ON SOME PROBLEMS BY ERDÖS, HERZOG AND PIRANIAN

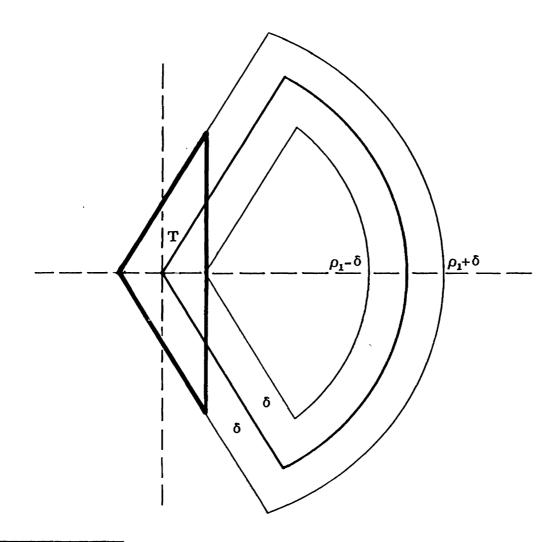
Chr. Pommerenke

Let f(z) be a polynomial with highest coefficient 1. The lemniscate |f(z)| = 1 is denoted by C, and its interior |f(z)| < 1 by E. A paper by P. Erdös, F. Herzog and G. Piranian [1] raises some questions about the geometric properties of C and E. I shall give an answer to a few of these questions.

The answer to the second part of Problem 10 in [1] is negative:

THEOREM 1. There exists a polynomial f(z) such that, for some point z_0 lying on the lemniscate C of f(z) and on a line of support of C, $|z - z_0| < 2$ for every $z \in C$.

To show this, let $S(\rho)$ denote the closed sector $0 \le |z| \le \rho$, $|\arg z| \le \pi/3$. Since the area of S(2) is $4\pi/3 > \pi$, the transfinite diameter of S(2) is greater than 1 (Pólya [3, p. 280]). Hence there exists a $\rho_1 < 2$ such that $S(\rho_1)$ has transfinite diameter 1. Now $S(\rho_1)$ can be approximated arbitrarily closely by the lemniscates C of certain polynomials f(z) (Faber [2, p. 100]). Let $0 < \delta < (2 - \rho_1)/6$. There



Received January 15, 1959.

exists a lemniscate C whose points lie within a distance δ of the boundary of $S(\rho_{\vec{x}})$, and which has at least one point of support z_0 lying in the heavily drawn triangle T in the figure. Since $|z_0| \leq 5\delta$,

$$|\mathbf{z} - \mathbf{z}_0| \leq \rho_1 + \delta + 5\delta < 2$$

for every $z \in C$.

The remainder of this note deals with the case where E is connected (in which case f(z) is called a K-polynomial in [1]). This special case seems much easier than the general one, since use can be made of the theory of univalent functions. The set E is connected if and only if all the zeros of the derivative f'(z) are contained in E ([1, p. 142]).

The following theorem answers part of Problem 12 in [1]:

THEOREM 2. If E is connected, the length of C is at least 2π , with equality only for $f(z) = z^n$.

The region G outside of C is simply connected. Let

$$w = g(z) = (f(z))^{1/n} = (z^n + \cdots)^{1/n} = z + \cdots$$

This function is regular and uniform in $G \cup C$ (except for the simple pole at ∞). Since all the zeros of f'(z) belong to E, we have

$$g'(z) = \frac{1}{n}f'(z)(f(z))^{\frac{1}{n}-1} \neq 0$$
,

for $z \in G \cup C$. On C we have |g(z)| = 1. Therefore g(z) is univalent in $G \cup C$ (Pólya and Szegő [4, Vol. 1, Section III, p. 122, Problem 193]). Its inverse function

$$z = \psi(w) = w + b_0 + \frac{b_1}{w} + \cdots$$

maps $|w| \ge 1$ conformally onto $G \cup C$. The length of C is

$$\int_0^{2\pi} \left| \psi'(e^{i\theta}) \right| d\theta \ge \left| \int_0^{2\pi} \psi'(e^{i\theta}) d\theta \right| = 2\pi,$$

with equality only for $\psi(w) = w$, that is, for $f(z) = z^n$.

Next, I shall establish the conjecture in Problem 14:

THEOREM 3. Let $\zeta = (z_1 + \cdots + z_n)/n$, where z_1, \cdots, z_n are the zeros of f(z). If E is connected, then C is contained in the circle $|z - \zeta| < 2$.

To prove this, let $z = \psi(w)$ be the function in the last proof. From the relation

$$w = g(z) = (f(z))^{1/n} = (z^n - n\zeta z^{n-1} + \cdots)^{1/n} = z - \zeta + \frac{d_1}{z} + \cdots,$$

we get

$$z = \psi(w) = w + \zeta + \cdots$$

Since this function maps |w| = 1 onto C, it follows [4, Vol. 2, Section IV, p. 25, Problem 140] that for every $c \in C$

$$|c-\zeta|\leq 2$$
,

with equality only for $\psi(w) = w + \zeta + \frac{e^{i\alpha}}{w}$. Since no polynomial f(z) corresponds to the latter function $\psi(w)$, equality can not occur.

THEOREM 4. If E is connected and has diameter d and width b, then

$$2 < d < 4$$
, $0 < b^2 < 32/3$, $b^2 + d^2 \le 64/3$.

Proof. A consideration of the function $\psi(w)$ used above shows that $2 \le d < 4$, and that the bounds are sharp [4, Vol. 2, Section IV, p. 24, Problem 141].

To prove the inequality on b, we note that, for each value c on C, the function

$$(\psi(w^2) - c)^{\frac{1}{2}} = (w^2 - (b_0 - c) + b_1/w^2 + \cdots)^{\frac{1}{2}}$$

$$= w + \frac{1}{2}(b_0 - c)/w + \left(\frac{1}{2}b_1 - \frac{1}{8}(b_0 - c)^2\right)/w^3 + \cdots$$

is regular and univalent in |w| > 1. Hence

(1)
$$\left| \frac{1}{2} (b_0 - c) \right|^2 + 3 \left| \frac{1}{2} b_1 - \frac{1}{8} (b_0 - c)^2 \right|^2 \le 1$$

[4, Volume 2, Section IV, p. 24, Problem 136]. It will be convenient to write

$$(b_0 - c) \exp \left(-\frac{i}{2} \arg b_1\right) = 2(x + iy), \quad |b_1| = \beta.$$

Then $0 \le \beta < 1$, and condition (1) takes the form

$$\left| x + iy \right|^2 + \frac{3}{4} \left| \beta - x^2 + y^2 - 2ixy \right|^2 \le 1$$
,

that is,

(2)
$$y^2 + \frac{3}{4}(y^4 + 2\beta y^2 + \beta^2) + x^2 \left\{ 1 + \frac{3}{4}[x^2 + 2(y^2 - \beta)] \right\} \leq 1.$$

If the quantity in braces is negative, then

$$3[x^2 + 2(y^2 - \beta)] < -4$$
,

and this implies that $y^2 < \beta - 2/3 \le 1/3$. If the quantity in braces is nonnegative, then (2) implies that

$$y^2 + \frac{3}{4}(y^4 + 2\beta y^2 + \beta^2) - 1 \le 0$$
,

and therefore that

(3)
$$y^2 \leq -\frac{2}{3} - \beta + \frac{4}{3}\sqrt{1 + \frac{3}{4}\beta}.$$

The right member of this inequality is a decreasing function of β ($\beta > 0$). Therefore its maximum occurs at $\beta = 0$, and it follows that $y^2 \le 2/3$. Since b is at most four times the greatest possible value of |y|, $b^2 < 32/3$.

To obtain a useful relation between the quantities $x^2 + y^2 = r^2$ and β , we write (2) in the form

$$r^2 + \frac{3}{4}(r^4 - 2\beta r^2 + \beta^2) \le 1 - 3\beta y^2 \le 1$$
.

This inequality implies that

(4)
$$r^{2} \leq -\frac{2}{3} + \beta + \frac{4}{3}\sqrt{1 - \frac{3}{4}\beta}.$$

Inequalities (3) and (4) now lead to the result

$$y^2 + r^2 \le \frac{4}{3} \left(\sqrt{1 + \frac{3}{4}\beta} + \sqrt{1 - \frac{3}{4}\beta} - 1 \right).$$

Since the function $\sqrt{1+t}$ is concave, it follows that $y^2+r^2\leq 4/3$ for all c on C, and therefore that $b^2+d^2\leq 64/3$.

Remarks. Since $(b+d)^2 \le 2(b^2+d^2)$ and $bd \le (b^2+d^2)/2$, the theorem implies that

$$b + d < \sqrt{128/3} \approx 6.53$$
, $bd < 32/3$.

It is clear that our upper bounds for b, b+d and bd can be slightly improved. To obtain lower bounds on the suprema of these quantities, we consider first the function

(5)
$$z = (w^3 + w^{-3})^{\frac{1}{3}} = w + \cdots,$$

which maps the domain $\left| \mathbf{w} \right| > 1$ onto the plane from which the three rectilinear segments

$$\begin{bmatrix} \frac{1}{3} e^{\frac{2\pi i}{3}k} & \frac{1}{3} e^{\frac{2\pi i}{3}k} \\ -2^{\frac{1}{3}} e^{\frac{1}{3}} & e^{\frac{1}{3}k} \end{bmatrix} \qquad (k = 1, 2, 3)$$

have been deleted. Since the development of (5) begins with the term w, the configuration L of the three segments has transfinite diameter 1, and therefore it can be approximated by certain lemniscates C. It is easy to see that L has

$$b = \sqrt{3} 2^{\frac{1}{3}} > 2.18$$
,

whereas Erdös, Herzog and Piranian [1, Problem 15] conjectured that $b \leq 2$ in all cases.

The function

$$z = (w^2 + \alpha + w^{-2})^{\frac{1}{2}} = w + \cdots$$
 (-2 < \alpha < 2)

maps |w| > 1 onto the plane from which the two rectilinear segments

$$\left[-(2+\alpha)^{\frac{1}{2}}, (2+\alpha)^{\frac{1}{2}}\right]$$
 and $\left[-i(2-\alpha)^{\frac{1}{2}}, i(2-\alpha)^{\frac{1}{2}}\right]$

have been deleted. If we take α = 1, the configuration of the two segments has transfinite diameter 1 and

$$b = \sqrt{3}$$
, $d = 2\sqrt{3}$, $b + d = 3\sqrt{3} > 5.19$.

If we take $\alpha = 2/3$, we get

$$b = 4\sqrt{2}/3$$
, $d = 4\sqrt{6}/3$, $bd = 32\sqrt{3}/9 > 6.15$.

From this we deduce that

$$\sup b \ge \sqrt{3} \, 2^{\frac{1}{3}}, \quad \sup (b + d) \ge 3 \, \sqrt{3}, \quad \sup bd \ge 32 \, \sqrt{3}/9$$

for the class of f(z) for which E is connected.

REFERENCES

- 1. P. Erdös, F. Herzog and G. Piranian, *Metric properties of polynomials*, J. Analyse Math. 6 (1958), 123-148.
- 2. G. Faber, Über Tschebyscheffsche Polynome, J. Reine Angew. Math. 150 (1920), 79-106.
- 3. G. Pólya, Beitrag zur Verallgemeinerung des Verzerrungssatzes auf mehrfach zusammenhängende Gebiete, II, S.-B. Preuss. Akad. Wiss. Berlin. Kl. Math. Phys. Tech. (1928), 280-282.
- 4. G. Pólya and G. Szegő, Aufgaben und Lehrsätze aus der Analysis, Berlin (1925).

University Göttingen