IN MEMORIAM SUMNER B. MYERS
1910-1955

Colleagues, students and friends have joined to dedicate this volume of the Michi-
gan Mathematical Journal to the memory of Sumner B. Myers.

Sumner B. Myers was born to Dr. Solomon and Mrs. Nettie Myers on February
19, 1910. He graduated from Harvard University, summa cum laude, in 1929, and
wrote his dissertation (1932) at Harvard, under the direction of Marston Morse.
After a year in Europe, on a Harvard Traveling Fellowship, a year as Instructor at
Harvard, and two years at the Institute for Advanced Study, on a National Research
Council Fellowship, he came to the University of Michigan in 1936. He married
Alison Tennant in 1942, and thereafter the Myers home played an important role in
the life of the Mathematics Department. Young faculty members and students found
there wise counsel in mathematical and personal problems; Department members
hard pressed by illness or by ‘the housing shortage after the war found shelter and
help.

Sumner Myers took a deep interest in problems of the Department (to which he
devoted a large portion of his time and energy in various offices, including that of
Acting Chairman), the University and the world-at-large. He had strong principles,
and whenever he saw injustice done, his sense of moral responsibility forced him to
speak out and to take whatever action was possible. At the same time he was full of
warmth and humor, and he was a master at finding the right word to relieve a tense
situation,

But his main concern was mathematics, both research and teaching. A brief
survey of his investigations will be given below. As a teacher, he was magnificent.
In his lectures, which were very well planned, in spite of their informal appearance,
he knew how to stimulate the students, undergraduates as well as graduates. Beyond
the classroom, he was generous with his time and with his fund of mathematical
knowledge; the many theses written under his direction attest to his ability in leading
students to active research.

During a period of great fruitfulness, he died of a heart attack on October 8, 1955.
His loss is deeply felt by his family and closer friends, by the other members of his
university, and by all mathematicians who had known him.

In his first papers, particularly in his thesis, Sumner Myers dealt with the cal-
culus of variations in its classical form. His early mastery of the calculus of varia-
tions, and especially of the second variation, served him well in the subject which
attracted his attention next: differential geometry in the large. In [6] and [7], he
studied the minimal locus of a point on a two-manifold, and he derived topological
conclusions from its structure. This notion goes back to Poincaré, and was inde-
pendently and simultaneously developed by J. H. C. Whitehead and Myers in 1935. It
is defined as follows: Let A be a point on the complete Riemannian manifold Mjp.

A point P on a geodesic ray g issuing from A is called a minimum point with re-
spect to A, provided P is the last point on g such that AP furnishes an absolute
minimum to the arc length of curves joining A to M. The set of all such points in
M,, is precisely the minimal locus of A (we shall denote it by m ). Myers dis-
cusses the analytic, two-dimensional case completely: the set mp is always a
graph, and its complement a two-cell; the homology of M, is determined by m a; the
order of a vertex P of inp is precisely the number of geodesics joining A to P in
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M,; the end points of mp are conjugate points of A, and they are cusps (turned
towards A) of the locus of first conjugate points to A. There are corresponding
relations, not quite as satisfactory, in the nonanalytic case. Some of these theorems
have been obtained by J. H. C. Whitehead for n dimensions; but their complete ana-
logues have not yet been proved, and they seem very difficult.

As another example of Myers’ work in this direction, we cite the following theo-
rem which he published in 1941: A complete Riemannian manifold, of dimension n
and with positive mean curvature at least e?, is compact, and its diameter does not
exceed 7vn - 1/e. In his surprisingly simple proof, he again makes expert use of
the second variation.

We can not discuss all the other contributions of Myers to the field of Riemannian
geometry, but we could hardly fail to mention the joint paper of N. Steenrod and
Myers [10], which contains one of the basic theorems on the subject. This theorem
states that the group of isometries of a compact Riemannian manifold is a Lie group.
In contrast to the classical theorems about germs of groups acting isometrically on
germs of Riemannian manifolds, this theorem is truly a proposition of geometry in
the large.

Myers’ later work dealt with topological questions in function spaces. His first
paper in this direction [13] was probably motivated by his interest in existence
theorems for geodesics. In it he investigated the relation between various compact-
ness and continuity properties of a set of mappings of a topological space into a
metric space.

After this paper, Myers’ attention turned to the relation of spaces of continuous
functions to the spaces on which the functions are defined. The type of problem he
treated in a number of papers may be described as follows: Let X be a topological
space, and B(X) the Banach space of bounded continuous functions b on X with
norm ||b|| = SUPxe X |b(x)| . It had been known (Banach, Stone, Eilenberg) that if X
is compact, the topology of X is determined by B(X). Myers showed that already
certain closed linear subspaces of B(X), which he called completely regular, suffice
to determine the topology of X.

Alaoglu had already answered in the affirmative the “inverse question:” If B is
a Banach space, does there exist a compact space X such that B is equivalent to a
closed linear subspace G of B(X)? Myers treated the question whether there exist
such subspaces G of certain simple kinds; for example, he gave necessary and suf-
ficient conditions for the existence of a compact space X such that G is “completely
regular over X.” ’

Particularly important, of course, is the following question: when is G identical
with B(X)? This is the question of the characterization of those Banach spaces which
are equivalent to a space of continuous functions on a compact space. Such character-
izations had been given earlier in terms of ring theory (Gelfand) and of linear lattice
theory (Kakutani and Krein); but the characterization given by Myers is totally in
terms of Banach-space notions. (As to the relation of Myers’ characterization to
those of R. Arens and J. L. Kelley and of J. A. Clarkson, see [17, p. 237].)

While it is impossible to give here in detail Myers’ answers to the questions
raised above, it may be worthwhile to mention two concepts introduced by him which
proved particularly useful in this kind of investigation. These are the concept of a
T-set in a Banach space B and a functional F(b) defined for all b in B. The for-
mal definitions are as follows: a T-set is a point set of B which is maximal with
respect to the following property: for any finite set {b 15 bn} of points of T, the
equality
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holds. (For example, if X is compact, then the set of all functions in B(X) taking
their maximum at a fixed point x, of X is a T-set.) FT(b) is defined as

inf [|[b+¢]| - ||¢]|].
teT

Nearly all of Myers’ answers to the problems above are in terms of these two no-
tions. As an example, we mention the following result: A Banach space B is equi-
valent to a B(X) with compact X if and only if the following three conditions are
satisfied:

(i) all functionals F(b) are linear;

(ii) there exists an element e in B such that, for every be B, ||b||+ 1= ||b+ e]]
or |[bl]+1={]b-elf;

(iii) for each b, there exists a b' such that F(b') = lFT (b)l for all F.. for which
F(e) = 1.
T

This survey, by no means complete, of Myers’ work shows a diversity of interest.
Yet, except possibly in his earliest work on the calculus of variations, his primary
concern was always the relationship between geometric structure and the topology of
the underlying space. In this sense, he was truly representative of the spirit of
modern geometry.
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