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1. INTRODUCTION

If E and F are locally convex spaces, and L(E, F) is the space of continuous
linear mappings of E into F, the equicontinuous subsets of L(E, F) are of natural
interest. Indeed, whether or not E is a t-space (espace tonnelé [3]) can be stated
in terms of a property of such subsets. In this paper, the duality theory of linear
spaces is applied systematically, by means of Lemma 2 below, to obtain character-
izations of equicontinuity in -L(E, F), in several cases in which E and F are given
topologies different from the ‘Mackey strong’ topology 7. In particular, for the case
of the topology k (Section 2), there is a natural connection between equicontinuity in
L(E, F) and compactness in L(E, F) suitably topologized; the connection becomes
especially simple if the spaces E and F satisfy certain restrictions in their 7-
topologies. Sections 3, 4, and 5 all bear on the application of the theory in Section
6, where the compact subsets of the algebra of bounded operators on a Hilbert space
are characterized in terms of equicontinuity, for several of the topologies studied by
Dixmier [8]. Section 4 is devoted to a multiplicative property of equicontinuous sub-
sets of L(E, E). The topological theorem of Section 5 is given more fully than its
application to Section 6 requires, because of its possible infrinsic interest.

The symbol [] will denote the end of a proof or of some other expository unit,
when paragraphing alone seems insufficient.

2. PRELIMINARIES

A pair of vector spaces E and E', over the same scalar (real or complex) field,
are in duality if each is a separating set of linear functionals defined on the other.
The value of a functional x'e€ E' at the point x € E will be denoted by (x', x).
Everything to follow will be quite symmetric as between E and E'; it will therefore
suffice to present all definitions and assertions in a one-sided way, the implication
of a corresponding dual definition or assertion being understood.

Let 6 denote the zero element of E. A topology on E will be named u if u is
the set of all neighborhoods of 0, that is, the set of all sets having 6 as an interior
point. The topology u is compatible with the duality of E and E' if it is a locally
convex topology on E for which E' is precisely the set of continuous linear func-
tionals. E, will then denote this locally convex space. If A C E, we say that
A’={x'e E'| |(x', x}| < 1 for all x e A} (see [3; 4; 5; 7] for such properties of
this and other notions herein introduced and used without explitic reference). The
weakest compatible topology on E, denoted by o(E, E') or simply by o, has for a
basis (at 8) the collection
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{(A"°| A" a finite subset of E'} .

The strongest compatible topology on E, denoted 7(E, E') or simply 7, has for a
basis the collection

{(A"°| A' convex, circled, and compact in o(E', E)}.
A special intermediate topology will be denoted k; it has for a basis the collection
{(A"°]| A" convex, circled, and compact in T(E', E} .

The topology k and others, similarly generated, are discussed in [1].

Let E, E', F, and F' be vector spaces over the same scalar field; let E and E'
be in duality, likewise F and F'. Let u and v be compatible topologies for E and
F, respectively. We denote by L(E,, F,) the vector space of all continuous linear
transformations of E,; into F,. It will sometimes be convenient to say, of some
T € L(E,, Fy), that T is (u, v)-continuous. Similarly, of a subset 4 c L(E,, F,),
the sentence ‘g is (u, v)-equicontinuous’ will have the obvious meaning. It is known
that L(Ey, Fy) € L(E;, Fy) [4; Prop. 6 and Cor., p. 103], but that the reverse inclu-
sion may not hold. L(E, F) will hereafter denote the space L(Ej;, Fy). A necessary
and sufficient condition that T € L(E, F) is that there exists a unique element
T'e L{(F', E'"), called the adjoint of T, with the property that (y', Tx) = (T'y', x) for
all xe€ E, y' € F' [4; Prop. 1 and Cor., pp. 100, 101]. (T')' is then the same as T.
The following well-known statement is equivalent to the definition of continuity
(NASC means ‘necessary and sufficient condition’):

LEMMA 1. Let T € L(E, F). A NASC that T € L(Ey, Fy) is that for each V € v,
there exists some U € u such that T'(V° c U°,

(Here T' (V%) ={T'y'|y' € V%. Similar algebraic notations will be used through-
out.)

THEOREM 1. L(E, F) = L(E;, F;) = L(Ey, Fy) = L(E, Fy).

Proof. It has already been noted that L(E, F) contains the other spaces.
L(E, F) = L(E;, F;) by [4; Prop. 7, p. 104]. That L(E, F) c L(Ey, Fg) is evident
from the fact that k is a stronger topology than ¢ for the space E. Now let
T € L{E, F); we must show that T € L(Ey, Fy). But T' € L(F', E') = L(F}, E;);
therefore, if K' C F} is convex, circled, and compact, so is T'(K') as a subset of
E;, by the linearity and (7, 7)-continuity of T'. Thus (T'(K'))° is a neighborhood in
Ey, and the criterion of Lemma 1 is satisfied. (]

LEMMA 2. Let 9 C L(Ey, Fy). A NASC that 7 be (u, v)-equicontinuous is this:
For each V € v, theve exists a U € u such that 7'(V°) c U°.

(Here 7' denotes the set of adjoints to the elements of &, and
g (Vo) ={Ty'| T e 7', y' € V°}.)

This lemma is analogous to Lemma 1; it is stated in[4; Ex. 8, p. 107]. O

A subset A C E is bounded if (x', A) is a bounded set of scalars for each
x'€ E'. A mapping T: E—F is bounded if T(A) is bounded in F for each bounded
A C E. The (linear) space of all bounded linear transformations will be denoted
B(E, F). We denote by Z(E, F) the space of all linear mappings of E into F, and by
Z(E, F) the space of all mappings of E into F. Then
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L(E,, F,) ¢ L(E, F) C B(E, F) C (E, F) C #(E, F).

A subset J ¢ Z(E, F) will be called pointwise bounded if for each x € E, g x is
bounded in F, and wuniformly bounded if for each bounded set A c E, J(A) is bounded
in F. In general, if ¥ is any family of subsets of E, & will be called uniformly
bounded on mewibers of & if 7 (C) is bounded in F for each C € €. The following
facts will be useful: If a set & c L(Ey, Fy) is (u, v)-equicontinuous, then it is uni-
formly bounded [4; Prop. 6, p. 26]. If g c L(E, F), then 7 is pointwise bounded if
and only if J' is pointwise bounded.

3. EQUICONTINUITY OF SUBSETS OF L(E, F)

If u is a compatible topology for E, we denote by u® the collection {U°| U € u}.
The properties of the ‘antifilter base’ u® may be found in [4; Chap. 4]; in particular
we note here that if U;®€ u® (i = 1, 2, -, n), then ({J=; U 9)° € u’; also, that each
U° € u° is a convex, circled, and compact subset of E' (hence closed in E!, for each
compatible v).

THEOREM 2. Let u be any compatible topology for E, and let 7 C L(E, F). A
NASC that 7 be (u, 0)-equicontinuous is that fov each y' € F', (J'y")% € u°.

Proof. By Lemma 2, (u, 0)-equicontinuity of & is equivalent to the property that
for each V° € ¢° ('(V°))% € u®. Since each y'e€e F' is in some such V?, the neces-
sity of the condition is obvious. For the sufficiency, let us, without loss of generality,
take VO ={y!|i=1, 2, --+, n}°, which is the set of all linear combinations
T, a;yl, where Zi.; | a;|/ < 1. Since (7'y))® € u® for each i, we see that

L, (g'yi)m)00 € u as well. Now, if T'€ J' and y' =%, a;y] € V°, then

- i , n oy 00 LnJ oo\ 2.
T'y =i=1 aiTyie(izlg yi) =(i=1 (7'y") ) ;

the last member is therefore (F'(V°))%, and is a member of u®. [J

A finite-dimensional subset of a linear space is any set contained in a finite-
dimensional subsapce.

COROLLARY 2A. A NASC that 9 C L(E, F) be (o, o)-equicontinuous is that,
for each y' € F', 7'y' is a bounded, finite-diniensional subset of E'.

Proof. Here the topology u of Theorem 2 is o(F, F'), and, since all members of
0° are bounded and finite-dimensional, the necessity of the condition is clear. For
the sufficiency, we must verify that (7'y')® € ¢°. Let y}, y;, *-+, yn Span the linear
subspace Fj C F' where F; contains J'y", and let H' be the convex, circled hull
of {y'l, V4 TIRLLN yl'l} Since J'y' is bounded and lies in ¥}, there exists an a > 0
such that aH' D g'y'. Further, aH' is the convex circled hull of {ay'}, ay5b, --- ay,}
Now {ay}, ay,, -+, ayi}® € o, hence (7'y')°, a larger set, is also in 0. Thus
(g'yn% € o°.0

We denote the space % (E, F), fitted with the topology of uniform convergence in
Fy on all finite sets of E (‘simple convergence’), by JE, F,). With the topology
of uniform convergence in Fy on all convex circled compact subsets of Ey, it is de-
noted by & (E,, F,). Similar notations will be used for subspaces of F(E, F), for
example, B_(E, F,). We remark here that Z(E, F) is a closed linear subspace of
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Fs (E, F,) and of #1(E_, F,), that is, the simple limit of a net of linear mappings is
again linear.

LEMMA 3. Let 9 C B(E, F), and let & be uniformly bounded on all compact
subsets of E;. Then the closure of § in F(E, F;) lies in B(E, F).

Proof. We denote the closure by & ; by the remark preceding this lemma,
7 c Z(E, F). Suppose that T € 7, but that T is not bounded. Then there is a se-
quence {x,} in E; which converges to 6, and some y'e F!, such that |(y', Tx,)| >n
for all n, Since {TO, Xp Xp ooty Xy * is compact in E, there exists an M> 0 such
that |(y', Ux,)| <M for all Ue g andall n. Then |(y', (T - U)x,)|> n- M for all
Ue€ 7 and all n, denying that Teg . [J

E, will be said to have the convex compactness property if, whenever A is com-
pact in E,, A% is also compact. Any quasi-complete space (that is, any space in
which the closed bounded sets are complete) has this property. For example, if E
is a t-space, then E} has the convex compactness property, because the compact
sets of E(', are precisely the closed bounded sets [4; p. 65].

LEMMA 4. If E has the convex compactness property, and if 5 C L(E, F) is
pointwise bounded, then I is uniformly bounded.

Proof. Suppose, to the contrary, that for some sequence {T ,} C &, some
y' € F', and some sequence {xn} C E; which converges to 6, we have |(y', Tnx,,)l >n
for all n. The set {6, X1, ***y Xp ...} is compact in E;, hence also in E,;, and there-
fore {0, x|, *--, x_, *--}° is compact in E, by the hypothesis. Then

K° = {6, X1y °*%s Xn» '"}0

is a neighborhood in Efr and a'bsorbs the bounded set {T4Ly'}; that is, there exists
an @ > 0 such that aK® > {T ny'}. But this conflicts with the assumption that
[(Thy', x)| = | 7', Taxn)| > n for all n. 0

For any 4 C #(E, F), we denote by .7 the convex circled hull of 7.

4 THEOREM 3. Let 7 C L(E, F). A NASC that J be (k, 0)-equicontinuous is that
T v have compact closurve in Z4(F', EL).

Proof. Sufficiency: For each y'e F', the mapping y': Z(F', E})— E'
(y': T'— T'y!) is continuous and linear, hence —.ﬂy' is convex, circled, and compact
in E}. Then (FLy')* is contained in FLy', and is convex, circled, and compact in
E', fulfilling the condition of Theorem 2. Necessity: If g is (k, 0)-equicontinuous,
then the same is true of 7 ; therefore we can assume that & is convex and circled.
From Theorem 2 we know that for each y' € F', J'y' (closure in E}) is compact in
E;. Therefore ' may be embedded in the product space [yiepr (7 'y"), which, by
Tychonoff’s theorem, is a compact subset of F4(F', El), and hence g' is compact in
F(F, ED. Butg' c £(F', E'), by the remark preceding Lemma 3. 0

COROLLARY 3A. Let 9 C L(E, F), and let one of the conditions (a) to (d) below
hold. Then a NASC that 7 be (k, 0)-equicontinuous is that 7 ! have compact closure
in By(F', E).

(@) 7' is uniformly bounded on the compact subsets of Fj;
(b) F and E; ave both t-spaces;
(c) F; is semicomplete [T; p. 497];

(d) for some compatible u, ¥} has the convex compaciness property.
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Proof. The sufficiency statement is but a weakening of Theorem 3. For the nec-
essity, we know already that 4 { has compact closure in Z,(F', E'); we need only
show that 7L c B(F!, E'). This follows from Lemma 3, once it is proved that each
of the conditions (a) to (d), together with the (known) pointwise boundedness of 7.&,
implies the uniform boundedness of ¢ on compact sets of F;. The conditions (a)
to (d) are merely a representative list of circumstances, by no means indeperndent of
each other, which assure at least this. (a) does so directly. In case of (b), 7, being
pointwise bounded, is (7, 7)-equicontinuous [4; Theorem 2, p. 27]. Hence, by Lemma
2, 9¢(V% € 7° for each V%e 7% this is precisely uniform boundedness, since the anti-
filters in the duals of t-spaces are made up of the bounded convex circled closed sets,
and uniform boundedness of 7§ is even stronger than (a). (c) is a sufficient condition
for the implication: pointwise boundedness of ¢ implies uniform boundedness of
% [6; p. 498]. (d) suffices for the same implication, by virtue of Lemma 4. [

COROLLARY 3B. If F is a t-space, a NASC that I 7 C L(E, F) be (k, 0)-equi-
continuous is that J % have compact closure in L (F', E}).

Proof. In this case, ¢, being pointwise bounded, is equicontinuous in L(Ff, E}),
hence its closure also lies in L(F', E') and is compact in L (F', E}) [4; Corollary,
p. 23]. [J

Even if F; is not a t-space, the conclusion of Corollary 3B holds if &', and
hence 7 ¢, is equicontinuous in L(Fy, E;J), that is, (7, 7)-equicontinuous.

THEOREM 4A. Let J C L(E, F), let E! have the convex compaciness property,
and let J ' be equicontinuous in L(F}, E}). Let T denote the closuve of T in
L (F', El). Then the following statements are equivalent:

(a) 7 is (k, k)-equicontinuous;
() 7 is (k, 0)-equicontinuous;
(c) F7 is compact in L (F', EL).

Proof. (a) implies (b) by comparison of topologies, and (b) implies (c) by Corol-
lary 3B and the remark following Corollary 3B. To obtain (a) from (c), we first note
that since 7' is (7, T)-equicontinuous, so is its closure g [4; Prop. 4, p. 23]. For
equicontinuous sets in L(F}, E';), the uniform structure induced by L(FL, E}) in its
compact-open topology is identical with that induced by L(F’, ET) [2; Prop 15, p.
35]; hence ' is compact in the compact-open topology. Then 7'(C') has compact
closure in E} for each convex circled compact subset C'c F' [2; Corollary, p. 44],
and, by the convex compactness property of E7, (F7(C")* is also compact. Thus
the subset of L(E, F) whose adjoints form 7', and a fortiori J itself, are (k, k)-
equicontinuous, by the criterion of Lemma 2. D

THEOREM 4B. If, in addition to the hypotheses and notation of Theovem 4A, we
ask that ¥} have the convex compactness property, and denote by T X the closurve
of g} in Ly (F}, E}), then the following thvee statements ave equivalent to (a), (b),
(c) of Theorem 4A

@ 7k is compact in Li(F;, Er);

(e) T'* is compact in L (F', EL);

() g is compact in L, (F!, E}).

Proof. The reasoning here is direct, and partially repeats the proof of Theorem

4A; it is necessary to notice that the ‘compact-open topology’ mentioned there is the
topology of L;. We omit the details. J
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4, EQUICONTINUITY OF SUBSETS OF L(E, E)

In the case where E = F, we may speak of the algebra L(E, E), and it is possible
to speak of (u, u)-continuity and (u, u)-equicontinuity, for any compatible topology u
on E. In Theorem 4A, a situation is described where, if 7 is (u, 0)-equicontinuous,
it is also (u, u)-equicontinuous (u being k, in that case). Here we shall give, for the
case E = F, an algebraic characterization of this situation (Theorem 5).

Following Dixmier [8; p. 388], we denote by {x', x} the linear transformation of
rank 1 defined by the rule {x', x}: y —=(x', y)x (here, of course, x' € E', x € E). It
may be calculated directly that the adjoint to { x!, x} is {x', x} = y'—= (y", x)x"

LEMMA 5. If u is a compatible topology for E, if y'€ E', and if U° € u°, there
exists a (u, u)-equicontinuous subset  C L(E, E) such that 7'y"' = U°,

Proof. Choose some x, € E such that (y', x,) = 1, and form
T = {{x’, on x'e U°},
Then
g'y ={{x, x}y|x e} ={@F" x)x'|x e v} = 1.

To show that 7 is (u, u)-equicontinuous, we apply Lemma 2 and let V° € u®. Then
7g'w°) = {@', xo)x'l y' € VO, x € U°}, which, since V° is bounded, is contained in
some homothetic image of U° say aU° and aU°e€ ul. (]

Let us denote the class of (u, v)-equicontinuous subsets of L(E,, Fy) by €(u, v).
It follows from Lemma 5 that the topology on E,, can be reconstructed from knowl-
edge of €(u, u); indeed, a basis (at 6) for u is givenby {(9'y")°?| 7€ €(u, u), y' € Fi}.
Furthermore, if v is a stronger compatible topology than u, there exists an element
g in €(v, v) which is not in €(u, u), namely {{x', x,}| x' € V°}, where x, is any
nonzero element of E, and V% € v°, V°e¢€ u®, The inclusion £(u, u) € &(v, v) does not
follow, however. It may happen that there exists a single transformation
T € L{Ey, Ey) which is not a member of L(E,, E,). Then {T} € €(u, u), but
{T} ¢ €(v, v). Even if L(Ey, Ey) = L(Ey, E), which is the case when u and v are
drawn from {0, k, 7}, the above inclusion is only a conjecture. Lemma 5 implies
that if the inclusion is true, then it is proper.

THEOREM 5. The following statements ave equivalent:
(1) €(u, o) = €(u, u);

2) e €u,0), € €(u, 0)= FTe E£(u, 0);

(3) 7€ €u,0), e €u,u) = FT € €, 0).

Proof. (1) = (2) is immediate from the definition of (u, u)-equicontinuity, and
(2) = (3) follows from €(u, u) C €(u, 0) (since o is weaker than u). Now we assume
(3), and let 4 € €(u, 0). To prove € £(u, u), thereby proving (1), we let V° € u°
and proceed to show that J'(V°) is contained in a member of u°. By Lemma 5, for
each y' € E', we can find an & € €(u, u) such that #'y' = V°. Then ¥ Je€ £(u, 0),
and, by Theorem 2, (#g)'y' is contained in an element of u°. But

(g)g)r yl =glglyl =g'lvo. D
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5. A TOPOLOGICAL LEMMA

THEOREM 6. Let E be a set of points with two Hausdorff topologies u and v.
Let w=sup(u, v) and t = inf (u, v). Then, of the four statements given below,
(1) = (2) = (3) = (4). If, in addition, u and v satisfy the first axiom of countability,
the four statements ure equivalent.

(1) Et és a Hausdorff space;
@) if {xq| @ € A} is a converging net in both E, and E.,then

u-limy Xy = v-limy Xy ;
(3) the family of compact subsets of E, is exactly
{K1n K,| K, compact in E,, K, compact in E_} ;

(4) K is compact in both E, and E., if and only if K is compact in E,

Proof. (The terminology here is that of [9; pp. 65ff].) (1) = (2) follows from the
uniqueness of a limit in E¢. (2) =(3): If K is compact in E, it is compact in each
of the weaker topologies u and v, and K = KN K is the required representation.
Now let K = K, N K,, as in (3), and let ./ be a net in K. Some subnet & of .« con-
verges (in Ey) in the compact set K,, and a further subnet ¥ converges (in Ey) in
the compact set K,. Then % converges in both E;, and E, to a point x € K, imply-
ing that @ converges to x in Ey. (3) = (4): As before, compactness in E, implies
compactness in E,; and E,,. Conversely, if K is compact in both E, and E, then
K = KN K is compact in Ey, by (3). (4) = (1) (under the countability assumption of
the theorem): Suppose that t is not a Hausdorff topology, that is, that there exist dis-
tinct points x and y in E whose t-neighborhoods always intersect. If {U,(x)} is a
basis of u-neighborhoods of x, {U,(y)} the same for y, {V,(x)} a basis of v-
neighborhoods of x, and {Vn(y)} the same for y, then a t-basis at x is formed by
{Unp(®) UV,(x)}, and a t-basis at y by {Uy(y) U V,(y)}. For each n, there exists a
point z, € [Un(x) U Vu(x)] n[Uy(y) U Va(y)]; equivalently,

Zp € [Un® 0 U 0] UV N V)] U [U&) 0 VOlu [V, n U .

For sufficiently high n, the first two sets in the above union are empty, because u
and v are Hausdorif topologies. We may assume, without loss of generality, that,
for all n, z, € U,(x) N V,(y). Then u-lim, z =X, and v-lim, z =y, and the set

K ={x,y, z1, 22, ***, 2y, **} is compact in both E, and E,. By (4), K is compact
in Ey. In K, then, {z,} has a w-converging subsequence {znk}, with unique limit z.

Since x = u-lim; an’ and w is a stronger topology than u, z = x. Similarly, z =y,

which is impossible. U

6. COMPACTNESS IN A RING OF OPERATORS

The adjoint mapping T —T' of L(E, F) onto L(F', E') is an isomorphism of the
vector spaces; hence any locally convex topology on one of them induces ‘by trans-
portation’ a locally convex topology on the other. If the space L (E, F;) is denoted
by Lg, we shall denote by Lg: the space L(E, F) supplied with the topology s' ob-
tained by transportation from L (F', E}). In other words, limyg Ty = T in L,
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means that limg Tq' = T' in Ls(F', E7). The conditions on ' in Theorems 3 and
4 may now be interpreted as topological conditions on & as a subset of Lgu.

Let L' denote the following space of linear functions on L(E, F): for each

y' € F' and each x € E, denote by [y', x] the functional [y', x}: T—(y', Tx); then L'
is the set of all finite linear combinations of such functionals. It is proved in [4;
Prop. 11, p. 77] that the topology s of Lg is compatible with the duality of L. and L.
By the same token, linear combinations of functionals of the form [x, y']: T'— (T'y', x)
make up the dual space of Lg(F', E}), so that, by transportation, s' is also compatible
with the duality of L and L'. Finally, if s* = sup(s, s'), it is clear that st is also
compatible with the duality (because of Mackey’s theorem that there exist upper and
lower bounds for the lattice of compatible topologies). It should be noted that when E

and F are infinite-dimensional spaces, these topologies are distinct, since s and s'
are incomparable (Dixmier’s proof [8; p. 406], given for E=F,a Hllbert space, is
valid without essential change).

THEOREM 7. Let KC L(E, F). Thern K is compact in L+ if and only if K is
compact in both Lg and Lg.

Proof. By Theorem 6, it suffices to show that inf (s, s') is a Hausdorff topology
for L. But since s and s' are each compatible with the same duality of L, and L,
inf (s, s') is at least as strong as o(L, L'), the Mackey lower bound, which is a
Hausdorff topology. [

Now let E be a Hilbert space, and let F = E. Then E; (= E7) is the usual
normed space, is complete, and therefore has the convex compactness property.
Also (‘Banach-Steinhaus Theorem?’), any pointwise bounded subset of L(E, E) is
(7, 7)-equicontinuous.

THEOREM 8. Let 9 c L(E, E) (E a Hilbert space).

(1) J has compact closure in Lg if and only if ' is (K, 0)- or (k, K)-equicon-
tinuous in L(E, E).

(2) 9 has compact closure in L if and only if T is (k, 0)- or (k, k)-equicon-
tinuous in L(E, E).

(8) g has compact closure in L+ if and only if both 7 and T' ave (k, 0)- or
(k, k)-equicontinuous in L(E, E).

(4) If, in any one of the topologies s, s', and s*, two subsets T and ¥ (of
L{E, E)) have compact closure, then .9 has compact closure.

(5) Lg, Lg1, Lig+ all have the convex compactness property.

Proof. (1) and (2) are restatements of Theorem 4 for this case. If both J and
g' are (k, 0)-equicontinuous, then by (1) and (2), ;8 ' is s'-compact, and 7S is s-
compact (bars mean closures in the indicated topologles) Since inf (s, s') is a
Hausdorff topology, we may apply (1) = (3) of Theorem 6 to conclude that 7sn gs*
is st-compact. But #s” is contained in Fsn 7.s' , and it is s*-closed, hence st-
compact, which proves the nontrivial part of (3). (4) is a consequence of Theorem 5,
since (k, 0)- and (k, k)-equicontinuity are equivalent here. (5) is true because the
convex circled extension of an equicontinuous set of linear mappings is again equi-
continuous. []

All of Theorem 8 is also valid, respectively, for the corresponding three ‘ultra-
fort’ topologies discussed by Dixmier [8; p. 406], in view of his proof that they are,
respectively, equivalent to s, s', and s* on pointwise bounded sets of L(E, E). Also,
it can be shown by an example that Theorem 8 is not vacuous; for example, in the
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notation of Section 4, let { {x', x,}| ||x'l| < 1} be the set 7, where the functionals
x' are of course again elements of the Hilbert space E. Then x is a bounded 1-
dimensional set in E, for each x € E; hence 7' is (k, 0)-equicontinuous (because it
is (o, 0)-equicontinuous, by Corollary 2A), and & has compact closure in Lg. But
it can be verified by the criterion of Lemma 2 that 7 itself is not (k, o)-equicon-
tinuous, whence & does not have compact closure in Lg: or in Lg+.

1.

2.

3'

4.

5.

6.

7.

8.

9.
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