ON CURVATURE AND CHARACTERISTIC OF
HOMOGENEOUS SPACES

Hans Samelson

1. This note is concerned with two topics: We show, with a simple geometrical
proof, that the Riemannian curvature of a homogeneous space is nonnegative (Thm. I);
this had been proved earlier by E. Cartan for symmetric spaces [3]. And we give a
new proof for the fact that the Euler-Poincaré characteristic of such a space is non-
negative (Thm. II). It is apparently still unknown whether Theorem II can be deduced
from Theorem I by way of the generalized Gauss-Bonnet formula.

Let G be a compact connected Lie group, U a closed subgroup of G, and
M = G/U the homogeneous space formed by the left cosets of U; let p be the natural
projection of G onto M. The space M is a manifold, and it carries a differentiable
structure of class C%, induced by p (the C™-functions on M are identified with the
C™-functions on G that are constant on the cosets of U). The group G admits Rie-
mannian metrics that are invariant under left and right translations (bi-invariant);
let such a metric be chosen. There is then a Riemannian metric in M, induced in a
natural way (see below for a description); and this metric is invariant under the cus-
tomary action of G on M.

THEOREM 1. All values of the sectional Riemannian curvature of M, in the in-
duced Riemannian metrvic, ave nonnegative,

For a 2-section £ (two-dimensional subspace of the tangent space) at a point x
we denote the sectional Riemannian curvature in direction £ by K(x, Z).

2. We consider first the special case where M is itself a group.

PROPOSITION 2.1. All values of the sectional Riemannian cuvvatuve in a Lie
group G, under a bi-invariant metvic, ave nonnegative. The sectional curvature in
divection Z at the identity e vanishes if and only if Z genevates an abelian subgrvoup,
that is, if and only if the one-parameter groups genevated by the vectors in T com-
mute,

Proof. It is well known that the geodesics (parametrized proportionally to arc
length) of G are exactly the 1-parameter groups in G and their cosets.

Because of transitivity, it is sufficient to consider 2-sections at e. Let £ be
such a section, let X, Y be two vectors spanning = (we may and shall assume that
they are orthogonal to each other), and let x(t), y(t) be two one-parameter groups
whose tangent vectors for t= 0 are X and Y, respectively. We map the (t,, t,)-
plane E? into the group G by the map ¢ defined by ¢(t,, tz) = x(t,) - y(t,). This is
easily seen to be a regular map; that is, the differential é is nonsingular throughout.
In fact, the image under ¢> of the horizontal, respectively vertical unit vector at

(t,, t5) [that is, —%, respectively B—?:_ , in customary notatlon] is x(t) - X-y(t),

1 2
respectively x(t,) - Y-y(t,); we have denoted the action of a left or right translation on
a vector simply by left or right multiplication. Since translations are isometries, the
two image vectors are independent and orthogonal to each other. The ¢-images of
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the straight lines ti = constant (i = 1, 2) are cosets of one-parameter groups in G.
All this implies that for the Riemannian metric in E? induced by ¢, the straight lines
just mentioned are geodesics; the two families of geodesics corresponding to i =1
and i = 2 meet at right angles throughout. It is well known from differential geom-
etry that the induced metric in E? is flat, that is, has Riemannian curvature identi-
cally zero; this follows, for example, from the Gauss-Bonnet formula applied to
small squares. We now apply the Lemma of Synge [7, Theorem XIII]:

Let S be a two-dimensional subspace of a Riemannian manifold V that passes
thrvough a geodesic g of V. Then at every point of g the Riemannian (Gaussian)
curvvature of S is less than or equal to the sectional Riemannian curvatuve of V in
the 2-divection tangent to S. Equality holds only if the unit normal vector to g in S
has vanishing covariant devivative (relative to V).

It follows immediately that the curvature of G at (e, £) is nonnegative, namely
greater than or equal to that of the submanifold ¢(EZ2).

To discuss the case where K(e, ) = 0, we note first that parallel transport of
the vector Y along x(t) from O to t is obtained by forming x(t/2)-Y-x(t/2). This
results easily from the well-known remark of E. Cartan’s that, inversion being an
isometry, the parallel field along x(t) for t> 0 that is generated by Y goes over
into the parallel field along x(t) for t< 0 generated by -Y, if x—x"! is applied.

Since left and right translations are isometries, K(e, ) = 0 implies the vanish-
ing of the curvature of G for the 2-section tangent to ¢(E?) at any point ¢(t;, t,). By
Synge’s lemma we have K(e, =) = 0 exactly if the normal field to the curve ‘t, = 0,
which is given by Y(t,) = x(t)) - Y, is parallel; by the remark just made, this means
that x(t,/2) - Y- x(t,/2) = x(t,) - Y. Writing t for t,/2, we obtain x(-t)-Y-x(t) = Y for
all t; this is of course equivalent to the commuting of x(t) and y(t), and Proposition
2.1 is proved.

3. We consider now the quotient space M = G/U. The Riemannian metric in M,
used in Theorem I, can be described as follows: Let x be a point in M, and let X
be a tangent vector of M at x. Let x' be a point of G with p(x') = x, and let X' be
a vector of G at X', orthogonal to the coset x'-U (a submamfold of G) at x', with
p(X'") = X; note that i) maps the tangent space to G at x' onto the tangent space to M
at x, and that the kernel is the tangent space to x'- U at x'. Then the norm |X| of
X is defined to be equal to the norm IX'| of X (thls is independent of the ch01ce of
x' which is.involved). The definition implies that p maps the normal space of x'-U
at x' isometrically onto the tangent space of M at x. For an arbitrary vector Y' at
x' we have |p(Y')| < |Y'|, with equality only if Y' is normal to x'-U. We call a
curve in G transversal if at each of its points its tangent vector is orthogonal to the
coset of U through the point. All curves are assumed to be piecewise C%.

LEMMA 3.1. If C' is a curve in G, and G its projection under p, then the in-
equality L(c') > L(G) holds between the lengths of ©' and ©; equality holds if and
only if C' is transversal.

The lemma follows immediately from the facts above, since length is the integral
of the norm of the tangent vector.

By standard theorems on differential equations, there exists for each curve € in
M a transversal curve ¢* in G whose p-projection is exactly ¢; moreover, C* is
unique up to right translation by elements of U. With the help of Lemma 3.1 and the
local minimum properties of geodesics, one concludes that G* is a (transversal)
geodesic of G if ¢ is a geodesic of M. In other words, the geodesics of M are the
images, under p, of the transversal geodesics of G.
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4. Let now x be a point of M, and £ a 2-direction through x. Let x' be a point
of G with p(x') = x, and let &' be a 2-direction of G at x', orthogonal to x'- U and
with p(Z') = Z. We construct the usual geodesic surface P tangent to Z; that is, we
consider the exponential map ¥ of Z into M, which to each vector X in = assigns,
on the geodesic that starts at x in direction X, the point corresponding to parameter
value (arc length) |X] It is standard that the sectional curvature K(x, £) equals the
Gaussian curvature of P at x. It is also well known that this value can be obtained
as follows [1, p. 153} Let C, denote the circle of radius r around x in T; denote
by L. the length of the curve corresponding to C,. in P or in M, that is, the length
of the curve Y(C,) [or the length of C,. in the metric induced in Z under IP], for
small r. Then

i 2mr - L, 3
4.1 K(x, Z) = I!Ln%__?____-ﬂ.

Performing the same construction for Z', we obtain the geodesic surface P', the
map ' of Z' into G, the circle C., the curve ¥'(C}) of length L., and the relation

Tr?
4.1' K(X', =" = I!Lr% ___rs_l_..

From the connection between the geodesics in M and the transversal geodesics in G
we conclude that the image of '(CL) under p is ¥(C,). Lemma 3.1 gives the in-
equality L, < L}, for all small r. From 4.1 and 4.1' we conclude that

K(x,Z) > Kx', X ').

Since K(x'; Z') > 0 by Proposition 2.1, we finally have K(x, Z) > 0, and Theorem I
is proved.

To discuss the case K(x, Z) = 0, we make the following remark: Let H be a Lie
subgroup of G whose Lie algebra is orthogonal to the Lie algebra of U. Then the
tangent space to H at any point y of H is orthogonal to the tangent space of the co-
set y- U, by left invariance. It follows that the projection p is an isometry of H into
M (not necessarily one-to-one). From this remark it follows that, in the notation
above, K(x, Z) vanishes exactly if the left translate of Z' by (x!)~! generates an
abelian subgroup. In particular, the sectional curvature of M is positive throughout
if and only if there are no 2-dimensional abelian subgroups orthogonal to U. I M is
a symmetric space in the sense of Cartan, this condition means that all geodesics are
closed (and of the same length); the space is said to be of rank one. It is well known
that the spaces of rank one are the spheres, the real, complex or quaternion projec-
tive spaces, and the Cayley projective plane.

5. We come now to our second topic.

THEOREM II: The Euler-Poincaré characteristic x(M) of M = G/U is nonnega-
tive; it is positive exactly if U is of maximal rank.

We recall that the rank of a compact Lie group is the dimension of any maximal
torus subgroup. We may assume that U is connected: If necessary, it can be replaced
by the e-component; this amounts to going to a covering space of M, and the latter
process multiplies the characteristic by a positive integer.

In [5] and in [8], Theorem II is proved with the help of the Lefschetz fixed-point
theorem. We begin the proposed new proof with a proposition about arbitrary
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(continuous) representations. For a vector space V over the reals, we denote by
A*(V) the exterior powers of V (the skew-symmetric tensors with i indices; see
[2]), and by A(V) thedirect sum Z] A'(V), with n=dim V.

A linear transformation T of V into itself induces a linear transformation T{i)
of each AL(V) into itself; T(}) is the pth exterior power of T. With the identity map
I and a variable t we form the polynomial det(t-T + I). The coefficient of t! in the
exz)ansion Zo ¢y tl of this polynomial is then equal to the trace of the transformation
T (i), This becomes clear if T is represented by a matrix; the principal minors of
T, whose sum is c;, are the diagonal elements for the matrix representing (),

Definition 5.1. Let D be a representation of the compact connected Lie group U
by linear transformations of the real vector space V; then D induces a representa-
tion D) in A() (V); denote by A; the “number” of invariant skew i-tensors, that is,
the dimension of the subspace I; of AY(V) consisting of those elements v for which
D) (x)(v) = v for all x € U. The polynomial ZA;t! is called the Poincaré polynomial
Pp(t) of D. The alternating sum Z (-1)i); is called the (Euler-Poincaré) character-
istic x(D) of D. We have x(D) = Pp(-1).

PROPOSITION 5.2. The characteristic x(D) of any continuous vepresentation of
U is nonnegative; X(D) is positive exactly if D is "of maximal vank,"” that is, if for
each maximal torus group T in U the zevo-vector is the only vector in V which is
fixed by all D(x) (x € T).

6. Proof of 5.2. In U we have the usual bi-invariant measure, of total measure
1. It is well known from representation theory that the number of invariants of a
_representation is equal to the integral over U of the trace of the representation. It

follows that Pp(t) = f det (t-D(x) + I) and, in particular,
U

6.1 (D) = f det (I - D(x)).
U

As usual, we may assume that D leaves some inner product in V invariant, so that
all D(x) are orthogonal transformations. First consider the case where n is odd.
Since U is connected, all D(x) preserve orientation. It is well known that for any
orientation-preserving orthogonal transformation T in an odd-dimensional space,
the relation det(T - I) = 0 holds; 1 is an eigenvalue, as one can see, for example,
from the usual normal form for T, or from the identities

det(T -1I) = det(T -T-T') = det T.-det{(I-T') = det(I-T) = -det(T -1).

It follows that the integrand in 6.1 vanishes identically, and that x(D) = 0.
Suppose next that n is even. For any orientation-preserving orthogonal trans-
formation T in an even-dimensional space, the inequality

det(I - T) = det(T - 1) >0

holds. Again one can see this from the normal form, where it reduces to an inequal-
ity of the form

cos ¢ -1 - sin ¢

sin¢ cos¢ -1 2 0.
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Another proof consists in noting that det(T - I) has the same sign as det(t- T - I),
for large t. (The proofs of Theorem II in [5] and [8] also make use of this fact).
Since all D(x) are orientation-preserving, the integrand in 6.1 is now nonnegative,
and it follows that x(D) > 0.

We come to the “maximal rank” part of Proposition 5.2. Suppose x(D) = 0. Then
the integrand of 6.1 must vanish identically, since it is never negative. In particular,
if x, is a generating element of the maximal torus T, then det (D(x,) - I) = 0, D(x,)
has 1 as eigenvalue, and has therefore a nontrivial fixed vector. This vector is then
automatically fixed for all D(x) with x e T.

Conversely, suppose there is a nontrivial fixed vector for the maximal torus T,
so that det(D(x) - I) = 0 for x e T. Since every element of U lies on some maximal
torus (see [4]) and all maximal tori are conjugate (see [6] for a simple proof), we
sec that det (D(x) - I) is identically zero on U, and 6.1 shows x(D) = 0.

Incidentally, since T(i) and T(n-i) can be considered as adjoints of each other,
so that they have the same trace, we have Aj;= A, _;.

7. We come now to the homogeneous space M = G/U. By the de Rham theory,
the ith Betti number of M, the rank of the ith cohomology group H}(M) over the
reals (a vector space), is obtainable from differential forms as the rank of the
quotient space of the space of closed i-forms (i-cocycles) by the space of deriva-
tives of (i - 1)-forms (i-coboundaries). It is'well known that, G being connected,
integration over G permits us to restrict consideration to differential forms that
are invariant under the action of G on M. Since G is transitive, an invariant dif-
ferential i-form is determined uniquely by its value at any point of M, for example
at the point e' = p(e), the value being an element of the ith exterior power of the
adjoint W* of the tangent space W of M at e'. The differential form determined by
an element w of AI(W*) is invariant exactly if w is invariant under the transforma-
tions which are induced in A}(W*) by the so-called adjoint operation of U on W [any
element of U, in its action on M, leaves e'fixed, and determines therefore a linear
map of W into itself: the differential of the map at e'], or rather by the adjoint (that
is, transposed-inverse) of this representation in W*. In other words, the graded vec-
tor space of invariant differential forms (direct sum over the spaces of forms of var-
ious dimensions) can be identified with the graded subspace Iy = Z2I; of A(W*) that
consists of the elements invariant under the transformations induced by the adjoint
representation of U on W*. Exterior differentiation, which maps invariant differen-
tial forms into invariant differential forms, becomes a linear map d of Iy into itself
which raises the degree by 1 (that is, d(I;)c I;, ;) and satisfies the condition dod = 0.
The pair (Iy, d) is then a chain-complex K (of vector spaces) of finite type. The
cohomology groups Hi(M) of M are thus identified with the homology groups Hi(K)
of the complex K. By Proposition 5.2, the characteristic x(K) of K, that is, the num-
ber = (-1} dim I;, is nonnegative, since it is just the characteristic of the ad]omt
representation of U on W*, It is a classical result that the characteristic of a chain
complex (over the reals) of finite type is equal to the characteristic of the graded
vector space formed by its homology groups. We have therefore

x(M) = Z (-1)'dim H{M) = X (-1)}dim B (K) = x(K) > 0,

and the inequality ot Theorem II is proved.

Again by 5.2, we have x(M) = x(K) = 0 exactly if for each maximal torus T in U
there is a nontrivial vector v at e' in M invariant under the adjoint action (since
the adjoint action can be assumed orthogonal, the existence of a fixed element in W*
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implies the existence of a fixed element in W). We interpret W as the orthogonal
complement of the tangent space of U in the tangent space of G at e; this makes it
possible to consider the adjoint action of U on W as induced by inner automorphisms
of G by elements of U. Then the existence of v is equivalent to the existence of a
1-parameter group in G, not contained in U, that commutes with T, that is, with the
nonmaximality of T. This completes the proof of Theorem II.
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