ON SOME PROBLEMS BY ERDOS, HERZOG AND PIRANIAN

Chr. Pommerenke

Let f(z) be a polynomial with highest coefficient 1. The lemniscate |f(z)| =1 is .
denoted by C, and its interior |f(z)| <1 by E. A paper by P. Erdds, F. Herzog and
G. Piranian [1] raises some questions about the geometric properties of C and E. I
shall give an answer to a few of these questions.

The answer to the second part of Problem 10 in [1] is negative:

THEOREM 1. There exists a polynomial £(z) such that, for some point z, lying
on the lemniscate C of £(z) and on a line of support of C, |z - zo| < 2 for every
ze C,

To show this, let S(p) denote the closed sector 0 < |z| <p, Iarg z| <u/3.

Since the area of S(2) is 47/3 > =, the transfinite diameter of S(2) is greater than
1 (Pdlya [3, p. 280]). Hence there exists a p, < 2 such that S(p,) has transfinite

diameter 1. Now S(p,) can be approximated arbitrarily closely by the lemniscates
C of certain polynomials f(z) (Faber [2, p. 100]). Let 0 < 6 < (2 - p,)/6. There
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exists a lemniscate C whose points lie within a distance & of the boundary of S(p),
and which has at least one point of support z, lying in the heavily drawn triangle T
in the figure. Since |zo| < 56,

|z - zo] < p,+ 6+ 56 <2

for every z € C.

The remainder of this note deals with the case where E is connected (in which
case f(z) is called a K-polynomial in [1]). This special case seems much easier
than the general one, since use can be made of the theory of univalent functions. The
set E is connected if and only if all the zeros of the derivative f'(z) are contained in
E ([1, p. 142]).

The following theorem answers part of Problem 12 in [1]):

THEOREM 2. If E is connected, the length of C is at least 2w, with equality
only for £(z) = zn.

The region G outside of C is simply connected. Let
w=g(@ = (@)= (z+ )=z ...

This function is regular and uniform in GUC (except for the simple pole at «).
Since all the zeros of £'(z) belong to E, we have

2.1

g'®) = 11(2) (2D #0,

for z€ GUC. On C we have |g(z)| = 1. Therefore g(z) is univalent in GUC
(PSlya and Szegd [4, Vol. 1, Section III, p. 122, Problem 193]). Its inverse function

z=z[/(w)=w+b0+%+

maps IW|Z 1 conformally onto GU C. The length of C is

2m . 2 .
5 |v'(el®)|ds > |§ ﬂl!/'(ele) de| = 27,
0 0

with equality only for Y(w) = w, that is, for £(z) = z™.
Next, I shall establish the conjecture in Problem 14:

THEOREM 3. Let § = (z1 + -~ + zp)/n, where z), -+, zn, are the zevos of f(z).
If E is connected, then C is contained in the circle lz - & | <2.

To prove this, let z = Y(w) be the function in the last proof. From the relation
1
w = g(z) = (£(2)) /n_ (z" -ntz™"1+ wyl/ms g ey -SL +oeee,

we get

z= Yw) = WL+
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Since this function maps |w| =1 onto C, it follows [4, Vol. 2, Section IV, p. 25,
Problem 140] that for every ¢ € C

le-tl<2,

i
ew . Since no polynomial f(z) corresponds to

with equality only for y(w) = w+ € +
the latter function Y¥(w), equality can not occur-

THEOREM 4. If E is connected and has diameter d and width b, then
2<d<4, 0 < b2< 32/3, b? + @2 < 64/3.

Proof. A consideration of the function ¥(w) used above shows that 2 < d < 4,
and that the bounds are sharp [4, Vol. 2, Section IV, p. 24, Problem 141].

To prove the inequality on b, we note that, for each value ¢ on C, the function

]

Il

(W (w?) - cP (W2 = (bg - €) + by/W? + ++*)

= w+-;:(bo -c)Y/w+ ( %bl - %(b0 - c)z) A AR SRTE
is regular and univalent in |w| > 1. Hence

1 2 1 1 2
(1) -é(bo-c) +3§b1--—g(b(,—c)2 <1

[4, Volume 2, Section IV, p. 24, Problem 136]. It will be convenient to write
(bo-c)exp(--;—argbl)=2(x+iy), |b1|=6.

Then 0 < 8 < 1, and condition (1) takes the form

2

2
X + iy +%B-x2+y2—2ixy <1,

that is,
(2) vy + % (y*+ 2By2 + B3) + xz{l + %[x2 + 2(y? - B)]}S 1.
If the quantity in braces is negative, then
3[x*+ 2(y2 - B)] < - 4,
and this implies that y2 <8 - 2/3 < 1/3. If the quantity in braces is nonnegative,

then (2) implies that

YR+ o(yt+ 2657+ B9 - 10,
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and therefore that
2 4 3
2 -—— — —
(3) V< -3 B+3\/1+4B-

The right member of this inequality is a decreasing function of 8 (8 > 0). Therefore
its maximum occurs at 8 = 0, and it follows that y? < 2/3. Since b is at most four
times the greatest possible value of |y|, b% < 32/3.

To obtain a useful relation between the quantities x% + y2 = r?2 and B, we write (2)
in the form
r2+%(r4— 2r2+ B%) <1-3By*< 1.
This inequality implies that

(4) r2§—§-+3+§\/1-%3.

Inequalities (3) and (4) now lead to the result

4( / 3 3 )
2 2 — —_ - — -
y‘+r 53 \/1+4B+\/1 4[3 1.
Since the function ¥1 + t is concave, it follows that y? + r? < 4/3 for all c on C,
and therefore that b? + d? < 64/3.
Remarks. Since (b + d)? < 2(b? + d?) and bd < (b?+ d?)/2, the theorem implies
that
b+ d< y128/3=~ 6.53, bd < 32/3.

It is clear that our upper bounds for b, b + d and bd can be slightly improved. To
obtain lower bounds on the suprema of these quantities, we consider first the func-
tion

(5) " Z=(W3+W-3)%=W+ sen

which maps the domain |w| > 1 onto the plane from which the three rectilinear seg-
ments

PN
-2 e ,2 e k=1,2,3)

have been deleted. Since the development of (5) begins with the term w, the config-
uration L of the three segments has transfinite diameter 1, and therefore it can be
approximated by certain lemniscates C. It is easy to see that L has

1
b= y323> 2.18,

whereas Erdds, Herzog and Piranian [1, Problem 15] conjectured that b < 2 inall
cases.
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The function

z=(w2+a+w"2%=w+--- -2<a<?)

maps |W| > 1 onto the plane from which the two rectilinear segments

[-2+ )%, 2+@)%] and [-i(2 - @)Z, i(2 - @)?]

have been deleted. If we take o = 1, the configuration of the two segments has trans-
finite diameter 1 and

b=v3, d=2V3, b+d=3y3>5.19.
If we take a = 2/3, we get
b=4y2/3, d=4yY6/3, bd=32V¥3/9>6.15.
From this we deduce that
sup b > Vﬁz%, sup (b + d) > 3V3, supbd> 32V3/9,

for the class of f(z) for which E is connected.
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