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ON NORMAL AND EPr MATRICES IR
Martin Pearl

1. INTRODUCTION

H. Schwerdtfeger [2] has called a matrix A of order n and rank r with elements
from the complex field C an EPr matrix if it satisfies the condition

n

n
(1) 20 a;A; =0 ifandonlyif 2 a;Al=0 (o €C),
i=l i=1

where Ajis the ith row of A and Al ig the ith column of A. Another formulation
of this definition is that

(1) At =0 if andonly if A*t =0,

"where ¢ is contained in the complex n-dimensional Euclidean space C,. The class
of EPr matrices (r = 0, 1, :--, n) contains the normal matrices and the nonsingular
matrices as subclasses.

In Section 2, other characterizations of complex EPr matrices are given, and in
Section 3, EPr matrices are used to develop characterizations for normal matrices
with elements from an arbitrary field.

2. COMPLEX EPr MATRICES

THEOREM 0 (Schwerdtfeger [2, p. 131]). A necessary and sufficient condition
that A be an EPr matrix is that theve exist a nonsingular matrvix Q such that QAQ*
is the divect sum of a nonsingulay .matvix D of order r and a zevo malvix.

The following theorem gives other necessary and sufficient conditions that A be
an' EPr matrix.

THEOREM 1. The following statements ave equivalent:
(i) A is an EPr matrix; '

(ii) A is unitarily similar to the divect sum of a nonsingular matrix D of ovder
r and a zevo malrix;

(iii) A is congruent to the divect sum of a nonsingular matvix D of ovder r and
a zevo matvix;

(iv) A is the matrix of a linear transformation T acting on C, and having the
property that C, can be expressed as the divect sum of two mutually orvthogonal T-
spaces V, and V, such that T(V,) =V,, T(V,) = 0 and V, has dimension r;
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(v) A has rank r, and theve exists a nonsingular matvix N such that A* = NA,;

(vi) A can be represented as

D DX* I 0 D O I X*
XD XDX* X I 0 0 01I
where P is a permutation malvix and D is nonsingular and of ovder r.

It is clear that (ii) implies (i), (iii), (iv) and (v), since each statement is invar-
iant under unitary transformations and is immediate when A is in the form D % 0.

(i) — (i}). Let A be an EPr matrix of order n. There is a unitary matrix
which transforms A into B = [Bj;] (i, j = 1, 2) such that B,, is nonsingular, B,, is
zero and B,, is a triangular matrix with zeros on and above the main diagonal. If
n > r, the last column of B is zero, and hence the last row of B is also zero. If
n>r + 1, the last two columns of B are zero and hence the last two rows of B are
zero. A repetition of this argument yields the result B,, = B,, = 0.

(iii) — (i). The equivalence of (i) and (iii) is contained in Theorem 0.

(iv) — (ii). After a suitable unitary transformation on C, (under which the EPr
property is invariant) we can select the unit vectors e;, e, **», €, and e 4], ***, €p
as bases for V, and V,, respectively. We partition A into matrices [Aij] (i,j=1,2).
Relative to this basis, A;, is nonsingular and A, = A, = A,, = 0.

(v) — (i). Since N is nonsingular, A*¢ = 0 implies Af = 0.

(i) — (vi). Let A be an EPr matrix. It is known [2] that A has a nonsingular
principal submatrix D cf order r. Therefore, for a proper choice of P, the matrix
B,, in the upper left-hand corner of P*AP =B = [Bij] (i,j=1,2) is D. If we set
X =B,,D"! and Y = D"!B,,, then

I 0\ /D 0 | O 4
X I 0 B,,-XDY/\O0 I
. D DY
Since the rank of A is r, it follows that B,, = XDY, and hence B = ( )

XD XDY
I 0
C=( )O
-X I

D DY - DX*
Then CP*APC* is an EPr matrix and is in the form ( ) Hence
0 0

Let

DY = DX*, and therefore Y = X¥,

(vi) — (iii) is immediate, and the proof is complete,
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3. NORMAL AND EPr MATRICES OVER AN ARBITRARY FIELD

Let A: a =7 be an involutory automorphism of a field F. For a matrix A= [a ij]
contained in the algebra of n-by-n matrices with elements in F, the conjugate
transpose A* of A is defined by

and A is an EPr matrix if it satisfies the condition

n I

a) 2 o;A; = 0 if and only if 2 a;Al=0 (4 € F).

i=1 i=1

By these definitions, (i), (iii), (v) and (vi) of Theorem 1 are equivalent.

A simple example demonstrates that a normal matrix (that is, a matrix A such
that AA* = A*A) over F need not be an EPr matrix. In particular, let F be GF(5),

a =4, and consider
1 2
AO ) ( )'
-2 1

However, the following lemma holds.

LEMMA. If A is normal and has the same rank as AA*, then A is an EPr
matvrix,

If A*f =0, then A%t = AA*E = A*AE = 0. Since A and A*A have the same rank,
their null spaces, n(A) and n(A*A), have the same dimension, n - r. But
n(A) c n(A*A), and therefore n(A) = n(A*A). Thus Af = 0. Similarly, A =0 im-
plies that A*{ =0,

It is known [1] that if A is a complex normal matrix, then A* can be expressed
as the product of A and a unitary matrix which commutes with A. Conversely, a
matrix having this property is normal. However, A, is not an EPr matrix. For

A¥ = NA, would imply that n(A,) € n(A¥). Clearly ( é )'6 n(A,), (flz ),é n(A¥). How-
ever,we can prove

THEOREM 2. Let A have the same rank as AA*, Then a necessary and suffi-
cient condilion that A be novmal is that A* = NA = AN for some nonsingular N. The
matrvix N may always be chosen to be unitary (that is, so that NN* = N*N = I).

That the condition is sufficient is obvious.

Let A be normal and have the same rank as AA*. By the lemma, A is an EPr

. matrix. We shall use the representation (2) of an EPr matrix for A. It follows from
the normality of A that D(I + X*X)D* = D*(I + X*X)D, and since A and AA* have the
same rank, I + X*X 1is nonsingular. The general solution of the equation

D* £+ 0 = N(D + 0), for nonsingular N, is

D*D-* N,
0 N,
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where N, is arbitrary, and where the only condition on N, is that it be nonsingular.
Hence the general solution of A* = NA for nonsingular N is given by

I 0\ /D*D"! N;\N,I O
X 1 0 N,/\-X I

Finding N such that A* = AN = NA is equivalent to solving the equation
D(I + X*X)N, + DX*N, = D*X*,

Since D and I + X*X are nonsingular, a solution always exists. If N, is selected to
be I, then N*N = 1.

THEOREM 3. Let K be a field containing ¥ and the characteristic voots of A.
For each B in K, let A - B1 and (A - B))(A - BD)* have the same vank rg, and let
A - BI be an EPrg matrix. Then A is normal, and theve exists a scalar polynomial
f such that A* = f(A).

Since A - BI is an EPrg matrix, (A -BD* = (A - BI)NB for some nonsingular Ng,
and A - BI has the same rank as (A - BI)zNB. Thus all roots of the minimal equation
of A are simple, and to each root of multiplicity eg of A, there correspond eg
linearly independent characteristic vectors £, &,, -+ ijeB. The totality of these

vectors for all roots of A constitutes a set of n linearly independent characteristic
vectors of A. For any characteristic vector ¢ of A, with root 8, we have, using (1'),
A*t = BE and AA*E = BAE = BRE = A*A:. Thus (A*A - AA*)¢ = 0, and therefore

A*A - AA* =0,

Let B= A - BI. We have shown that the roots of the minimal equation of B are
simple, and hence that B is similar to a diagonal matrix. Let.

SBSl=T=T)4+T,+ -+ T,
where T; =3.1 and g3, # BJ. for i # j. Since B is normal,
(3) S-ITS S*T*(S*)~! = S*T*(S*)"1S-I1TS.

Set SS* = U. Then (3) is equivalent to T(UT*U"!) = (UT*U~Y)T, and it follows that
UT*U"! = SB*S-! is of the form X; + X, + --++ Xy, and that T;X; = X;T;. However,
B* is similar to a diagonal matrix, and hence each of the X; is similar to a diagonal
matrix. Let U;X;U; ! = Z; be diagonal. Set U=U;+ U, + --- ¢ Uy and W = US.
Then

WBW!l=T;+ T, 44T, and WB*W 1=2 12,1.-1 Z,.

Since B, B* and BB* have the same rank, T; = 0 if and only if Z; = 0. Thus WAW-!
has 8 as its ith diagonal element if and only if WA*W~! has B as its ith diagonal
element. The Lagrange interpolation formula yields a polynomial f such that
WA*A™1 = {(WAW-1) and hence A* = f(A).

Although the hypothesis that A - I has the same rank as (A - BI){(A - gI)* is not
needed to prove that A is normal when n = 2, it cannot be dropped in general. For
let F be the field GF(11) (a = a), and consider the matrix
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The characteristic polynomial of A, is x3, and therefore its only root is 0. Since A,
is an EP2 matrix (with £ = (1, -3, 1)), A, - BI is an EPrg matrix for all § in any
extension field of F. However, A, is not normal.

For a complex normal matrix A, it is well known [3] that there exists a scalar
polynomial f such that A* = f(A). Theorem 3 extends this result to a class of nor-
mal matrices over an arbitrary field. However, the result does not hold in general.
In GF(7), with a = a, the matrix

1 3 0 2

2 -1 0 4
A, =

3 2 0 -1

c 0 0 O

is normal, and A3 = 0. Each polynomial in A, is of the form pI + qA,. Suppose there
exist p and q such that A% = pI + qA,. Then, by considering the (1, 1) and (4, 4)
positions of each side of this equation, we have p = 0 and q = 1, which implies that
A, = A¥. This is a contradiction.

Over the complex field, A and AA* always have the same rank, and we can
therefore characterize complex normal matrices as follows.

THEOREM 4. A necessary and sufficient condition that the matrix A be normal
is that A - BI be an EPrB matrix for all B in C.
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