ITERATED LIMITS
T. H. Hildebrandt

Let Q, and Q, be directed sets with order relations R, and R,, respectively,
and f a function on Q,Q, to the reals. In this situation the followmg iterated limits
theorem is well known (see Moore and Smith [6, p. 116]): f lim f(qlqz) exists for

every q, and limg f(qlqz) exists uniformly for q, on Q,, then tke itevated limits

limq liqu f(qlqz) lim hm f(q,q,) and the double limit lim f(q,q,) all exist

1, 49
and are equal. For the case wlllere Q, and Q, are the positive integers in their
natural order, that is, f,,, is a double sequence, and f,,,,, is monotone nondecreas-
ing in n for each m, the uniformity condition is also necessary; in other words, if
lim,, lim_ f_ , = lim, lim, f, ,, then the inner limits are both uniform, and the

double limit exists (see H11debrandt [4, p. 81]). This note gives the followmg gen-
eralization of this result to Moore-Smith directed limits.

THEOREM. If 1(q,q,) is a veal-valued function on Q,Q, such that £(q,q,) is
monotone in q, in the sense that q\R,q, implies 1(q,a,) > £(q,'q,) for every q,, and
if lim_ lim_ f(q,q,) = lim lim f(qlqz) all limits being assumed to exist as finite

q, g q,
numbeofs then the double limit hm q f(q,q,) exists and is equal to the itevated
1
limits,

Let lim, f(q,q,) = g(q,) and limg f(q,q9,) = h(q,), and lim, g(q,) = lim, h(q,) = a.
ql 2 q2 ql

Then, because of the monotoneity of f in q,, there exists for every e > 0 a g, such
that q,R,q,, implies the relation

£(q,9,) < gla) < a+ 2e.

On the other hand, select qje so that h(qle) >a-eg,and 4. so that q;R,qz. im-
plies f(q}.4;) > h(q le) - €. Then, if q;R1q), and qZRZqu, it follows from the
monotoneity of f that

' 1
1@,9;) > 1(a;.9,) > hla, ) -e > a - 2e.

Consequently, if q3, is chosen so that q3.R;q;,. and q3.R,q., we have that
q1R1q1e and qz2R2q%e implies a - 2e < f(q,q,) < a + 2e; in other words, the double
limit exists and has the desired value.

Since liqu g(q,) = a, it follows further that for every e > 0 there exist d;. and

d,. such thatif q;R,q;, and q,R,q,., we have |f(q,q,) - g(q,)| < 2e, a sort of
pseudo-uniformity. In case Q, is the set of integers in their natural order, there
are only finite number of n < n., for which of course f(q,n) converges to g(n), so
that we actually have uniformity as to n. Since Q, and Q, are interchangeable, here,
we have

COROLLARY 1. Under the hypothesis of the Theorem, if eithey Q, or Q, is the
class of positive integevs in their natuval ovder, then the convergence of 1(nq) is
uniform as to n.
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This includes the theorem on double sequences mentioned at the beginning.

It might be noted that of necessity h(q,) is also monotone nondecreasing in q,.
Further observe that the proof does not require that g(q,) = lim f(q,q,). It is suffi-
1

cient that lim f(q,9,) < g(g,) for all q,. Hence we have
X =

COROLLARY 2. If £(q,q,) is monotone nondecreasing in Q, for each U, and if
there exists a g(d,) such that lim, f(a,9,) < gla,) for each a, with
1

lim_ g(q,) = lim_ lim
2

q q, img 10,2,

then the double limit limq f(q,q9,) exists and is equal to these limits.
2

!

The theorem leads to a simple proof of the well-known theorem of Dini: If
{t,x)} is a sequence of continuous functions on [a, b), monotone nondecreasing in
n for each x, and if £(x) = lim £ (X) is continuous, then the convevgence is uniform
on [a, b]. Let x, be any point of [a, b], and take Q, to be the integers in their na-
tural order, while Q, consists of the real numbers x ordered so that q;R,q, means
0 < |x' - x| < |x" - Xo|. Then it is obvious that

lim 1imx_,xofn(x) = limx_,xo lim £ (x).

Consequently, for every e there exists an Dex, and a clex0 such that if n > Doy, and
0< |x-x9| < dex , then |fn () - f(x)| < e. Obviously, the condition 0 < |x - x|

can be changed to 0 < |x - x,| . Also, because of the continuity of f(x), we have
| £x) - f(x)| < e whenever |x - x,| < d., , where di, is suitably chosen. Conse-
= — "eX, 0

ex, and |x - x| < dy , we have |f;(x) - £(x)| < 2e. The Borel

theorem now gives us a finite number of intervals (x; - dgxi, Xj + dgxi) covering

quently, for n > n

[a, b], and consequently a finite number of n., , so that if n. is the largest of these,

1
then for n> n, and every x on [a, b], we have |f (x) - £(x)| < 2e; this is the de-
sired uniformity.

A similar procedure gives us the parity theorem: If {f,(x)} is a sequence of
monotone nondecreasing functions on[a, b] converging to the continuous function
f(x) (obviously monotone nondecveasing), then the convergence is uniform on|a, b]
(see Buchanan and Hildebrandt[3]).

Note that the functions f,(x) need not be continuous. Again, let x, be any point
of [a, b], and select Q; to be the x < X, in their natural order, and Q, the integers
n in their natural order. Then, applying Corollary 2, we conclude that for every
e> 0, there exists an n_  and a dey suchthat, if n>n,, and

0<x- % <X - % = dox,

we have | f,(x) - f(x,)| < e. Since Corollary 2 is also true if the order on x is re-
versed, and “monotone nondecreasing” is changed to “monotone nonincreasing,” we
conclude that for n> nex_and 0 < |x - x| < dex, We have | £,() - £(xy)] <e. The

conclusion then follows as in the theorem of Dini above.
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The parity theorem can be extended if we note that if {f,(x)} is a sequence of
functions of bounded variation, converging to f(x) in such a manner that
lim,, ngn = ng (where ng is the total variation of f on [a, b]), then
lim, V¥f, = VX{ (see Adams and Clarkson [1, p. 414]). The parity theorem can
then be applied to the positive and negative variations of the functions f,(x) and
f(x), so that we have: If {f(x)} is a sequence of functions of bounded variation such
that £,(x) converges to 1(x) for every x and lim, VBf = VDI and if £(x) is con-
tinuous, then the convevgence of £y, to f is uniform on [a, b].

These theorems give cases where uniform convergence is both necessary and
sufficient that a sequence of continuous functions converge to a continuous function.

Another application of our fundamental theorem gives a proof of the following
theorem on the convergence of a sequence of Stieltjes integrals; this theorem is a
generalization, due to Shohat [8, p. 478], of a theorem of Bray [2, p. 180]: if {g,(x)}
is a bounded sequence of monotonic functions converging to g(x) on a denumevrable
dense subset of {a, b] including a and b, and if the Riemann-Stieltjes integrals
[fdg; and (fdg exist, then lim, [fdg, = [fdg (see also Schwartz [7]).

To show this, we first prove a theorem relating to Riemann-Stieltjes o-integrals,
where the convergence of the approximating sums is according to set inclusion of the
points of subdivision ¢. We note that if g(x) is monotone nondecreasing, a necessary
and sufficient condition that o[fdg exist is that limy %5 (wfAg) = 0 (see Hildebrandt
[5, p. 271]). If we assume that g, (x) converges to g(x), then lim, Ag, =Ag. Hence,
if [fdg, and [fdg exist, then limg lim, Zy (wfAg,) = lim, limg =4 (wiAg,) = 0.
Moreover, for each n, { ZogwfAgn} is monotone nonincreasing as to 0. Hence, by
our theorem, there exists an n, and a ¢, such that if n> n, and o > 0., we have
TgwfAg, < e. By Corollary 1, we conclude that ZgwfAg, converges to zero uni-
formly as to n. Since | [fdg - 2)0ng| < ZgwfAg, it follows that the approximating
sums ZyfAg, converge uniformly to | fdg,, so that by the iterated limits theorem
we have lim  [fdg, = [fdg. We thus have proved: If {g (x)} is a bounded sequence
of monotone functions converging to g(x) for every x, and if offdg, and o[fdg
exist, then lim offdg, = o/fdg.

To obtain the Bray-Shohat theorem, we note that if for two functions f and g the
Riemann-Stieltjes integral RS/fdg exists, where convergence is as to maximum
length of the intervals of the subdivisions o of [a, b], then limgZswfAg = 0, where
the points of ¢ need to be taken only from a denumerable dense set on [a, b] includ-
ing a and b. For the ¢' so restricted, the uniform convergence of T ; wfAg, to
zero then follows, which in turn implies the theorem, since limg1Zg1 fAg = RS/t dg.

Obviously these theorems give rise to theorems where the gn(x) are functions of
bounded variation, if conditions are added so that the VX g, converge to VXg for
suitable values of x.
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