ON MODULAR FORMS OF NEGATIVE DIMENSION
Joseph Lehner

1. Modular forms of arbitrary real negative dimension r < -2 may be con-
structed by means of the generalized Poincaré series of Petersson [3]:

(1.1) F (1) = lZexp{ 2mi(p - @)V} (L=1,2, 35 >2).
2y e(V)(-i(er + d))®

ab
cd
ferent lower row; £ (V) is a multiplier system for the dimension r =-s, and

0< a < 1. (Precise definitions are given in Section 2.) It can be seen directly from
(1.1) that when s > 2, the series converges absolutely and uniformly in every region
7> yo> 0, which implies that F(r) is regular for 37> 0. The absolute conver-
gence of the series enables us to rearrange the terms and thus to establish without
difficulty the transformation property

The series is extended over all maltrices V = ( ) of the modular group with dif-

(1.2) F (W) = e(W) (~i(y7 + 0))° Fu (1),

for every W = (S f ) belonging to the modular group. F“(T) is not identically zero;

for when it is expanded in a Fourier series (Laurent series in exp 27irt), it has a
single term with negative exponent, namely exp (-27i(y - a)7).

When s = 2 (that is, r = -2), absolute convergence fails, and we cannot obtain
(1.2) and the other facts mentioned above so readily. One method of overcoming the
dxffxculty was suggested by Hecke [2], who introduced the convergence factor
| CT + d| in the denominator. This method has been successfully exploited by
Petersson [4].

In the following sections, we present an alternative approach based on the condi-
tional convergence of (1.1). We show that the series (1.1) for s = 2, when summed in
a certain order, does in fact converge uniformly to a function F,(7) which is regular
in 37 > 0 and satisfies (1.2) there. That is, Fu('r) is a modular form of dimension
-2, with multipliers £(V). Moreover, the method enables us to represent the Fourier
coefficients of F,, as series of Bessel functions, similar to the ones obtained by
Petersson [3] amf by Rademacher and Zuckerman [8].

However, these results are obtained on the basis of a certain Assumption A,
namely, that the exponential sums

k-1
(1.3) Ak,“(m) = 2, g-! Vi, 1) exp{-27ni ((& - @)h' + (m + a) h)/k}

h=0
(h,k)=1

(see Section 2 for definitions) can be estimated as O((m,k)%k%‘“s). In Section 7 we
show, by reducing the sums in question to classical Kloosterman sums, that this
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estimate is valid for all ¥, (7) of dimension -2. Thus, the linear combinations of
the series (1.1) are sufficient to represent the modular forms of dimension -2 hav-
ing a polar singularity (in exp2wi7) at infinity, at least up to cusp forms (see Theo-
rem 2, Section 7).

Even more interesting is the situation when -2 < r< -3/2. Our develcpment
will show that the series (1.1) still converges (3/2 < s) if Assumption A is valid; and
F; (1) would then be a modular form of dimension r. This would yield convergent
series representations of the Fourier coefficients of modular forms of dimension r
for -2 < r < -3/2, representations not known at present.

However, the verification of the required estimate for the exponential sums (1.3)
in this case is not trivial. We shall return to this question in a later publication.

I owe the idea for this investigation to Rademacher’s paper [5], in which forms of
dimension 0 rather than -2 are treated.

2. Preliminaries. The modular group I'(1) is the set of all 2-by-2 matrices
ab
(c d
tion is a nonhomogeneous linear transformation

) with rational integral entries and with determinant one. A modular substitu-

_ar+b,

VT_c1'+ d’

we see that V and -V = (:2 :g) correspond to the same substitution. I'(1) is

known to be generated by the matrices

0 -1 0 -1 -10
T‘(1o)’ U'(ll )’ ‘I'(o-l)
with the relations
(-D2=U%=1, T,=-I.

We shall refer to both V and V7 as a modular substitution.

An entire modular form of dimension r is a function F(7), regular in the upper
half-plane and having at most a polar singularity at 7 = i, which satisfies the
transformation equation

(2.1) F(VT) = e(V) (-i(eT + ) TF(1)  (Je(W)] = 1)

for every modular substitution V7. Since V7 = (-V)7, we may always assume that
c> 0, and fix Iarg (-i(eT + d))| < /2. In particular, (2.1) implies

2.2) e =e(-x/4), 1= (g ‘1))

where, throughout this paper,

e(z) = e2iz,

11

0 1) . We write

When ¢ = 0, V is of the form S™, with m an integer and S = (



ON MODULAR FORMS OF NEGATIVE DIMENSION 73
(2.3) F(S7) = £(S) e(r/4) F(1) = e(a) F(1),
where we can choose « in the range
(2.4) 0<a<1.

We can extend the multipliers €(V) to matrices V for which ¢ < 0, as follows:
apply (2.1) with V replaced by -V. Since V7 = (-V)7, we get

(2.5) e(-V) (i(-e7 - d))™F = gV) (~i(er + @)™ " .
In particular, with V =1, (2.2) gives
(2.6) e(-I) = e(r/4).

For any two substitutions V, and V,, we can evaluate F(V,V,7) in two ways;
comparison then yields a “consistency condition”:

(2.7) e(V V) (~i(cyp 7+ d1)7F = e(Vy) e(Vy) (-i(c Vo7 + ) N (cile T+ dp) 7T,

where V,V, = (¢, d;p).

We apply this principle to F(VS™7) and F(S™V7), and recall (2.3). This gives
(2.8) e(S™V) = g(VS™) = e(ma) (V) (m an integer).

The multipliers (V) are said to form a multiplier system for the dimension r
if £ (V) is a complex-valued function of Ve I'(1), Is(V)I =1 for all V, and &(V)
satisfies (2.7). It is easily seen that the relation (2.7) is independent of 7, so that
£(V) can be calculated for any V if £(V) is known for the generators U, T, -I of
I'(1). (e(-I) is already determined by r, as we saw in (2.6).) It is known, moreover,
that €(V) is determined uniquely by the values &(U), £(T) ([3], 393-401). Since
U = TS, this amounts to saying that £(V), a multiplier system for the dimension r,
is uniquely detevmined by o and €(T). Thus, in order to show that F(7) is a modu-
lar form, it is only necessary to prove that

F(T7) = (T) (-iT) " F(7),
F(St) = e(@) F(7).
In the following sections we shall encounter certain exponential sums:

k-1

(2.9) Ak,u(m) = 2y g'l(Vk, wel(e - a)h' + (m + a)h)/k) k> 1),
h=0
(h,k)=1

where m, p are integers, and V. _; is the modular substitution

| ./h' K
(2.10) v = ( ) .
k,-h k -h
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Here h' is defined by

(2.11) hh'= -1 (mod k) (OS h'< k)
and
(2.12) -k'= (hh'+ 1) /k.

Concerning these sums we make the following
ASSUMPTION A. For every £ > 0,
(2.13) | Ay, , ()| < Cplom + 0,0)FKE"E (m=0, 1, 2, )
unless a =0, m =0, in which case
(2.14) lA, p@] < C.
Here Cg, C -and the integers p> 0 and o depend on r, i and o, and pm + o # 0.

3. We are going to study the series

1oe(-(p - a) Vi, _m7)
(Vi _m) (-i(kT - m))s’

(3.1) H(r) = 22 2
k=1 m=

where a satisfies (2.4), T=x+1iy (y>0), u=1,2, 3, -*-, and
(3.2) 3/2<s=-r<2,

and where Z' means that the summation variable is prime to k. Vk om is the sub-
stitution ’

m' k'
(3.3) A% = ( ) ’
k,-m K  -m

since it is unimodular, we have

(3.4) . \ mm' + kk'+1=0.
Thus
(3.5) m'm = -1 (mod k),

and m' is determined only modulo k.

Despite this ambiguity, the terms of the series are determined uniquely, for (2.8)
shows that e(-(u - @)V, _m'r)e' (Vk,-m) is invariant under m'— m'+ k. Indeed,
under this replacement Vk m ™ SVk -m, and, by (2.8),& — e(a) -€; on the other
hand, Vi, _7=m'/k - l/k(k'r - m) p1cks up the added term 1.

Our first problem is to establish the éonvergence of the series (3.1). Write
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(3.6) H(t) = G; + G, = lim G (K) + lim G,(K),

K~ K—o0

G,(K) = }3 Z) e(-(p - e)m'/RW{e((n - a)/k(kr - m)) - 1}
k=1m=-e e(Vi, _m) (-ilk7 - m))®

(3.7 {

K 0
G,K =2 e(-(u - a)m'/k)

k=1 m=- o0 € (Vie, ) (~i(k7 = m))S

We have, on expanding the exponential,

K = *©
_ 1 e(-(n - @)m'/K) 27(p - Ol))f
(3.8) G,(K) _kz=>l m:Z_)w eV, ) (a 71kl (<i(kr - m)f +s°

This triple series converges absolutely; for it is dominated by

» @ - a)f
mg £ 1VEI[(x - m)? + 12 y 2] W+s)/2

- em)f S - :
S{=1 £l s 1{ )f’fs m=1 ( m2+k2y2)((+5)/2}

(3.9) 2 @auf 1 22 1 .
< _— 3+ 275 2
- ? {kzi nyrSkZ(* ' kz=)1 m=1 (2kmy) (+s)/2f }

I
Y‘S;_/l(-z—w)(;)—l—+2(2y)'s/2§ ( )(w——-— 5 L
(=17T Y 7 g=1%k% (=1?T Vay | o1 k32 0 1;5‘
m

< Cpy S exp(2mu/y) + C2y~5/% exp @Quu/ V).

Hence, the series converges absolutely and uniformly in y >y, > 0, and

limg_,,,G,(K) = G, is an analytic function of 7, regular in g7 > 0. (In fact, this is
true for s > 1.)

To handle G,(K), we recall that the expression e(-(y - a)m'/k) S'I(Vk’ _m) is
independent of the choice of m'. Hence, in G,(K) we may choose m' in the range
0 <m' <k. Now write

m=qgk+h ~(0<h<k, (hjk)=1, -0o<g< ).

Then V. =V _nS8° 9, 1t follows from the remark above that m' = h', where h' is
defined byr& 11) Using this and (2.8), we get ~ (
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——

Gz(K) =

NVES
Vi

-1 e(aq)
e (V. pel-(p - o)h'/k) E
0 o h q= 0 [ -i(k7 = h) + ikq]®’
We now distinguish two cases, @ > 0 and a = 0, and treat the former.
The inner sum is, by the Lipschitz formula ([1], p. 206),

Q.I’_TT/SI% Z} 0 +ay ! e((r - WK +a));

1

hence,
(2 )S K 0
G,(K) =7T” kY ((+a)s el + a)r)
2 (s o (=0 + + T
(3.10)
k-

-

e (Vy,_p)e(-[(1 - @)h' + (f + a)h]/k),
h=0

where we have interchanged the order of the summations with respect to h and {

The sum on h is an exponential sum which, by Assumption A, is O(({ + 1)z k2+€)
for pf + o+ 0 implies (pf + 0, k) = O(f + 1)

It follows that
GR)| < C Z) SHEHE |1 - e-2my|-2

in the upper half-plane.

G, exists uniformly in y > y,> 0 and G, is regular
When o = 0, G,(K) becomes

K k- 1
GK) =2 2 g1V, ) e(-ph'/k) Z [-i(kT - h) + ikq] ~°

k=1h=0 q=-o0

Applying the appropriate Lipschitz formula ([1], p. 206), namely,

{@m®/T(s} X 5 te@W( -h/k)= Y [-i(r - h/k)+iq]™®

(=1 q:-oo
we get
(2m)° > P,
G ,(K) = 1“72 5 Z} k=3 7 ¢ Le(fr) T'e-1(v, _,)e(-[ph' + fh]/K)
k=1 g=1 h=0 ’

The innermost sum is an exponential sum which, by Assumption A, can be estimated
1 1
.3 e

by O(f2k2"®), since f > 0 implies pf + o # 0. Thus we obtain in this case also the
result that G, = limy_, ., G,(K) is regular in I7> 0.
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Combining this with the result on G, we have the following lemma.

LEMMA 1. The function H(T), defined by (3.1), is a regulay function of T in
ST > 0.

4. To prove the transformation properties of H(7) under modular substitutions,
we shall need another expression for it. For this purpose, we require a lemma
which follows closely one of Rademacher’s ([5, p. 238], [6]). Since H is regular in
the upper half-plane, we can confine our attention to 7 =iy, y > 0, and later extend
our results by analytic continuation,

LEMMA 2. Let 7 =iy, y > 0, and let s > 3/2. Then

T T ey ) el-(u - o)mt/K) - (-ilkr - m))-s

k=1 m=-c0

K K
- lim ¥ O el (V) el-(n - @)m'/K) + (-ifkr - m))-S
K= ®r=1m=-K

The convergence of the left member has already been demonstrated. Thus the
statement of the lemma is equivalent to

K
(4.1) lim 3 %5 e WV Jde(-(u - @Jm'/k)- (-ilkr - m))"°=0
K—®y=1|m|>k
Let
(4.2) T (K) = I ‘IE e-1V . _)e(-(u - 0)m'/k) - (-ilkr - m))-s
m|>K

Define the function

eV, ek - om/K) ((m, K =1),
g(m) = JL ’
0 otherwise.

where, as in Section 2, we make m' unique by requiring that 0 < m' < k If we re-
place m by m + Kk, Vk -m goes into Vy _., S~ 1 and, by (2.8), e ! — &¢"1 . e(a).
Hence, g(m) e(—am/k) is periodic in m with period Kk, so that we have the finite
Fourier series

k-1
g(m) = 25 Bje((j + @)m/k),
j=0
with
k-1
B = k—le's'l(Vk, P e-lu - ) + G+ a)/k) = k™ Ay L),
=0
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where Ak,u(j) is defined by (2.9).

Then
S 3 el a)m/R)
_ e((j + a k
T8 = j=1 Bjm=K+1 (-i(kT - m))*®
(4.3) k-1 ©

so B, n fLlrom/Y) o m)) Se(em/k)
j=1 “megq1 CHET £ m) > )

=V +V + V3 .
Now when o > 0 we have, by Assumption A,
1 1 _1
|B, | < Cg (0, K2k "27E < Cgk zte
while o = 0 implies

1
By < Ck™! < cKkztE,;

thus
[+ o]
1
IV3|S 2C8k-2+8 > (k2y2+ m?) -s/2
m=K+1
(4.4)

o0
1 1
<C kF P mS<c kEEK!S,
€
m=K+1
the Cg being not necessarily the same at each appearance.
To study V, we proceed, as in Rademacher’s proof, by examining the finite sum
N+itio  Kii+io
e((j + @)m/k) _ S‘ ) 5‘ e(j + @)z/k) dz

m=K+1 (-i(k7 - m))® (-ikr - z))° (@) - 17

N+3-io  K+3-10

where we set 0 <arg(-i(kt - z)) <=, since 7 = iy. We then find, as in [5, p. 243],
[6], that

e((d + a)m/k)

m=K+1 (-i(kT - m)) s

S

- 1 1
+K™, cj=k(—.—+—————),

Scj(N i k-j-a

so that

5 eliramml o

(-i(kt -m))>{ =]

m=K+1
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Hence, by Assumption A,

k-1 k-1 1

-s 1 j k)2

V<KD |3l < 0 ko 3 g
j=1 j=1

Setting pj + 0 = {, we find for the inner sum S the inequality

S<p Ed% > y——f (p+o<f <pk+o).
dk  (f,k)=d 7

It is readily verified that f - 0 > ¢, |{|, where c,, c,, **+ denote constants depending
on p and o. Hence,

schEd% 2 T;T (p+o<f<pk+o).

dlk  (f,x)=d
Now (f, k) = d is equivalent to { ={,d, k = k,d, ({,, k,) = 1. Therefore
, Pito .
S<ecy 3d 23 7- Scalogesk 2 dz,
dx  f= ! dlk

€.
Let k=11 pil; then
i

it

< 'H 1 - pi"1/23‘1< 4.2w(k),

w(k) denoting the number of distinct prime factors of k. Since, for every ¢ > 0,
2w (k) = O(kE), we have, finally,

€ £
S<cyloge,k- Csk chk .
With this estimate for S, we obtain
(4.5) |V,| < CgK-skz+E .

Obviously, V, has the same estimate.
Combining (4.3) to (4.5), we have

1 1
| T, (K)] < C kZ*®K! "% + C k=+EK ™S,

It follows that
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K

K ‘
2 TR < 2 | T (K)]
k=1 k=1

3
<Cg gite-s, Ce g#e-s _ gdte-s),

Since s > 3/2, we have liml(;__,‘,o?_illf= 1Tk(K) = 0. In view of (4.1) and the definition
(4.2) of Ty (K), we see that this completes the proof of the lemma.
We now go back to the sum G,(K) of (3.7). Considered as the triple series in

(3.8), G,(K) is absolutely convergent and may be rearranged in the manner of Lemma
2. Adding G,(K) and G,(K), we get

K K

. vooel-(k - )V T
H(r) = 1 2 .
M= dim 2 2 £(Vie, -m) (-i(k7 - m))®

This formula is valid only for 7 = iy, y > 0, since that condition is a hypothesis of the
lemma.

It is from this formula (4.6) that we shall prove the transformation property of
H(T) under the substitution 7 —-1/7.

5. We first wish to extend the series in (4.6) over negative values of k. Now
V — -V implies k — -k, -m — m; but (-V)7 = V7. By (2.5) we see that the term in
(k, m) goes over unchanged into the term in (-k, -m). Hence, we can write

| K, e(-(n - @)Vy 1)
B e k?.K m§-K e(V, -m) (-ilk7 - m))s’
K#0

Dof =

The terms with k = 0 are missing. Since k = 0 implies m = +1 (because of
(m, k) = 1), these terms are

e(-(u - @) {e M e(s/4) + e 1 (-I) e(-5/4)} = 2e(-(u - @)7),

by (2.2) and (2.6). We can write the substitution I as V,,. Then m' =1 is not de-
termined by (3.5), since k = 0. But (3.4) is still satisfied. Likewise, we write
-1=V,_,. Thus

(5.1) mm' + kk'+1=0

for all integral values of k and m.

We are therefore led to define a new function

K

P X R -0V )
: ! - - k: -m
(5.2) Fp(r) =e(-(p - o)1) + H(7) = Kli’n:o §k=z_3K e i €V, ) (Filkr - m)) &

0 -1

In (5.2), replace 7 by T7 = -1/7, where T = (1 0

) . Note that
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k' -m'
vk,—mT=V-m,-k=( k)
-m -

for all values of k and m. From (2.7), with Vy = Vi _,, V, = T, we find (s = -r)
e(V_pm, 1) (-i(-m7 - K)° = e(Vy _ )e(T) (-i(-k/7 - m)) °(-ir)°.

Hence, under the substitution 7 — -1/7, (5.2) goes into

K K

Fu(-1/7) =e(D) (-in™" lim 3 & T
7P " k=-Km=-K

e(-(k - o)V k7
e(V_pm, 1) (-i(-m7 —K))S

In the finite sums we replace -m by k, and k by m. The ranges of summation
are symmetric in m and k, since (m, k) = 1 is equivalent to (-k, m) = 1. Also

m' k!
V-m,-kqvk,—mz( )’
k -m

for mm' + kk' + 1 =0 for all m and k, by (5.1). Interchanging the order of summa-
tion in the finite sums, we get

K K

g el - VT
e(T) (-i7) Kli-lfloo-ik?.K mz=;-K8 (Vk,-m) Cilkr - m))®

F,(-1/7)

e(T) (-in) ™ F (),

the desired transformation formula.

This formula has been proved conly for 7 =iy, y > 0. But F,(7) is regular in the
whole upper half-plane, since H(r) is regular, by Lemma 1; therefore, by the prin-
ciple of analytic continuation, we have

(5.3) F,(-1/7) = &(T) (i) " Fu(m (37> 0).
6. We still have to show that
(6.1) F“(T + 1) = e(a) F“(T) .

We shall do this by expanding F, in a Fourier series, from which (6.1) will follow
at once.

We start with G,(K), which is already in the right form (3.10). Let a > 0. I we
interchange the order of the summations on § and k, replace ¢ by m, and introduce
Ak’u(m) from (2.9) we get

6.2 - G=2 elm+an) D A pm) @m)” o5 (m 4 )51,
m=0 k=1 I'(s)
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The sum G,(K) of (3.8) can be rearranged, by virtue of its absolute convergence.
The procedure is the same as for G,, and it yields the following result

_ s 5 -1 E; @m?*s (m + o) *s-1 (u - a)(.
G néo e((m + oz)'r)kz=1 k Ak'“(m2(=1 7IT(f + s)k2H+s-1

We see that (6.2) is just the missing term § = 0 in this series. Therefore, when
a>0,

H(T) =G; + G,
r+l

=27 EO e((m + a)71) 2 k'lAk,u(m) ( ;;Z ) 2 I_r_l(—iﬂ(u - a)';: (m + a)%)
ms= k=1

(6.3)

where I, is the Bessel function of the first kind with purely imaginary argument.

The parallel calculation for a = 0 yields
r+l

(6.4) () = D (o) Z kA ) (L) “ 1, (Fuim
k=1

(8]

).

Thus H(7 + 1) = e(a) H{(7). Going back to the definition (5.2) of F,,, we see at
once that (6.1) is proved. Moreover, we have obtained a representation of the Fourier
coefficients of FH_(T) as convergent infinite series.

k

m=1

Since F,(7) satisfies the transformation equation (2.1) on V = 8, T, it is a conse-
quence of the remark following (2.8) that Fy, is a modular form of dimension r.

7. All the work up to now made essential use of the estimate (2.13) (Assumption
A). In this section, we shall show this estimate to be justified when r = -2,

The set of entire modular forms of real dimension has been parametrized by
Rademacher and Zuckerman [8, Thm. 2, p. 453]. The parameters, besides the dimen-
sion r, are certain integers B, v, kK with the restrictions 0 <8< 1, 0 <y < 2,

0 < k. The quantity a is not arbitrary, but is determined by the relation [8, (8.95)]

(7.1) a=__r__§__z_[__r__§_y_]’

and we have, moreover,

We see that for each dimension r, there are exactly 6 permissible values of «.

Our present interest is the sum A , (m), which is expressed in terms of the
above parameters in [8, (9.53), (9.54)]. (Formula (9.54) holds for arbitrary real r,
though it is claimed only for r > 0.) Thus we can write
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k-1
(7.2) A, p(m) = T e(-2s(, k) £5 & e {-(ch' + (m + p - WN)/K},
h=0
where
£, = ef[-h'(h? + 1) + h'k? + (hh' + 1)k]/2k},
£, =e{(h - h")[(hh' + 1 + k2)(2hh' + 1) + 1]/3k },

and h' is defined in (2.11).

By a straightforward calculation we find

£, = -e(6, (h - h*)/k) (k odd, 26, = 1 (mod k)),
£, = e((h - h*)/ 2Kk) (k even),
(7.3)
£, =e (6,(h - h¥)/k)  (3)k, 36, = 1 (mod k)),
£, = e((h - h*)/3k) 3|k,
where hh* = -1 (mod Dk), Dk being the denominator of the expression involved.

For e(-2s(h, k)), we use the equivalent expression w~%(h, k) given in [7, (16),
(20)]. This yields, after some computation,

e(0, (h* - h)/k) if (k, 6) =1 and 60, = 1 (mod k),
-e(8, (h* - h)/2k)  if (x, 6) = 2,

(1.4)  e(-2s(h, k)) =< |
e(94 (h* - h)/3k) if (k, 6) =3 and 26, = 1(mod k),

| -e{(h* - h)/ 6k) if (k, 6) =6.
Now, combining formulas (7.2) to (7.4), we get
k-1
'
(7.5) Ay p(m) =+ 25 e((ah* + bh)/Dk),
h=0
where D = (k, 6), b=- a - D(m + p), and a is the integer given by the following
table.
D a
1 6;-B0, - v, - K
2 6,-B- 20, - %
3  6,-3B0,-v- 3k

6 1-38-2y- 6k

83
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When D = 1, (7.5) is a Kloosterman sum [9]. This is not yet true for D > 1.
Suppose, for example, that D = 3. Define
3k-1

By, (m) = Eo' e((ah* + bh)/3k) .

Set h=qk+j (0<j<k, (j,k) =1, q=0, 1, 2). Then h* = j*(1 + gkj*), where
jj* = -1 (mod 3k), and

k-1 2
By p(m) =+ 2 e((aj* + bi)/3K) L e(a(ai*® + 0)/3).
j=0 q=0

The sumon q equals 3, for a= -b (mod 3), and 3 ' k implies 3}’h*, that is, 3,“*;
hence j* = 1 (mod 3). We then get

Ak, u_(m) = ’_*:Bk,p_(m)/S,

and Bk,p.(m) is a Kloosterman sum. The other values of D > 1 are handled simi-
larly.
In every case, therefore, Ak,,u(m) is a sum of the form
Dk-1
(7.6) Ay y(m)=:D7" hZ)O' e((ah* + bh)/Dk).

Note that (a, Dk) < a*, where a* is independent of m and k. For 6/D is prime
to Dk; hence,

(a, Dk) = (6a/D, Dk) = (1 - 38 - 2y - 6k, Dk),

and 1 - 38 - 2y - 6k # 0, as we see by examining all possible cases. Let
(a, b, Dk) =d > 1. Clearly

ky-1
(7.7) Ay p(m)=2D7'd T e(farh* + bihl/k,),
h=0
where a = a,d, b = b,d, Dk = k,d; hence, (a,, b, k;) = 1. Since d < (a, Dk) < a*, we

see that Ay, pu(m) has the order of magnitude of the sum in (7.6).” That is, we may
assume in (7.6) that (a, b, Dk) = 1.

Hence, by theorems of Salié and Weil ([9, pp. 266-267], [10]), we deduce that
1
| Ay, u(m)| < Cg (b, DK)Z (DK)YE
But, as before,
(b, Dk) < D (b, k) = D(6b/D, k) = D (-1 + 38 + 2y + 6k - 6 - 6m, k).

If we set p=6, 0=1-38-2y - 6k+ 6y, then
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(b, Dk) < D (pm + 0, ) ,

and the required estimate (2.13) follows immediately, unless pm + ¢ = 0.

But pm + 0 = 0 implies pm + ¢ = 0 (mod 6), or 1 - 38 - 2y = 0 (mod 6). This can
happen only if 8 = 1, v = 2. By reference to (7.1) we see that this implies @ = 0
(since r = -2). We now have 0 = pm + 0 = 6m, where we have used the line following
(7.1); therefore, m = 0. And of course b = 0, for -6b/D = pm + 0.

The exponential sum (7.6) then has b= - a - Du. Since b =0, we have a = -Dp
and (7.6) becomes

Dk-1 k-1
A p(0 =+D ! T e(-Duh*/Dk) =+ L' e(-ph*/k) =+ T d,u(%)
h=0 h=0 d

with the Mobius p-function, where d runs over the common divisors of ¢ and k.
Hence,

[A, L] < 22 d=00),
dl,u
as k — o, This completes the proof of Assumption A when r = -2.
We summarize our results in
THEOREM 1. For p =1, 2, 3, -, let

%f e(-(n - a) Vi, ., 7)
E(Vk, -m) (-i(kT - m))S’

(7.8) Fu(D =el-(u - ay) + 2

k:l m= -0

wheve s > 3/2, a is gwen by (7.1), a(Vk _m) isa multzpher system for the dimen-
sion

r =-s,

and the summation is understood in the sense

K )
lim 2, EI .

K—oop=] m=-w

Then, if the estimates (2.13) and (2.14) for the exponential sum Ax. (m) (defined in
(2.9)) are correct, the function F(7) is a modular form of dzmenszon r, with multi-
pliers (Vi ). Fu(r) has the Fourier series

0

Fi (1) =e(-(n-a)r)+ 27 ay, e((m+ a)r),

m=0

with
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o rel

- - 2 14 1 1
a =27 2k lAk,u(m)(1ﬁ+ a) I—r-l('fﬂ(“ - a)a(m-i-a)a),
k=1 )

wheve

*° (Z/Z)Zn‘i'(
Eo n!Tn+¢ + 1)’

I((Z) =

andd =0 for a >0, 6=1 for a =0.

In particular, when r = -2, the estimates (2.13) and (2.14) are correct and the
conclusions above are valid.

n=

Any linear combination of the F, (7) of dimension r is obviously a modular form
of dimension r. We confine ourselves to r = -2. Given a form G(7) of dimension -2
and having an o > 0, we construct a linear combination F(7) = i, b, F,(7) such
that the expansion of G(7) - F(7) at 7 = io» has no terms with negative exponents.
Then

lim {G(7) - F(1)} = lim O(e(a7)) = 0.

T—> 00 T— 0

Hence G - F is a modular form which vanishes at 7 = «, that is, a cusp form (which
may be identically zero).

If G(7) has a = 0, then, as we have seen, we must have g =1, y = 2. Now, using
the parametrization [8, (9.41)], we find that G has the expansion

G(7) = e(~(k + 1)T) + ==,

Since k > 0, G has a pole at 7 = «». Thus there are no cusp forms of dimension -2
with a = 0, nor are there any forms whose expansions at « begin with a constant
term. Hence, if we choose F(7) = E{-}=1bv F,(7) so that the principal parts of F(7)
and G(7) agree at «, it follows that F(r)= G(7). We have, then,

THEOREM 2. Let G(1) be a modular form of dimension -2 with a value of
a > 0. Then there exist constants by, by, ***, by, such that

7
G(T) = 22 b, F (1) + K(7),
v=1

where K(1) is a cusp form. If a =0, constants by, by, *°-, b, can be found such
that

i)
G(T) = 20 b, F,(1).
v=1

The theorem shows that there is no modular form of dimension -2 and @ =0
whose Fourier expansion contains a constant term. For every such form is a linear
combination of the F,(7), and F, has no constant term, as we saw in Theorem 1.
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8. Among the modular forms of dimension -2, J'(7) is of particular interest.
Here J(7) is the absolute modular invariant,

(8.1) J(r) = e(-7) + -+,

and satisfies

(8.2) J(V7) = J(7) (Ve T(1).
Hence,
- J'(7) = -27i e(-T) + -,
(8.3)
i}' (V1) = (e1 + )2 3'(7) = -(-i(eT + A)2 I (7) (c >0,
so that
(8.4) eV p)=-1 (> 0).

From (8.3) we get ¢ =0, pu = 1.
Theorems 1 and 2 then show that
[ o] ' o0
1

(8.5) I/ 2ri=e(-T)+ 20 25

k=1 m=—o (KT - m)®

e(—Vk’ mT)

The Fourier coefficients can be read off from Theorem 1. If we set

(8.6) -J'(1)/2ni=e(-7)+ 20 a_e(mr),
m=1
then
(8.7) 2= -2mvm 2 kA m)1, ($ v ),
m k=1 k Ak
where
k-1
(8.8) Am) =2 e(-('+ mh)/k).
h=0

By ihtegration we can recover the known coefficients of J('r).

Note Added in Proof. The form of Assumption A (see (2.13), (2.14)) is unneces-
sarily complicated. It can be replaced by the following:

ASSUMPTION A'. For every € > 0,

(*) lAk u(m)|5 Cgl{:&‘w}-8 (m: 0, 1, 2; U= 1’ 2, 3, _..),

where C, does not depend on m or k.
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The proof of (*) is the same as in the text, up to and including the paragraph
which contains (7.7). We then notice that we may write (7.5) in the form
k-1

Ay ) =+ E; e((bh* + ah)/Dk).

Hence, by the theorems of Salié and Weil quoted in the text,
1 l.¢
| Ay, 1 (m)| < Cg (a, DK)Z (DK)Z*E,

But since, as noted in the lines following (7.6), (a, Dk) < a*, with a* independent of
m and k, we obtain (*) immediately.

The use of Assumption A' simplifies the foregoing developments, particularly in
the estimate cf the sum S (lines preceding (4.5)), which is now simply

k-1
S=27 i} < Clog k < CKE.
j=1
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