BINARY OPERATIONS ON SETS OF MAPPING CLASSES
Arthur H. Copeland, Jr.

1. INTRODUCTION
1.1. SUMMARY OF RESULTS

Suppose that X and Y are topological spaces, with points x, € X and y, € Y. The
symbol [X, x,; Y, ¥,] will be used to denote the set of homotopy classes of maps (con-
tinuous functions) from (X, x,) to (Y, y,). The chief purpose of this paper is to in-
vestigate two ways in which [X, x,; Y, y,] may be equipped with a binary operation.
The first way (homotopy theory) imitates the Hurewicz homotopy theory; (X, x,) is
held fixed, and the binary operations are so chosen that the class of the constant map
is an identity element, and every map from a pair (Y, y,) to a pair (Y', y,') induces a
homomorphism. It is shown that the binary operations exist if and only if (X, x,) has
(modified) Lusternik-Schnirelmann category at most two. The second way (cohomo-
topy theory) imitates the Borsuk-Spanier cohomotopy theory, but without dimensional
restrictions. In this case, the existence of binary operations is related to the fact
that Y is an H-space. For each of these theories, exact sequences of a natural sort
are developed, together with certain lesser results.

The last section contains applications of the earlier parts of the paper. A result
of Spanier and J. H. C. Whitehead (roughly, that a fibre contractible in its fibre
space is an H-space) is presented in a somewhat strengthened form. Several results
in the direction of describing [X, x,; Y, y,] when X and Y are “simple” spaces are
obtained. Finally, the problem of determining the structure maps on an H-space is
solved in case the space has only two nontrivial homotopy groups.

1.2. NOTATION AND CONVENTIONS

All of the spaces considered in this paper are Hausdorff spaces. The unit inter-
val [0, 1] is denoted by I; the n-cube Ix-+xI (n factors), by I™. The boundary of
I" is designated by I™.

If X and Y are spaces, or topological pairs or triples, then [X; Y] is the set of
homotopy classes of maps from X into Y. If f: X—Y and g: Y—Z are maps, then
gof: X—7Z is the map given by g °f(x) = g(f(x)) for x € X. The symbol {f } denotes
the homotopy class of the map f. A map f: X—Y induces functions

f4:[2; X1-[2Z; Y]  and % [¥; 2]-[X; Z];

these functions are defined by fy{g} ={fog} when {g} € [Z; X], and by g} ={gof}
when {g} € [Y; Z].
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If f: (X;, A;, B;) —(Y;, C;, D;) (i=1, 2) are maps, then
£,%1,: (X,, Ay, BY)X(X,, A, B,) —(Y,, Cy, D)X (¥,, Cy) D,)
is the map given by f,xf,(x,, x,) = (f,(x,), f,(x,)) when x; € X;. Some of the spaces
A;, Bj, C;, D; may be void, or they may consist of single points.

The terms CW-complex and relative CW-complex are used in the sense of [7,
p. 73].

2. HOMOTOPY THEORY
2.1. DEFINITIONS

Let X be a topological space, let x, € X, and let € be a collection of topological
pairs of the form (Y, y,) with y, € Y. A homotopy theory on X, x,, ¢ is a system u
of binary operations, one defined on each of those sets [X, x,; Y, y,] for which
(Y, y,) € €. The system is subject to the following two conditions.

H1l. For each (Y, y, in €, the homotopy class € of the constant map is a two-
sided identily element,

H2. For all (X, y,) and (Y', yi) in € and for each map £: (Y, yo) — (Y, yd), the
induced function f g [X, x5 Y, vol = [X, x5 Y', v¢] is a homomorphism.

The symbol p will be used to denote an individual member of the system of binary
operations, as well as the whole system.

We say that the category of (X, x;) is at most n (written cat(X, x,) < n) if there
are closed subsets X, -+, X, of X and homotopies R;: (XXI, x,XI) = (X, x,)
(i=1,2, -, n) such that

1) X = Xl Use UXn, .

2) Ry(x,0)=x foreach xeX (i=1, -, n),

3) Ri(x, 1) =x, foreach xeX;(i=1, -, n).

The subsets X, ***, X, are called categorical subseis.

Note that if cat(X, x;) < n, then X has Lusternik-Schnirelmann category at most
n. Conversely, if X is smooth about some point x, € X (every map from
XXIX0 U x,XIXI to X can be extended to a map from XXIXI) and has Lusternik-

Schnirelmann category at most n, then cat(X, x,) < n. In particular, the two ideas
are equivalent for locally finite CW-complexes.

2.2. THE FUNDAMENTAL THEOREM

Corresponding to each pair (X, x,), we define the space XV X to be the set
XX %X, Ux,XxX C X% X, and x2 to be the point (x,, x,) € XV X.

THEOREM 2.2A. Suppose that a pair (X, x,) and a collection € of pairs are
given, and that € contains (X, x,) and (XVX, x2), There is a homotopy theory u
on X, X,, € if and only if cat(X, x,) < 2.

Pyroof. Suppose cat (X, x,) < 2, with categorical subsets X,, X, and homotopies
R,, R,. Let (Y, y, € € and o, Be€ [X, x; Y, y,] be given. Select representative
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maps f € @ and g € B, and in terms of these define a function h: (X, x,) — (Y, y,) as
follows:

f(R,(x, 1)) for x € X,, ¢
h(x) =
g(R,(x, 1)) for x € X,.

This function is defined and continuous, since X; and X, are closed and
f(R,(x, 1)) = f(R,(x, 1)) =y,

for x in X, NX,. The homotopy class of h is independent of the representatives f
and g. Set u(e,-8) ={h} The verifications of H1 and H2 are routine. The binary
operation obtained in this fashion is said to be induced by the categorical decomposi-
tion.

Now suppose that p is a homotopy theory on X, x,, ¢ and that (X, x,) and
(XV X, x2) are in 4. We define four maps

£, I, (X, xp) = (XVX, x3), g, & (XVX, x)) — (X, %)

as follows. If x € X, then f,(x) = (x, x,) and f,(x) = (x,, x). The map g, is given by
g,(x, Xo) = x and g,(x,, X) = X,, while g,(x, X;) = X, and g,(x,, X) = x. Let h be a
representative of u(if,}, {f;}) € [X, xo; XVX, x2], and set X, = h™} (X Xx,),
X,=h"1(x,XX). Since g,of, is the identity on X, and g, of, is constant, g,oh is
homotopic to the identity, for

{gloh} = g).#ou({fl }, {fé) = ﬂ({glofz}: {g1°f2}) = {g1° f1} .

Let R,: (XXI, x,XI)— (X, x,) be this homotopy (that is, let R,(x, 0) = x and
R,(x, 1) = g,°h(x), for x € X). From the definitions of R, and X, it follows that
R,(x, 1) = x, for x € X,. The homotopy R, is similarly constructed. Thus
cat(X, x,) < 2.

Note that the binary operation induced by this categorical decomposition is pre-
cisely pu.

2.3. RELATIONS BETWEEN HOMOTOPY THEORIES

Suppose that cat (X, x,) < 2 and cat (X', x}) <2 with categorical subsets
X, X, cX and X', X,'C X', and with homotopies Rj: (XXI, x,XI) — (X, x,),
R;': (X'XI, x,' XI) = (X', x,') for i=1, 2, Suppose that F: (X, x,) — (X', x,') is a
map.

THEOREM 2.3A. If F1(X;"Yc X; (i=1, 2), then F* is a homomorphism with
respect to the binary operations induced by these categovical decompositions.

The proof of this result is routine. By choosing F to be the identity map on
(X, x,), we obtain

COROLLARY 2.3B. The binary operation is independent of the contvactions of
the categorical subsets.

An example presented in Section 4 shows that the binary operation does, in gen-
eral, depend on the choice of categorical subsets.



10 ARTHUR H. COPELAND, JR.
2.4. SUSPENDED SPACES

Important examples of spaces of category two are the suspended spaces. The fol-
lowing definition of suspended space will be used. Let X, be a topological space, and
let x, € X,. The suspension SX; of X, is formed from X ,XI by identifying
K = (X,%X0) U (X,%X1) U (x,xI) with a point X € SX,. That is, the points of SX, are the
points of (X,xI) - K, together with a point X,; and a basis for the open sets of SX,
consists of the open sets in (X, XI) - K, together with the sets (U - K) y X, such that
UD K and U is open in X,XI. It follows immediately from this definition that the
restriction to (X,XI) - K of the natural map 6: (X,XI, K) — (8X,, X,) is a homeomor-
phism. Two cones over X, are defined by X, = 0(X,x[%, 1]) and X, = 6(X,%[0, £]).

THEOREM 2.4A. Cat(SX,, %) < 2.

Proof. Let 5{0 and Xo be the categorical subsets. The homotopies are easily
constructed.

To simplify the notation, X, will be cons1dered the same as 0(X,x3); then %, = x,.
When X is a suspended space, [X, x s Yo is a group; associativity is easily veri-
fied, and the inverse of an element {)f} is the class of the map sending 6(x, t) into
f(9(x, 1 - t)).

Suppose ,, 7,, 7, are sets of homotopy classes of maps, and §;: 7, —,,
§,: m,—m,; are functions. The sequence

Ty W73

is said to be exact when &,(m,) is the set of elements of m, which £, carries into the
class of the constant map in 7.

Let X, be a topological space, and p: E— B a fibre map satisfying the homotopy
lifting condition for maps from X XI", for each positive integer n. Let x; € X,
b, € B, F=pib,), yo€ F, i: FC E, and X = SX, (formed relatlve to x,). If X, is
smooth about x,, then a function : [X X, B, b ]—»[XO, Xo; F, y,] may be defined as
follows. Let @ be an element of [X, x,; B, bo] and let f: (X, x,)— (B, by) be a repre-
sentative of . The map f induces a map f X,XI—B such that f(X,xI U x,XI) = b,.
By the homotopy lifting condition, there is a map G: X,XI—E such that G(X,X0) =y,
and poG = f. Note that poG(x, 1) = f(x, 1) = b,, so that G(x, 1) € F. In view of the
smoothness condition, we may assume that G(x,, t) = y, for t € I. Thus a map
of: (X, x,) —(F, y,) is defined by of(x) = G(x, 1). A homotopy of {f induces homotopies
of f, G and hence of 9f, and therefore the class of 9f is independent of the repre-
sentatlve f of a. Let aa = {af}

THEOREM 2.4B. The sequence

P# . 2 : R . P# .
- — [X, Xy E, YO]—" [X, x,; B, bo]"’[xo, Xo; F, Vol —[X0, X0 E, Yol [Xos X0 B, b}

is exact.

~ The verification of exactness is routine. Note that not all of the functions involved
need be homomorphisms. '

THEOREM 2.4C. If cat(X,, x,) < 2 and € is arbitravy, then X, x,, & has a
homotopy theory such that 0 is a homomorphzsm.

Proof. Let A, and A, be the categorical subsets of X,, and

Tj: (XOXI’ XX I)—*(XO’ xo)
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the contractions. That is, let Tj(x, 0) = x for x € X,, and Tj(x, 1) = x, for x € A;
(i=1, 2). Set X;=0(A;xI) and R;(8(x, t), s) = 8(Ty(x, s), t); then X=X, UX, isa
categorical decomposition. Let 1 designate the binary operation induced by this
decomposition. A straightforward computation shows that 9 is a homomorphism
with respect to this binary operation.

Let X' be the suspension of a space X;, formed relative to some point x; € X
Let ¢': (X!xI, X)xIU x\xI)— (X', x}) be the analogue of 6. A map

¢ (Xoy Xo) — (X, Xo)

induces a map 5¢: (X, xo) = (X', x§) by Sp(6(x, t)) = 0'(#(x), t).
THEOREM 2.4D. The diagram

i P#
°* —’[Xy X9 B, bo] i[xo) X9 F’ yO]_#’[Xo’ X0 E; YO] - [XO’ Xos B’ bo]
1 set Tt 1ot 1 of
ot 9' t 1 14 1 ' P# 1 1
oo _’[X’ X0 B, bo] —’[Xo’ X,; F, Yo] _’[X(), Xy E, YO]_' [Xo, Xy B, bo]

is comwmutative.

The proof follows immediately from the definitions of the various objects in the
diagram.

Let (Y, Y') be a topological pair, let y, € Y', and let i: (Y', y,) — (Y, y,) and
it (Y, ¥o ¥o) — (Y, Y', y,) denote inclusion maps. A function

3: [Xy, Xo5 %03 Y, Y, Yol = [Xos X0, Y, Vol

is given by a({f}) = {(f |(X,, %)} when f: (X,, X,, ;) — (Y, Y', yo). The map j in-
duces a function j g [SX,, x0; Y, vol—[X,, X5, X3 Y, Y', o] as follows. If.

f: (SX,, Xo) — (Y, yo) is a given map and r,: (SX,, XO)—> (8X,, x,) is defined by
r,(6(x, t)= 6(x, 2t), then ju({f}( = {(for,)| (Xo Xy, X} .

THEOREM 2.4E. The sequence
i

# LN
. _’[Sxo, Xo» Y', YO] _'[SXoa X5 Y, YQ]_’[XQ, Xos Xo3 Y, Y, yO]

) iy
_’[Xos Xo5 Y, Yo]_'[Xoa Xo; Y, yO]

is exact.

The proof is similar to the corresponding proof for Hurewicz homotopy groups.
A weak form of Theorem 2.4B may be derived from this sequence.
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3. COHOMOTOPY
3.1. DEFINITIONS

Let Y be a topological space, let y, € Y, and let € be a collection of pairs of .
the form (X, x,). A cohomotopy theory on Y, y,, ¥ is a collection p of binary oper-
ations, one on each [X, x,; Y, y,] with (X, x,) € ¥, and satisfying the following two
postulates.

Cl. For each (X, x,) € €, the class of the constant map is the two-sided identity
element of [X, x,; Y, Yol-

C2. For all (X, x,) and (X', x}) in € and for every map F: (X, x,) — (X', x}), the
induced function F#: [X', x5 Y, ol = [X, x0; Y, Vo] is a komomorphism.

A topological space Y is said to be an H-space if there is a point y,€ Y and a
map A: (YXY, y2) —(Y, y,) such that the maps y —Aly, y,) and y— A(y,, y) are homo-
topic to the identity map on Y under homotopies which leave y, fixed. The point y,
will be called the identity element, and the map A, a structure map.

3.2. FUNDAMENTAL RESULTS
THEOREM 3.2A. Suppose (Y, y,) and (YXY, y2) are in €. Then Y, Vo € has
a cohomotopy theory if and only if Y is an H-space with identity element y,
Proof. Suppose that Y is an H-space [7, p. 14], that (X, x,) € € and that «,
BelX,x, Y, vy, If fea and g €B are representative maps, define

ula, B) ={ro (fxg)-d},

where d: (X, x,) — (XXX, x2) is the diagonal map: d(x) = (x, x) for x € X. It is im-
mediate that this definition does not depend-on the choice of the representatives f and
2. o ‘

Now suppose f(X) = y,. Since y —A(y,, y) is hbmotopic to the identity, the map
x— AME(x), g(x)) = Ay,, g(x)) is homotopic to g. A similar statement holds in case
g(X) = yo. Thus Postulate C1 is satisfied.

I (X, x), (X', x}) € &, if F: (X', xp) = (X, %) is a map, and if
| a': (X', x) = (X'X X', x02)
is given by d'(x) = (x, x) for x € X', then
Ffu(a, g) ={r o (fxg)odoF} ={r o (Exg) o (FxF) ed'} = p(Fha, Fig).

Thus Postulate C2 is satisfied.

Conversely, suppose-that (Y, y,), (YXY, y3) € € and that u is a cohomotopy
theory on Y, y,, @. Let j,, i,: (Y, yo) — (Y XY, y2) be the two injections j,{y) = (¥, ¥o)
and j,(y) = (yo, y) for y € Y, and let p,, p,: (YXY, y3 — (Y, y,) be the projections
p, (¥, ¥') =p,(y', y) =y for y, y' € Y. The H-space structure map

A (YXY, y2) — (Y, y,)

is chosen to be any representative of u({p,}, {p.}) € [YXY, y% Y, y,]. Note that
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{roi,} =ifudp,}, {p.}) = pdp,oit, {psoith) = {p.oi,},

whence the map sending y into o j,(y) = )\(y, yo) is homotopic to the identity
p,°i;: (Y, yo)— (Y, y,). Similarly, {A 0j,} ={p,0ij,}, and therefore the map sending
y into A(y,, y) is homotopic to the identity.

The structure map X is said to be inversive when there is a map i: (Y, y,) — (Y, ¥,
such that the maps y — My, i(y)) and y — A(i(y), y) are null-homotopic; associative in
case the maps p,, p,: (YXYXY, y3) — (Y, y,) given by

pl(Yu Yo, ys) = A(YI} A(Yzy Y:s)), Pz(Yn Y2 Y3) = A(A(YH Y2)7 Y:;) »(Yp Y2 ¥3 € Y)

are homotopic; abelian in case (y,, y,) — A(y,, ¥y2) is homotopic to (y;, y,) — Ay, ¥))-
THEOREM 3.2B. X\ is inversive if and only if [Y, yo; Y, yo] is itnvevrsive.

THEOREM 3.2C. X is associative if and only if [YXYXY, y3; Y, y,] is asso-
ciative.

THEOREM 3.2D. X is abelian if and only if [YXY, y; Y, yo] is abelian.
Proof of 3.2C. Suppose that [yxyxy, y3 Y, yo] is associative. Define the maps
Pi: (YXYXY: ya)_' (Y’ yt)) by pi(yl, Y2 Ya) =¥i (Yi €Y,i=1, 2, 3)' Then

{p:} = (o}, pp.t, {pa})) = wludp,}, {p2}), {ps}) = {0.}-

Conversely, suppose that A is associative and that a, B8, y are elements of
LX, %, Y, Vol ((X, x,) € ¢) with representatives f, g, h: (X, x,) — (Y, y,). Let
d(y) = (y, vy, y) € YXYXY. Then

pla, 1(B, v)) = {ro(Ex(ro(gxh)od)od} = {p,o(fxgxh)od} = {p,o(fxgxh)ed}
= {x((xo (fxg)od)xh)od} = plu(e, B), ¥).

The proofs of 3.2B and 3.2D use similar techniques.

3.3. AN EXACT SEQUENCE

Let (X, A) be a topological pair, and let A be:closed in X. A space X, a point
X, € X, and a map F: (X, A)— (X, x,) may be chosen so that F is onto, and is a
homeomorphism on X - A. If Y is a space and y, € Y, then the function

F': [R, x; Y, yoJ— [X, A; Y, v

is one-to-one, onto. If A: YXY—Y is a structure map, and if d: X——+ XXX and

d': X—»XxX are diagonal maps, then a natural binary operation u' on [X, A; Y, yo]
is defined by up'{f}, {g}) ={ro(fxg)od'} when f, g: (X, A)—(Y, y,). We note that
Fi# is an isomorphism with respect to these binary operations.

Suppose that X is separable, A is closed in X, and Y is an absolute neighbor-
hood retract. Let E be the space of paths in Y which start at y,; and let the com-
pact open topology be put on E.

LEMMA 3.3A. Any map f: A— E may be extended to g: X— E.
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Proof. Let X be the cone over X (that is, let X be the set XxI with identifica-
tions (x, 0) = (x', 0) when x, x'€ X), and A c X the cone over A, Then f: A—E in-
duce f': A—Y by f'(x, t) = f(x)(t). Since A is contractible, there is a map F: AXI—-Y
with F(x, t, 0) = f'(x, t) and F(x, t, 1) =y,. By Borsuk’s extension theorem, there
exists a map G: Xx1—Y such that

F(x, t, s) (xeA t,sel,
G(x, t, s) = .
Yo xeX, tel, s=1).

Then g: X— E is given by g(x)(y) = G(x, t, 0).

COROLLARY 3.3B. If f,, f,: X—E ave maps such that f,| A is homotopic to
f, | A, then the homotopy may be extended to a homotopy between f, and {,.

Apply Lemma 3.3A, with A replaced by Xxi U AxI, and with X replaced by
XXI, .

Let § be the space of loops in Y based at y,, and let w, be the constant loop.
The maps i,: (X, X) — (X, A) and i,: (A, X) — (X, %,) are inclusion maps.

THEOREM 3.3C. If either (1) X is a CW-complex, A is a subcomplex and Y is
arbitrary, ov (2) X is separvable, A is closed in X, and Y is an ANR, then a function
5: [A, x; Q, w,]—[X, A; Y, yo] may be defined in such a way that the sequence

iff iff i#

o] 2
oo —'[X, X0 2, Wo]—’[A; x; €, WO]—’[X, A Y, Yo]"" [X, Xo; Y, YO]"—’ [A7 X5 Y, YO]

is exact.

Proof. The function d is defined as follows. Any map f: (A, x,) = (£, ‘W,) may be
extended to f': X— E, by Lemma 3.3A in case (2), and in case (1) by the observation
that all obstructions vanish. By using Corollary 3.3B, or by observing that all ob-
struction cocycles vanish, we see that {f'} is determined by {f}. Let p: E—Y be
the map which assigns to each path its terminal point. Set 6{f} = {pef'} (this form
of the function 6 was suggested to the author by W. Hurewicz). The exactness of the
sequence is readily verified.

THEOREM 3.3D. If \: (YXY, y3) — (Y, y,) induces the binary operation . on
[X, A; Y, y,], then a binary operation n may be defined on (A, x; ©, W,| in such a
fashion that 6 is a p-homomorphism.

Proof. Define \': (EXE, Qx , w2)— (E, &, w,) by A'(a, b)(t) = A(a(t), b(t)) for
a,be E and t€ L If f, g: (A, x) — (2 wy), set pft}, {g}) = {xo(txg)od}. X
f', g'« X—E are extensions of {, g, then

su({t}, {gh) = {r'o(Exglod} = {poro(f'xg"od}

{ro((pof)x(pog)od} = un(s{f}, 8{e}).
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3.4. RELATIONS BETWEEN COHOMOTOPY THEORIES

Suppose Y and Y' are H-spaces with structure maps x: (¥YXY, y2) — (Y, y,) and
N: (Y'xY!, yi2) — (Y, yb). Let h: (Y, y,) — (Y'yl) be a map, and # a collection of
pairs containing (YXY, y,).

THEOREM 3.4A. The function h# [X, x5 Y, Vol —[X, xo; Y'vs] is a homomorph-
ism for all (X, x,) € € if and only if hoXx is homotopic to
Ao (hxh): (YXY, y,)— (Y, yo) .
Proof. Suppose hoX is homotopic to ' o (hxh). If (X, x,) € C and
f, g: (X, x9) = (Y, yo)
are given, then
hyu({f}, {g}) = {horo (fxg)od} = {r' o (hxh) o (fxg) od}
= {\o(hofxhog)od} = u(hg{f}, ha{g}).

Conversely, suppose that the relation hgu({t}, {g}) = n(hg{f}, he{g}) holds for
all (X, x,) € € and for all maps f, g: (X, x,) = (Y, yo). In particular, the relation then
holds when (X, x,) =(YXY, y, and when £, g: (YXY, y,2)— (Y, y,) are the projections

f(yl’ Y2) =Y and g(yla Y2) =Y (Yl, Y, € Y). But
(fXg) od(yl’ yz) = (fxg) ((yl’ Y2)s (YI’ yz)) = (yly Y2) .

Thus

{hor} = {horo(fxg)od} = hyu({f}, {g}) = n(hy{f}, hy{gh)
= {xo(hxh)o(ixg)od} = {r'o(hxh)},

whence ho )\ is homotopic to A' o (axh). (This result was suggested to the author by
E. H. Spanier.)

4, RESULTS INVOLVING BOTH HOMOTOPY AND COHOMOTOPY

THEOREM 4A. If cat(X, x,) < 2 and Y is an H-space with identily element y,,
then the binary operation on [X, x,; Y, y,] induced by the categorical decomposition
of X is the same as that induced by the H-structure map on Y.

The proof is routine. Some immediate consequences of this result are:

COROLLARY 4B. Any two categovical decompositions of (X, X,) induce the same
binary opevation on [X, Xos Y, Yo ).

COROLLARY 4C. If X and ) arve H-structure maps on Y, both having y, as
theivr identilty element, then they induce the same binary opevation on [X, Xo; Y, yo].

COROLLARY 4D. The binary opevation on [X, Xy; Y, yo] is commultative.

If cat(X, %x,) <2 and (Y, y,) is not an H-space, then the binary operation on
[X, x4; Y, ¥o] may depend on the choice of the categorical decomposition. This is
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demonstrated by the following example. Let S?, S™ and S»tm-1 pe gpheres of di-
mensions n, m and n+ m - 1 (2 <n <m). The space X = Spvgmygntm-1 jg 5
suspension of the suspended space S™-lyvgm-l\/gntm-2 et Q be the space of
loops on Y based at y,, and let w, be the constant loop. It is easily verified that

5: [sn-lvgm-lygntm=2 « - 0. w,]—-[X, x,; Y, y,] is an isomorphism (see Section
3.3) with respect to the binary operation induced by the suspensions described above.
Note that [sn-1V gm-1\Vgntm-1 x - Q w,] is abelian, whence [X, x,; Y, y,] is also
abelian.

A. J. Goldstein pointed out to the author that X* = S(S®~1xS™-1) has the same
homotopy type as X. The argument runs as follows. The space X* may be regarded
as a CW-complex having four cells E? En, Em and Entm-1_ The first three of
these cells form STV S8M= g(Sn-1Vgm-1), The characteristic map

en~t~m—1 . In+m—1_,x*

defines a map f, from, say, the upper hemisphere of S*t™m-1 gnto Entm-1 jet

ij: sn-tc gn-lygm-l apd ip: g™-1 c gn-lyygm-1 pe inclusion maps. Then
{entm-1lintm-11 4, o . 2 (S?V S™) jis the suspension of the bracket product
[{i1}, {i2}] € T+m-3 (SP-1VSm-1) and hence it is trivial [5]. Thus f, restricted

to the diameter of S2tm-1 may be extended to a map from the lower hemisphere of
snim-1 jpto SNVS™, These maps, together with the identity map on S™/ S™ induce
a map f: X—X* such that the induced homology maps f,: Hi(X)—H;(X*) (i=0, 1, -*)
are isomorphisms. Both spaces are 1-connected; hence they have the same homotopy
type [8, p. 1135].

The binary operation which the suspension of S™-1x8™-1 jpduces on [X*, X0; Y, Vol
need not be abelian. In fact, let Y = S®VS™, Then

[X*, x5 Y, Vol = [SPIx8™-1 x5 (Y), y,].

Let f: S-1xgm-1_, oY) be the projection of S"-1x8™-1 onto §™-1, followed by
the natural homeomorphism of S™-! into ©(Y); and let g:S?-1xgm-1_,gn-1_, o(y)
be similarly defined. Note that f_: H,_(Sn-Ixsm-1) o H_ _1(AY)) and g* carries
Hp,_1(Sm-1x8m-1) isomorphically onto a direct summand of H,,_;(£(Y)). Let
a€H,_1(SP-1xsm-1) be Hy,_1(SP-Ixs™-]) and c€ Hpim-2(S2-1xSm-1) be gen-
erators, and let he u({f},{g}), k € u({g}, {f}). If (a, b)—a-b is the Pontrjagin
product on the ring H_(£(Y)), then h,(c) = +(f a) - (g,b), and k,c = +(g,b)- (f,a).
Since H_(2(Y)) is the tensor ring of the free abelian group H*(Sn"l\/ sm-13"(gee [2,
p. 334]), (f,a)- (g,b) is not equal to +(g,b)- (f,a), k, #h,, and therefore [x*, x,. Y, ¥,
is not abelian. Thus X has categorical decompositions leading to distinct homotopy
theories.

5. APPLICATIONS
5.1. CONTRACTIBLE FIBRES

Let p: E— B be a fibre map with fibre F = p~1(b,) (b,€ B). In [4], E. H. Spanier
and J. H. C. Whitehead proved that if F is either a locally finite CW-complex, or a
compactum which is an ANR and is contractible in E, then F is an H-space. This
result may be improved as follows:

THEOREM 5.1A. Suppose that FXF  is smooth about some point y3 (y,€ F), and
that p satisfies the homotopy lifting condition for maps from FXFxI1, If F is con-
tractible in E, by means of a contraction leaving y, fixed, then F is an H-space.
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Proof. Let € consist of the pairs (F, y,) and (FXF, y3). If (X, x,) € ¢, then
from Theorem 2.4B it follows that the sequence

d 1y
i —"[SX, Xos B’ bo]'—'[xa Xos F, yO].—’[X’ Xos Er YO]

is exact, where i: (F, y,) — (E, y,) is the inclusion map. By hypothesis, iy is trivial,
so that the map 9 is onto. The remainder of the proof consists in using the group
operation on [SX, x,; B, b,] to establish a cohomotopy theory on F, y,, €.

Let ¢: (FXI, yoxI)— (E, y,) be a contraction of F, with ¢(y, 0) =y and ¢(y, 1) =y,
when y € F. Suppose that a € [X, Xos F, yo] is represented by the map f, and that
g: XxI—SX is the usual identification. It is easily verified that f(8(x, t)) = p(¢(f(x), t))
defines a map f: (SX, x,) — (B, b,). Note that {f} is independent of the representative
f € a. Define the function ®:[X, x,; F, y,] —~[SX, xq; B, by] by ¢(a) ={f}. The binary
operation u' on [X, x,; F, y,] is now given as follows. If ¢ and B are in
[x, X F, yo] and u is the binary operation on [sx, X,; B, bO], then

p'(a, B) = ou(ea, @B).

That condition C1 holds is readily verified. As for C2, suppose that (X, x,) and
(X', x5) are in ® and f: (X, x;) — (X', x5). Note that the diagram

®
[SX, x,; B, bl = [X, x0; F, Yol
1 st 1 £*

]
[sX', xi; B, b,] = [X', x8; F, y,]

is commutative in both ways (in other words, that ast? = %5 and eff = Sf#cb), and
that 8@ is the identity on [X, x; F, yJ. If ¢, 8 € [X', x}; F, y,], then

itut(a, B) = au(Sttea, stfep) = u' (e, £78).

The result now follows from 3.2A.

If the kernel of 3 is a normal subgroup of [SX, x,; B, b,] when (X, x,) = (F, y,)
and (FXFXF, y3), then 9 is a homomorphism and (by 3.2B and 3.2C) F is an asso-
ciative, inversive H-space. If B is an H-space, then [SX, x,; B, bo] is abelian for
any (X, x,), whence [X, x,; F, y,] is abelian, and F is a commutative H-space.

The kernel of @ need not be normal, as the following example shows. Let S, and
S, be 1-spheres, B=S,VS,, by=85,Nn8S,; let E be the space of paths in B beginning
in S, (with the compact-open topology), and let p: E—~B be the map which assigns to
each path its terminal point. Then p is a fibre map, and the fibre F = p-(b,) is
contractible in E. The image of [X, Xy E, yO] under pj4 is the same as the image of
[X, x0; Sy, b,] under inclusion. In particular, the image of the fundamental group
7,(S,, by) is not normal in 7,(B, b,). Thus 7(F, y,) is not a group, and therefore F
is not an associative, inversive H-space under the structure map constructed in
5.1A. However, F is the union of disjoint contractible spaces, and therefore an as-
sociative, inversive structure map is easily constructed. '
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5.2. CLASSIFICATION THEOREMS. STATEMENT OF RESULTS.

Sections 5.2 to 5.4 are concerned with the determination of [X, x,; ¥, y,! (up to
group extensions) for certain choices of (X, x,) and (Y, y,). The technique used is
basically this. Assume that X is the suspension of a CW-complex, and that Y has
only n nontrivial homotopy groups. Decompose Y by fiberings

Yl —_ ‘_[2 ~— ess — Y Y’
P P, Pn=1

where each p; is a fibre map with fibre F;. These may be so arranged that

Y1, Fi, ***, Fnh.1 are all Eilenberg-MacLane spaces. Next, apply Theorem 2.4B to

each fibre map, and note that the groups [X; Y;], [X; F;], ***, [X; F,-1] are known.

This leads to an inductive procedure which gives information about [X, x,; Y, yo].

Certain other conditions on X and Y permit a reduction to the above situation.

Throughout, it is assumed that X is a CW-complex, and that Y is 1-connected.
Note that this assumption permits the use of [X; Y] in place of [X, x,; Y, yoJ. The
notation 7, = m,(Y) is used. The following results are obtained.

THEOREM 5.2A. Lel X be the suspension of a CW-complex, and let m be an
integer. If my is trivial for n > m, and HNX; 7,,) has finite order Ny for n <m,
then [X; Y] is finite, and its ovder does not exceed the product N2 N3 ** Nn,.

THEOREM 5.2B. If X is the suspension of a CW-complex, and Y has only two
nontrivial homotopy groups n,, and nw,, (1 <n <m), then the sequence

Y
"'_’HD(SX; 1Tn)“’Hm+1(SX; ,n,m)_, [X; Y] _,Hn(x; ﬂn)Z’Hm+l(X; ﬂm)-—-)...

is exact. The homomovrphism vy is the cohomology opevation covvesponding to the
k-invariant of Y.

In Section 5.4, a description of [X; Y] is presented for the case in which X is an
(n - 1)-conrnected CW-complex of dimension n + 2.

5.3. PROOFS OF THEOREMS 5.2A AND 5.2B

LEMMA 5.3A. If (X, A) is a rvelative CW-complex, if Y has only one nontrivial
homotopy group 1, = oY) (n> 1), and if y, € Y, then theve exists an isomorphism
0: [X, A; Y, yo] = H2(X, A; 7).

This is a familiar result in obstruction theory (see, for example, [7]). The iso-
morphism is given by ®({f}) = f*d when f: (X, A) — (Y, y,) is a map, where
f*: HY(Y, y,; 7n) = H™(X, A; 7n) is the cohomology homomorphism induced by £, and
where d € H*(Y, y,; 7n) is the basic cohomology class on Y. Note that if
h: m, = H(Y) is the Hurewicz isomorphism, then d corresponds, under the Univer-
sal Coefficient Theorem, to h™*e€ Hom(H(Y); #n). .

In the work that follows, it is frequently necessary to simplify a space by “killing
off” some of its homotopy groups. The following method is used, among others, for
this purpose. Let Y be a topological space, and n a positive integer. A space
A, (Y) D Y is constructed by appending (j + 1)-cells to Y in such a manner that
5 (A AY)) =0 for j >n [9]. The inclusion map i: Y — A (Y) induces isomorphisms
1# 7; (Y)~ 7 (A (Y)) for j< n. The pair (A (Y), Y) is a relative CW-complex.
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Suppose that Y is a 1-connected space whose Hurewicz homotopy groups in di-
mensions greater than m are trivial. Let Z denote the space A, _1(Y), and i: Y—Z
the inclusion map. The pair (Z, Y) is m-connected, and 7,,41(Z, Y) = 7, = 7(Y).

If K' is a space of type (7,, m + 1), and k, € K', then [Z, Y; K', k] = H™T(Z, Y; 7).
On the other hand, the class of the obstruction to retracting Z onto Y is in

H™tYZ, Y; 7, ). Let £: (Z, Y)— (K'Y, k,) be a map corresponding to this obstruction
(that is, let ®({£'}) € HmtYZ, ¥Y; 7,,) be the class of the obstruction). Let K be the
mapping cylinder of &', and £: Z—K the inclusion map. Note that K has the homotopy
type of K'. Let E be the space consisting of paths in K which terminate in Y, and
with the compact-open topology. The space E is contractible. (Proof: Contract the
paths to the constant paths corresponding to their endpoints. The portion of the map-
ping cylinder induced by (&' | Y) is a cone over Y, and hence contractible. Using this
contraction, we can set up a contraction of the constant paths.) The map q: E—K
which sends each path into its initial point is a fibre map whose fibre F is of type

(" m, m). Let WC E be the paths in Z terminating in Y, and let p = (3| W). Then

p is a fibre map, W has the homotopy type of Y, and the fibre F' of p is of type

(Tm, m). Let n: W—E and {: F' — F be inclusion maps. The retraction of K onto

K' and the map £&': (Z, Y)— (K', k;) induce maps of F and F', respectively, into the
loop space over K'. It is immediate that these maps induce isomorphisms of the
homotopy groups.

If X is the suspension of a CW-complex X', then we have the diagram

0 P# d
e = [8X; 2] - [X F'] - [X W] = [X Z] - [X5 F'] — e
Ep Y] ngl Epl Cs |
e = [SX; K] — [X; F] — [X; E] — [X; K] — [X; F] — ...
o' | qy a'

The diagram is commutative. By Theorem 2.4B, the horizontal sequences are exact.
The sets [X'; E], [X; E], [SX; E], - each consist of one element, and therefore the
homomorphisms 3' are isomorphisms. It has been noted that the homomorphisms
€4 are isomorphisms. This yields the following exact sequence:

Ey iy £y
(5.3B) s — [8X; Z] — [SX; K] — [X; Y] — [X; 2] — [X; K] — -

Proof of 5.2A. If m = 2, then [X; Y] = H¥X; 7,), and this group is of order N,.
Suppose the result has been established for spaces whose homotopy groups of dimen-
sion above m - 1 are trivial. In the notation established above, [X; Y] is an exten-
sion of [SX; KI/£4[SX; Z] by a subgroup of [X; Z]. The order of [SX; KV/£4[SX; Z]
does not exceed Np,, which is the order of [SX; K]~ H™*1(SX; 7,,) ~ H™(X; 7,,),
and by the inductive hypothesis, the order of [X; Z] is at most Ny+-*Ny,-1. Thus

order ([X; Y]) < (order [SX; K]) - (order [X; Z])S NN _1°N,.

Proof of 5.2B. It is assumed that Y has only two nontrivial homotopy groups,
7, and 7, , and that 1< n <m. The space Z is now of type (7, n). The diagram,

£y 4
= X5z~ KK =[5y - [X2Z] - [XKK] - e
e l© 10 10
H™(SX; m,) Py H™M(SX; 7,) H(X; 7,,) > H™ (X 7,,)
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is obtained by combining the sequence (5.3B) with Lemma 5.3A; the operation y is
defined to be @ '£z@. Since ©({£'}) is the obstruction to retracting Z onto Y,
®({t}) is the k-invariant of Y, and y the cohomology operation corresponding to
the k-invariant. The result now follows easily.

5.4. CLASSIFICATION THEOREMS, CONTINUED

LEMMA 5.4A. If X is an (n - 1)-connected CW-complex (n > 1) of dimension
k < 2n, then X has the homotopy type of a suspended space.

Proof. We may assume, without loss of generality, that the (n - 1)-skeleton of X
is a point. The proof proceeds by induction on k, the dimension of X. It is imme-
diate that the result holds for k = n. Suppose the result holds for complexes of di-
mension at most k - 1, and that X is of dimension k < 2n. The (k - 1)-skeleton
X k-1 6f X has the homotopy type of some suspended space SY. Let f: Xk-1-gy
be a homotopy equivalence. Let the k-cells of X be denoted by E& (@ running over
a suitable index set) with characteristic maps eI&: IX—X, Then fo (eI&I ik) is de-
fined and represents an element of 7y _; (SY). Since the suspension homomorphism
from n}f_z(Y) into 7y _) (SY) is an isomorphism when k < 2n, there is a map
g,: I¥"1 >Y whose suspension is homotopic to f o(eX |IX). A space

k-1

Z=YU U E,

Q€A

is obtained by attaching (k - 1)-cells E}x"l. by means of the maps g, (that is, the
characteristic map of E§‘1 restricted to 1¥-1! is gq). The map f: X*""—SY may
be extended to a map of X— SZ; for the problem of extending f over Ela is that of
showing that {fo(e} |k} is zero in m_) (SZ). But the cell EX-1 supports a null-
homotopy of gq, and hence its suspension supports a null-homotopy of f © (e} |IX).
Note that the extension may be taken to be a homeomorphism on E less its boundary.
The proof will be complete as soon as it is shown that the extension f': X—SZ of {
%nduces, fo]r each i, an isomorphism of the homology group H;(X) onto H;(SZ) (see
8, p. 1135]).

As for this last point, consider the commutative diagram

H, (X, X5 - Bx*) - 5, - 5E XD -5 &)
£ 1, LI Ly Lf,
H,,,(SZ, SY) — H;(SY) — H;(SZ) — H;(SZ, SY) — H; ,(SY).
The horizontal sequences are both exact, the {, are isomorphisms by the inductive
hypothesis; and the f: are isomorphisms, since (f' |X - X¥-} j5 a homeomorphism.

Thus f, is an isomorphism, from the Five-Lemma. This concludes the prcof of
Lemma 5.4A.

Let us suppose that X is an (n - 1)-connected CW-complex of dimension n+ 2.
In addition, assume that n > 3, so that X is the suspension of a CW-complex X'.

Given a 1-connected space Y, set Y] = Ap;2(Y).
LEMMA 5.4B. [X; Y] = [X; Y,].

Proof. The sequence [X, X; Y,, Y]—[X; Y] - 'X; ¥,] »[X', X'; Y,, Y] is exact.
The first and last.sets are trivial.
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Thus we may assume that the homotopy groups of Y are trivial in dimensions
greater than n+ 2. Let p: Y,—Y be an (n - 1)-connective fibre map [56]. The fibre
F will have 7;(F) =0 for i >n - 1.

LEMMA 5.4C. [X; Y] = [X; Y,].

Proof. The sequence [X; F]— [X; Y,]—[X; Y]—[X'; F] is exact. The first and
last sets are trivial.

We may therefore assume that Y has only three nontrivial homotopy groups
73 =7;(Y) i=n,n+ 1, n+ 2), Let r: P—Y be an n-connective fibre map. The
fibre Q is a space of type (m,, n - 1). Let k = k3"2(Y) in H™w,, n; my41) be the
k-invariant, and a¢ the corresponding cohomology operation,

THEOREM 5.4D. A homomovphism  may be chosen such that the sequence
r .

#
0 — [X:P] — [X; Y] » HMX; 7)) — H*"3(X; 1) — -+ is exact.
Proof. The exact sequence of the fibre map r is

r

. 3 ,
- [X; Q] — [X; P] i [x; Y] = [X, Q] — [X'; P] — -

It is immediate that [X; Q] = 0, that [X'; Q] ~ H*-1(X'; 7, ) ~ H(X; nn) and that
[X'; Pl = IO (X; 7041 ) = HF2 (X; Tny1 ). It remains only to demonstrate that the
homomorphism from H™X; 7,) to HM2(S; 7,,,;) is a.

First, we note that the highest homotopy group of Y seems to have no relation
to @. This suggests eliminating this group in the usual manner. Let Y = Ap4)(Y),
and let r: P—Y be an n-connective fibre map. If P is set equal to r-*(Y), and

r=(r |P) then r: P—Y is an n-connective fibre map for Y. The fibre, in both
cases, will be called Q. The diagram

0 igy .
= [X Y] - [X5Q] - [X5P] -

Lirg iz [REY

- =[x Y] - [X5Q] — [X4;P] — -
F) igy :

is commutative, and the horizontal sequences are exact. The maps i,, ---, i, are in-
clusion maps. Itis clear that i;4 and i34 are isomorphisms.

The space Y has only two nontrivial homotopy groups. Such spaces have been
discussed in the proof of Theorem 5.2B. With the notation of that theorem (save that
Y is now called Y and m = n+ 1), P may be taken to be the space of paths in Z be-
ginning at some point y, € Y and terminating in Y (see, for example, [6]). That is
to say, P = F. The fibre map r sends each path into its terminal point. The fibre Q
of r is the space of loops on Z. We have the commutative diagram

A 54
—»[X' Q] [x'; Bl—--
811 ) J#

—[X; 2]— [X'; F]—....
Py 0
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In this diagram, j: F = P is the identity map, and d, is an isomorphism (Q is the
fibre of a contractible fibre space over Z). The result now follows from the corre-
sponding result in Theorem 5.2B.

This result has also been obtained, in a different way, by Barratt [1].

5.5. H-STRUCTURE MAPS
Let Y be an H-space with an identity element y, € Y. Let
i: (Y VY, y3)— (Y XY, y3) and j:(YXY,y3d)—(YXY, YVY)

be inclusion maps. Use HS(Y) c [YXY, y% Y, y,] to denote the set of homotopy
classes of H-structures on Y. The problem of describing HS(Y) is suggested in

[ 3].

THEOREM 5.5A. If [YXY, y% Y, y,] is a group, then HS(Y) is in one-to-one
correspondence with if[YXY, YVY; Y, y,l.

Proof. Let K: (YVY, y2) —(Y, y,) be the map K(y, yo) = K(y,, y) =y, for y € Y.
A map f: (YXY, y2)— (Y, yo) is a structure map if and only if (f‘J (Y VY, y2)) is homo-
topic to K. Thus HS(Y) = (if)-*({K}). Since [YXY, y3 Y, y,] is a group, this coset

is in one-to-one correspondence with the kernel of i¥, which is j#[YXY, YVY; Y, y,].

THEOREM 5.5B. If Y is an associative, inversive H-space with two nontrivial
homotopy groups iy = mn (Y) and 7y = 1 (Y) (1 <n <m), then HS(Y) is in one-to-
one corvespondence with H™(YXY, YVY; 7.,).

Proof. Consider the diagram

2 0 2
[Y VY, yg; QY), wol = [YXY, YVY; ¥, yol = [¥xY, y5; ¥, vy,
1 @1 192
oLy VY; m_) —  H™(YXY, YVY; 1,),

where & is the cohomotopy coboundary, and &' is the cohomology coboundary of the
pair (YXY, YVY). Since YVY is (n - 1)-connected and m,,_; ((Y)) is the only non-
trivial homotopy group of £(Y) with dimension greater than n - 1, there is an iso-
morphism @, as indicated. The pair (YXY, YVY) is (2n - 1)- connected and Tm is
the only nontrivial homotopy group of Y with dimension larger than n. Thus 62 is
an isomorphism. In short, Y, in its role as image space, may be replaced by a space
of type (7., m). Thus the square is commutative. But &' is trivial, whence 6 is
trivial; and therefore j# is a monomorphism. The result now follows from Theorem
5.5A.
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