £(x) = 1, and the second de-
fies the Lebesgue constants L, for the Lototsky transformation.

With the aid of familiar facts about Fourier series that can be found in [4] or [7],
we give an indirect proof that L is not Fourier-effective and hence that the sequence
L,, L,, *** is unbounded. Let f(x) be a continuous function of period 27 having a
Fourier series uy(x) + u,(x) + :-- which fails to be evaluable by the Borel integral
method BI when X has a particular value X,. Then u,(xg) — 0 as n — e, and hence
the series in the integrand in the left member of (16) is convergent for each complex
t. Therefore Zuy(Xg) is nonevaluable BI*. Theorem 1 then implies that Z u,(xq) is
nonevaluable A*L and hence is nonevaluable L. Thus the methods A*L, AL, and L
are not Fourier-effective, and our result is established.

This implies that the method A*L cannot include any of those methods for evalu-
ation of series that are Fourier-effective. In particular, when r > 0 and C, denotes
the Cesaro method of order r, the relations

A*LD> C., ALDC,, C,LD>C,, LDC,, A*LDA, ALDA, LDOA

are all false.

7. CONSISTENCY OF A*L. AND A*

The results of the preceding section leave open the question whether the Lototsky
method L is consistent with the Abel and Cesaro methods A and Cr. We now give
affirmative answers to this and other questions by proving the following theorem.

THEOREM 5. The methods A*L and A* are consistent methods for evaluation
of series,

Because of Theorem 1, this is a consequence of the following theorem.
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THEOREM 6. The methods BI* and A* are consistent methods for evaluation
of series.

To prove this theorem, we suppose that 2 u, is a given series which is evaluable
A* to V, and is evaluable BI* to V,. Then, for some positive number R, the series
in

00 * oo *
(28) A(r) = { 27 rkuk} =(1 - r){ 2 rksk} =V, + o(1)
k=0 k=0
converge when |r| < R and (28) holds as r— 1~. This implies that
(29) lim sup |un|1/n< R-!,  lim sup ‘snll/n<R'1
n — 00 — n—»co -
Moreover,
t o sk *
(30) FO) = | o) 2 Eul ax=v,+00)
0 ko K!

as t — . Since (29) implies that the series in (30) converges for all values of x,
we can remove the star superscript. Moreover we can replace ux by sy - sx_j,
where s_, = 0, to put (30) in the form

3

t k+1
(31) F@t) = { X Z) X } dt=V (1);
godx (k+1)|Sk 1+0
and hence
(32) Flt)=e” Z‘ Ei5k-1 = Vp + o).

This establishes, for the case in which we are interested, validity of familiar for-
mulas involving the BI transform of a sequence and the B transform of the sequence
obtained by prefixing a zero; see [4, page 182] and [5]. The remainder of the proof is
a modification of the proof of Doetsch [2] that B and A are consistent; see also Gaier
[3] and references given there. If we take Laplace transforms of the first and second
members of (32), we find that

[+ ]

(33) i‘)w e Str()dt= Y = o5 {‘S‘we_(s"'l)ttkdt }Sk-l
' 0

k=0

1
E (S+ 1) k+1 8k-1 = E ( 1)E+Z

when (s + 1)~! < R, the termwise integration being justified by the fact that we ob-
tain convergent integrals and series by replacing each function and number in (33)
by its absolute value. With the aid of (32), we see that the first member of (33)
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exists and is analytic over the half-plane s = o + it (0 > 0). Putting s= (1 - r)/r in
(33) therefore shows that the formula

(34) S‘w e"[(l'r)/r]t]?(t) dt = rz‘{ 2o rk sk} *
k=0

0

is valid when 0 < r <1. Consequently,

(35) 1 ; r Sooe-[(l"r)/r]tF(t) dt = r [(1 _ r){ E} I‘ksk} ]*

0 k=0

when 0 < r < 1. With the aid of (28) and (32), we can let r — 1 in (35) to obtain the
equality V, =V, and complete the proof of Theorem 6.
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