AN EXTENSION THEOREM FOR A CLASS OF
DIFFERENTIAL OPERATORS

C. J. Titus and G. S. Young

1. INTRODUCTION. The principal theorem of this paper arises in the study of
the behavior of analytic functions on the boundary of a disk, in the study of smooth-
ing operators, and in higher-order generalizations of the Poincaré-Bendixson gra-
dient theorem. The class of differential operators involved was first studied by
Loewner [2] who showed that the curves generated by our operators (3) have the
property of nonnegative circulation, that is, have nonnegative order with respect to
each point. As is well known, a function of a complex variable which is analytic in
a disk and continuous on the closure of the disk maps the boundary of the disk into a
curve of nonnegative circulation. Later in this paper, however, we give an example
of a curve of nonnegative circulation which is not such an image, even after any
change of parametrization that does not change the curve’s topological character.

In fact, our curve is not the image of the boundary of the disk under any mapping
which is light and interior on the interior of the disk, and which is thus topologically
equivalent to an analytic function on the interior (Stoilow [3]). Our principal theorem
shows, however, that Loewner’s curves are such images; thus it proves that they
form a proper subclass of the curves of nonnegative circulation. Indeed, by using a
result of Jewett {1], we show that for Loewner’s curves the mapping on the open disk
can also be taken to be n-times differentiable.

In later work we hope to pursue this further, both in the direction of more infor-
mation about the light interior function, and in the direction of integral operators.

2. Let D denote the closed unit disk in the xy-plane, and let s denote the posi-
tively oriented unit circle which bounds D.

Let Pa(r) and Pn,_i(r) be a pair of polynomials with real coefficients, of degree
n and n - 1, respectively:

Pa(r) = par”+ par” '+ - 4 p,

(1)

n-2
+

0 _n-1 _1 -1
Pn-—l(r) =Pp-1Y +PnT see t pg-l’

such that
0 0
(@ p,>0, p,.;>0;
@ (b) the roots of P,, and P, _; are real and simple;
(c) the roots of P, _; separate the roots of P,; that is, if r; and

r}l_l are the roots of P, and P, _;, respectively, then
rl < rl < rz < ese < rn-l < rn,
n n-1 n n-1 n

Let £(t) be a real-valued function in C™t1 defined over s, where t is the real-
angle parameter (0 <t < 27). Consider the pair of differential operators obtained
from polynomials in (1) as applied to the function f(t):
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u = P_[f(t)]= pQf(m)(t) + ple(n-1)(t) + ... pRE(H),
(3) {

v=P, [E®)]=p2_; £-1t) + pl-2)(t) + - + p2-l1(t).

This pair of operators defines a continuous mapping of the positively oriented circle
s in the xy-plane into the uv-plane. The curve in (3) is oriented and, of course,
closed. Let us further assume that f(t) is such that the curve 0,

4) u=f'(t), v=1£{),

’ (a) intersects the v-axis a finite number of times; and has the property
that
(5)

(b) if 0 intersects the v-axis for some t, then 6 crosses the v-axis
for that t.

The. curve in (3), where P,(r) and P, _;(r) satisfy conditions (2) and where f(t)
satisfies conditions (4) and (5), will be called an L-curve [2].

A mapping I will be called an i-mapping of D if
(a) 1 is continuous on D,
(6) (b) I is light interior on Int D,
(c) I is sense-preserving on Int D.
If @ is a curve and I an i-mapping such that, for each point t on s, a(t) = I(t), then
a will be called an i-boundary. The principal theorem of this paper is the following.
THEOREM 1. Every L-cuvve is an i- boundary. '

Jewett has proved that, for each positive integer n, every i-map f can be ap-
proximated arbitrarily closely by maps that are continuous on D, are light, interior
and of class C™ on Int D, and agree with f on Bdry D.

3. We first prove a theorem, a special case of which will be used as a lemma for
the principal theorem. We need a few more definitions.

Let a be a continuous mapping of the positively oriented unit circle s into the
uv-plane which satisfies the following conditions:

(a) For at most a finite number of points P, P2, -+, P, on s does
v; = a(P;) lie on the v-axis. We suppose that n # 0 and that the
points P; are in positive cyclic order on s.

) (b) Each point P; lies in an interval of s that is mapped homeomorphic-
' ally onto an arc that crosses the v-axis and intersects it only at v;.

(¢) For each i, vij - v;_7 and v;,.; - v; are not zero and are of opposite
i-1 i+l i
sign, subscripts being read modulo n.

(d) Each arc a; = P;P;,; is mapped homeomorphically by @ onto an
arc o;.

Note that n is necessarily an even number; in the following, we write n = 2m.
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We now define a special subdivision of D, which will be one of the essential tools.
There exists a nonempty class A of subdivisions of D into closed 2-cells D; such
that

' 2
() ic1D; = D;

(b)  the intersection D;N D; of any two of the cells is either an arc or
(8) a point, or it is empty; consequently, no interior points of one
cell belong to another;

(¢) D;n s = a;, which is an arc whose endpoints lie in U fznl’ P;.

Under these conditions the union cf the boundaries of the cells D; is a topological
realization of a 1-complex. There is, however, considerable freedom in the selec-
tion of such subdivisions. For example, for 2m = 4, one such subdivision is that af-
fected naturally by the coordinate axes; another is obtained from the three line
segments

C,: from (1, 0) to (0, 1),
C,: from (-1, 0) to (0, -1),
Cg: from the mid-point of C, to the midpoint of C,.

We remark that condition (b) of (8) follows from (a) and (c). For if D;N D;
not connected, then by the Mullikan Theorem [4] D; UD; separates the plane. One
complementary domain, E, of D;UD; lies in D, and therefore it intersects some
Dy. But Int Dy is in E so that (Bdry DN s isin (D; UDJ)ﬂ s. f 2m = 2, our
claim is certainly true; if 2m > 4, then (D; UD; )n s consists of at most one point,
so that Dj Ns consists of one point, contradlctmg (c).

THEOREM 2. Corresponding to each curve o satisfying conditions (7), there
exists a subdivision in A and a mapping H such that H is a sense-preserving
homeomorphism ovev each D; of the subdivision, continuous on D, and such that H
agrees with & on s and maps that part of the 1-complex of the subdivision which is
intevior to D into the v-axis.

Proof. Under the conditions cn a subdivision in A, the set D;N D;,; is an arc.
For, first, DiN Dj+1 is not empty. If D;N D;y) is a point P, then P =a;Na;,;.
Since P is not in the boundary of any other Dj, there exists an open set U contain-
ing P but containing no point of any other such set. However, in UN D there exists
an arc from some point of D; to some point of D;,; that does not contain P. This
arc, then, must intersect D;NDj,;, a contradiction.

We proceed to the proof of the theorem by induction:

Part 1: m = 1. Let o, denote the closed arc of @ in the right half-plane, and a,
the closed arc in the left half-plane. Let B, be the oriented interval from v, to v,
and B, the oriented interval from v, to v,. Let yx denote the union of @) and By,
both of which are then positively oriented Jordan curves. Let 'y be the region
bounded and oriented by yi. Define a subdivision in A as follows:

D, = {(x,y)|x>0}n D,

D, = {(x,y)| x< 0} n D.
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There exists then a mapping H over D = D,U D, which maps Dy into I"')x homeo-
morphically, D, N D, onto the v-axis, and agrees with @ on s.

Part 2: Assume the theovem holds for m = n - 1. Let a be a curve satisfying
conditions (7) and intersecting the v-axis in 2(m + 1) points v;. Let a; be one of the
2(m + 1) intervals on s which is mapped into @, and such that the image ¢; lies in
one half-plane and the end points of @i lie on the v-axis: Bdry o; = (vi, Vit+1).

Let B;j denote the closed oriented interval on the v-axis from v;,; to v;, where
Yi = aiUBi is a positively oriented Jordan curve. Let p be a function which assigns
to each B; an integer in the following way:

4 = u(B;) is the number of By which contains B; (BgD 8).
There exists then a pu;  which is 2 maximum in the sense that

Br-1 < Mg > Bgids

from which it immediately follows that

(9) Bi-1 2B © Byyg -

Consider the part of @ composed of ay_jU @y Uay,; note that oy _) and ay,y lie
in one half-plane and @y in the other. It follows from (9) that o) _; and ay,.; have
at least one point in common. Let 7 be the first point on ay_; which is in
ap_1Nay, ;. Consider now the curve @ which is defined as follows:

ona; (1<i<k-2), a=o;
on a;,, (k<i<2m), a=a;

on ayx_jUairUasy a isa homeomorphism onto the arc which is
the union of the arc of ay_; from vy _; to 7 and the arc of o), from
T to vy,

By the induction hypothes1s, there exists for @ a subdivision S in A and a map-
ping H of D. Let D1 i=1,2, -, 2m) denote the cells of the subdivision S where
the a; = D;N s are then related to the a; for a as follows:

a;=a;, (1<i<k-2),
a;=ay, k<i<Z2m),
a;=a U Uag,,.

We shall now define the required subdivision S and the mapping H, with the aid of
the subdivision S and the mappmg H.

Let P be a point in H~ (ﬁk)ﬂ Dy _1n Int D. Let (Py_;, Py, (Py, Pyr;1) and
(Py+1 Pry2) denote the boundaries of ay_j, aj and ay,;, respectively. Let dy de-
note an arc from Py to P with its interior points in Int Dy _; (Dk 1NS=12ap_1
= ax_j1U axUag;1), and let de;) denote an arc from Py to P with its interior
points in Int Dy _; and not intersecting di. Let dyx_; denote the arc in Bdry Dk 1
from Py _; to P, and dy,, the arc in Bdry Dk 1 from Py, to P. We now define
our subdivision S, which will clearly be in A, as follows:
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D;j=D; (1<i<k-2),
Diy2=D; (k<i<2m),
D, _, is the closed 2-cell bounded by a, ,Ud, ; Ud,,
D, is the closed 2-cell bounded by a, U d, U dk+1 ,
Dy, is the closed 2-cell bounded by a,, ;Ud, ,Ud,,,.
We now define H with the aid of H and our subdivision S in A. Let
H(D;) = H(D;), D;j=D; (@1<i<k-2),
H(D;;p) = H(Dyy2), D=0  (k<i<2m).

To define H over Dy _j;, Dy and Dy,;, we first let I'; be the region in the uv-plane
bounded by the positively oriented Jordan curve y; = @;U B;. We note, for H over
Dy._;, that H is already defined on a; by «, and on dy._; from H over

(UP)(TR)

This part of H on Bdry Dy _j can be extended to a homeomorphism of the whole
positively oriented Bdry Dy ._3; onto yx.1. It follows then that dyx_j; U dix is mapped
into the v-axis. Let H(Dy_;) be a sense-preserving homeomorphic extension of
this mapping to Dy _j.

The problem of defining H over Dy and Dy _; is essentially the same. Treating
H over Dy first, we see that the mapping is already defined over aj by @ and over
dy by H(D,_;). We can then extend this mapping to a homeomorphism of the posi-
tively oriented Bdry Dj. onto yx. We now let H(Dy) be a sense-preserving homeo-
morphic extension of this mapping to Dk. Finally, over Dy ;) the mapping is already
given as a homeomorphism of the positively oriented Bdry Dj;; onto yYx;;. Let
H(Dy,) then be a sense-preserving homeomorphic extension of this mapping to

Dyt1

Our mapping H is now defined over the whole of D, and we can easily see that it
satisfies the required conditions. The proof of Theorem 2 is thus completed.

THEOREM 3. Every mapping H is ar i- mapping.

Proof. We must show that H satisfies the conditions (6). Condition (a) is trivial-
ly verified. Condition (c) follows from the fact that H is a sense-preserving homeo-
morphism over each Dj of its subdivision in A. For condition (b) we first prove
lightness: the inverse image of a point can have at most one point in each of the D;;
hence the mapping is at most 2m-to-one. As to inferiority, let U be a spherical
neighborhood in Int D. If U is contained in some Dy, then the image of U is cléarly
open, since H is a homeomorphism over Dy. If U intersects exactly two 2-cells,
say Dj and Dy, then the image of Int (UND;) and Int (UNDy) are each open. Call
these images v; and vk, respectively. The arc (D jn Djy) is mapped into an arc
which separates v; and vy in the image of U. It follows that U is open. There
exists at most a finite number of points at which three or more D; intersect. The
interiority at these points now follows from a theorem of Whyburn [5, p. 150].
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The following two results, the first of which is obvious, give conditions that a
mapping (4) be an i-boundary. The second theorem is purely analytic.

THEOREM 4. Let f(t) be a real-valued function of period 2w in C:. Suppose
also that f'(t) has a finite number of zevos in [0, 2n], and that £'(t) changes sign at
each of its zevos. Then the curve a:

u=£'(t), v=£t (0<t<2m,
has the property that
v is stvictly increasing if and only if u> 0,
v is strictly decreasing if and only if u<O0.

The curve a in the theorem satisfies the hypothesis of Theorem 1, and thus, by
Theorem 3, it is an i-boundary. The following theorem gives a simple analytical
condition on f that implies the hypothesis of Theorem 4.

THEOREM 5. Let f(t) be a real-valued function of period 2n in C2, and suppose
also that f' and f" have no common zevo. Then £(t) satisfies the assumptions in
Theorem 4,

To prove this statement, note first that if f'(t,) = 0, then £"(t,) # 0, and thus f'(t)
changes sign as t moves through t,. Second, if f' had an infinite number of zeros,
then £" would also, and further it would have a zero in common with f'.

4. We now proceed with the proof of Theorem 1. Given P,(r) and P, _;(r), we
can write

(10) P,(r) = Q,r)P,_(xr) - P, _,(v),
where Qu(r) = q3r + ql, ¥ > 0, and where P,_;(r) and P, _(r) satisfy conditions
(2) for n - 1 (for a proof of this assertion, see [2, Lemma 1]). This algorithm can

be continued, giving rise to the sequence of polynomials P, (r), P, _j(r), -, Pg(r),
where Py(r) = p. Corresponding to (10), the differential formula

(11) P.(f) = Q[f1P,_,[f] - P__,lf] = @® P, _,[f'] + a} P,_,[f] - P, _,[f]
holds. Hence, there is the sequence of curves
u=PJlf], v=pP _J[f] (k=1,2,.n).

By Theorem 4, there exists an i-mapping, which we shall denote by I,, such that
1
I(s) = (ff) Let A denote the proper affine mapping which we identify with the

matrix
Ps Dbi
A, = (det A, = pipd > 0).
0 pJ

The mapping A, I, is also an i-mapping, and
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P,[f]
A L(s) = ( )
Pyf]

Let Ak denote the proper affine mapping which we identify with the matrix

1 o
a5 -1
Ay = (k=2,3,:-,n).
k
1 0/

Let Ek {x, k-1 < Vx*+y2<k}k=2,3, -, n). Let Iy denote the mapping
of EX defined by

u= Pk-l [f] )
(12)

v=-(p-k+1a) P [f]+P ,[f, (0<t<2 k-1<p<K.
where x=p cos t, y = p sin t. Note that the polar-coordinate Jacobian of Iy, is

0 P, [f']

(13) Iy ) = > 0.

~qp P[]
Over D ={(x, y)| ¥/x*+ y2 < n} we define a mapping I}, where
F,=A A AL over E,,
Fo=A A 1A over E,,

(14) )
F..1=ApA 11,1 over E, _;,
F,=A1, over E .
We first show that I:; is continuous over D™, That the mappings Fj are continuous
over Ej follows immediately from their definitions. All we have to show is that F;
and Fj;1 agree, wherever both are defined, namely on EjN Ej+1. Let sk denote the
posﬂ:lvely oriented unit circle of radius k which lies then on ExN Ex;). The map-

ping I%(sy) is defined both as Fy(s;) and as Fi,1(sx). We have

Fi(sk) = AnAn_1 - AxIk(sy) ;

q -1 Py _,[f]
A Li(sy) = ( ) ( ),

and by the differential formula (11) we then have

P, [1]
A I (sy) = ( );
Py, [4]

but
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thus

P [1]
(14) Fk(sk) = AnAn-l "'Ak+l ) (k =1, 2, -, n) .
Pyl

On the other hand we have Fy j(sy) = A A, 1+~ AL, (sy), and since

Py [1]
Ler1(sy) = (
Py, lf]

we have Fy.i(sy) = Fy(sy) (k=1, 2, *-, n - 1). Thus I} is continuous on D"; it also
follows from (14), for k = n, that

Note next that the Jacobian of I:; is defined and is continugus in each closed ring
Ey (k=2, 3, ---, n). Explicitly, the polar-coordinate Jacobian of F, is

J(Fk) = (det An)(det An_l) +++ (det Ak) J(Ik) Z 0,
since
J(Ik) _>_ 0 and det Ai =1 G > 2).

Although the Jacobian of I; is continuous in each Eyx (k > 2), it need clearly not be
continuous on the circle sy,. Further, since we have only topological control over
D, = E,, the Jacobian may not even be defined in E,.

Let Jy be the set of points in Ey for which J(Fy) vanishes. If P € J, then the
radial line through P in E; is also in Jj. This follows from the fact that the Ja-
cobian (13) is independent of p. From the mapping (12) we then notice that each such
radial line is mapped into a point.

Let Z be the union of the Ji, and D,, the union of the E;. We shall now show
that the mapping I carries open sets in D, - Z - s, into open sets. For a point in
the interior of an Ey (k > 2) which is not in Z, the Jacobian is positive, and I is
therefore locally one-to-one; for a point in the interior of E,, we have by construc-
tion a mapping which is locally one-to-one. Now let P be a point on the circle
sk (2<k<n- 1) which is not in_Z. We know from the definition of Fy in (14) that
Fj can n be extended to a mapping F by simply allowing p to vary from j-1-¢ to
j+& (e > 0). It easily follows then that P is a point such that the Jacobian of Fk is
positive in an open set containing P. There is a circular neighborhood C with cen-
ter P which is so small that it is mapped one-to-one by Fk and by Fk+1, respec-
tively. If the combined mapping (Fk on E and Fk+1 on E +1) is not one-to-one
on C, either CNE, or CNEy,; is mapped with its orientation reversed. But this
contrad1cts the positiveness of the Jacobian in either CNE, or in CNE,, ;. On
s;, a similar argument holds.

Given now the mapping I,: D, — E 2 let LM be the monotone-light factorization
of I,; for existence see [4, Theorem VIII 4.1]. In this factorization, the monotone
part of our particular map
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M: D, — E?

carries the closed disk D, onto a topological disk D,. Since M | Bdry (D,) is one-
to-one, there exists a homeomorphism h such that

h: D, — D,
and
h: M(p) =p for p € Bdry (Dn).

Hence, hM is a monotone mapping of D,, onto D, which reduces to the identity
mapping on the boundary. Furthermore, we have the mapping

Lhl:p, — E®
and thus the monotone-light factorization
LM = (Lh™*)(hM).

Hence, we see that M maps D, onto D,, with the boundary fixed pointwise. We
note that

(a) where I; is not already defined or proved to be interior (I} is de-
fined interior in D, and proved to be interior on the s;), the Jacobian
is nonnegative;

(b) the set where the Jacobian vanishes does not separate D, or D, - s,;
(c) the inverse I;:‘l(w) of each point 7 is compact.

Hence, if K is a component of a set Ir"{_'l('tr)_,_ and X Ns, = 0, the argument of Theorem
1 in our paper [5] shows that on Dy - I\E‘I(M(sn)), I} is quasi-interior. By the argu-
ment of Theorem 3 in [5] the mapping L is interior on D, - sy, and

Lis,=1%]s, = a.

Thus, given a curve a defined by the differential operator in (3), we have constructed
the mapping I; whose monotone-light factorization yields a light factor I which
shows that a is an i-boundary. Thus the proof of Theorem 1 is complete.

5. Consider a curve B8 of the type described in Figure 1. Although B is of non-
negative circulation, its tangential winding number is zero, and hence B could not be
the range of boundary values of a light interior mapping, and therefore not the range
of boundary values of an analytic function. There also exist curves of nonnegative
circulation for which the tangential winding number is one and which are not bound-
aries of a light interior mapping; for an example, see Figure 2. The problem of
characterizing curves which are boundaries in a “purely topological”® fashion has
not been solved. Some progress in this direction is made in Theorem 2 of this
paper.



204 C. J. TITUS and G. S. YOUNG

Figure 1 Figure 2
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