ON THE IMPOSSIBILITY OF FIBRING CERTAIN
MANIFOLDS BY A COMPACT FIBRE

P. E. Conner

1. INTRODUCTION

By a proper fibration of a space we shall understand a fibration in which the
fibre is not a single point. It is well known that a Euclidean space does not admit a
proper fibration by a compact fibre [2], [6]. It is the purpose of this note to extend
this result to a wider class of spaces.

THEOREM 1. Let W™ be an open, simply connected manifold whose one-point
compactification is again a manifold; then W™ does not admit a proper fibration by a
compact fibre.

To see that a hypothesis implying orientability is needed, we observe that the
manifold obtained by removing a point from the real projective plane admits the
cyclic group Zp, for every odd prime, as a fixed-point free group of transforma-
tions.

To prove the theorem, we first examine the case in which the fibre is connected.
By means of a theorem of Spanier and Whitehead [7], we show that the fibre is an H-
space. With the help of Borel’s principal algebraic theorem in [1], we show further
that the fibre is a rational cohomology sphere. An argument based on the Gysin
sequence shows that this is impossible. We are then reduced to showing that a
finite group cannot act freely on W2, and this follows from a result of Mostow,
‘which, incidentally, suggested our note.

2. PRELIMINARIES

A space W™ whose one-point compactification is a manifold is said to be locally
Euclidean at infinity. Given such a W™, for every open set Uc W® with U compact,
there is an open set V such that Uc V,V is compact, and W - V is homeomorphic
to a closed n-cell with the origin removed.

We shall denote by M™ the compact manifold obtained by adjoining the point at
infinity to W™, and by p € M™, the added point. By [W™, B, F; 7] we denote a proper
fibration of W™ over the base space B with compact fibre F and projection map .
By the term fibration we shall mean local product structure. Given [wn, B, F; 7],
we denote by B the one-point compactification of B, by g € B the added point, and
by m: M® —B a map for which

#lMP-p=7, w(p)=g.

It will be useful to regard [M™, p, B, g, F; 7] as a singular fibration [5].

It is immediately seen from the local product structure that in a fibration of a
manifold, such as [W2, B, F; 7], both the fibre and the base are well behaved with
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respect to local homotopy and homology properties. Every component of the fibre F
as well as of the base B is homotopy locally connected; furthermore, every com-
ponent of F as well as of B is a locally orientable generalized manifold. Since W»
is orientable, every component of F is orientable. Thus we may treat the fibre and
the base without concern for local pathologies.

Let us recall some facts from [1] and [7]. An arcwise connected space X is an
H-space if it admits a multiplication with a two-sided identity [7].

THEOREM (Spanier and Whitehead [7]). If [X, Y, F; 7] is a fibre space in which
the fibre F is contractible to a point in X, then ¥ is an H-space.

Note that in a fibre space any fibre is deformable into any other, so that if one
fibre is contractible, then all fibres are contractible. The H-space is like a group,
with respect to its rational cohomology algebra [1, p. 142]. For our purposes, we
may assume that the H-space is a compact, connected, generalized orientable mani-
fold, so that its rational cohomology algebra is an exterior algebra on a finite num-
ber of odd-dimensional generators. Let P denote a finite-dimensional vector space
over the rationals which is graded by odd degrees; by A P we denote the exterior
algebra generated by P. By H we denote a graded anticommutative algebra with
unit over Q, and we shall assume that HS = 0 for all sufficiently large s. The fol-
lowing is an immediate corollary to Borel’s principal theorem [1; p. 157].

THEOREM (Borel). If {E?’t} is a canonical spectral sequénce with
ES'~H°® (AP),

and if EL, =0 forall 0< iz n, while EY ~ Q, then
(a) AP has a single odd-dimensional generator,
(b) H is a truncated polynomial ring on a single generator.

The generator of H is the image by transgression of the generator of AP. We
shall use the algebraic form of the theorem as it is stated here. The topological
analogue concerns a fibration of a sphere by an H-space. The theorem asserts that
the fibre is a rational cohomology sphere.

Henceforth, this note deals only with locally compact, metric spaces. By
H‘(X A) we denote the Cech~Alexander cohomology groups of X based on cochains
with arbitrary closed supports; and by HL(X; A), the cohomology based on cochains
with compact supports [3, page 15-03].

3. FIBRATIONS OF LOCALLY COMPACT SPACES
For a Jocally compact space X, let A(X) denote all closed subsets of the form
X - V, where V C X is an open set with V compact. The family A(X) may be in-

dexed by B(X), the directed set of open subsets with compact closure. If V C U,
then X - VD X - U. Consider all exact sequences of the form

- H'(X, X - VA)—»H(x A)—»H(x VA) H1+1(XX V; A) —

with X - V € A(X). These exact sequences constitute a system of direct limits in-
dexed by B(X); passing to the direct limit, we obtain the exact sequence
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. i . i*x 5% .
H (% 4) D (X A) - (X 4) > E(x; A)
(IL(X; A) = dir lim H(X - V; A), X - V€ A(X).

We have used the fact that direct limits preserve exactness. Now these groups
I{(X; A) may also be defined directly, Let {CXX; A)} be the Alexander-Wallace-
Spanier (AWS) cochains of X, and {C.(X; A)}, the AWS cochains of compact sup-
port; then the groups E(X; A) are the cohomology groups of {Ci(X; A)/CL(X; A)}.
We shall regard I*(X; A) as the cohomology groups of the ideal boundary of X.

Let X and Y be two locally compact spaces, and let f: X — Y be a proper map-
ping; then f induces a commutative diagram:

. * . ix 6% .

— HL(X; A) > HY(X; A) - IMX; A) — HEF (X A) —.
T f* T f* T f* T f*
i 3* 4 i* O* i+l

— HL(Y; A) — H'(Y; A) — I(Y; A) — HZ (Y; A) —

This may be seen immediately from the second definition of Ii(X; A); but it also fol-
lows from the first definition and the observation that the open sets in X of the form
f-1(V), with V € B(Y), form a cofinal sequence in B(X). We may take the direct
limit of

££: Hi(Y - V; A) — Hi(X - £-1(V); A)

for the definition of f*: [I(Y; A) — Ii(X; A).

We shall say that X is arcwise connected at infinity if for each open set V € B(X)
there exists a U € B(X), with Vc U and X - U arcwise connected. The space X is
LC" at infinity if for each V € B(X) for which X - V is arcwise connected, there
exists a U € B(X) with V ¢ U such that X - U is arcwise connected and such that
the homomorphism 7;(X - U)—7i(X - V) is trivial for i < n.

We remark that if n> 2 and the manifold W® is locally Euclidean at infinity,
then I (W™, A) ~ Hi(S?-1; A); also, W™ is LC™-2, Furthermore, since W™ is orient-
able, the homomorphism i*: H*-1(wn; A) — I2-1(Wn; A) is trivial.

Let us consider a fibration [X, Y, F; 7] with compact fibre. For any open set
V € B(Y) there is an induced bundle [X - 77%(V), Y - V, F; 7] and a spectral se-
quence {ES'*(V)}, with

ES'5(v) = H5(Y - V; HY(F; A)),

whose E,-term is associated with H*(X - 772 (V); A). Now elements of the form
7~1(V) with V € B(Y) are cofinal in B(X). The bundles [X - 77(V), Y - V, F; 7]
are directed by B(Y); the same is true of the spectral sequences {ES'Y(V)} that
make up a natural direct limit system. We may define

13't ~ dir lim E3'Y(V)

and so obtain a new spectral sequence. Clearly, we have

LEMMA 3.1. Given a fibration by a compact fibrve F, there is a spectral se-
quence {15t} with



252 P. E. CONNER
15t = dir lim BS(Y - V; H'(F; A),

whose E_ -term is associated with 1*(X; A).
Suppose that V € B(Y) is such that Y - V is arcwise connected and

7, (Y - V) =7, (Y)

is trivial. Then, in the induced bundle [X - 7~4(V), Y - V, F; 7], the group 7,(Y - V)
acts trivially on the cohomology of the fibre; thus, for a field k of coefficients,

ESY (V) ~ B (Y - V; ©) @ H'(F; ).

If Y is LC! at infinity, there is a cofinal set {V} in B(Y) for which the homomor-
phism 7,(Y - V) — 7,(Y) is trivial.

LEMMA 3.2. If, in the fibration [ X, Y, ¥; 7] with compact fibre, the space Y is
LC? at infinity, then the spectval sequence of Lemma 3.1 has an initial term of the

Jform

I3t = 13(Y; k) @ HYF; k), (1)

where k is a field.
We observe without proof that if in [X, Y, F; 7] the space X is LC! at infinity
and F is connected, then Y is also LC?! at infinity.

We shall now introduce the analogue of the spectral sequence of a finite covering
for the ideal boundary. Let G denote a finite group, and let Hi(G; A) denote the co-
homology groups of the group G with coefficients in the G-module A (see[3],[4]).
Let (G, X) denote the action of G as a group of covering transformations on X, and
let X/G denote the quotient space of (G, X). There is a spectral sequence (see [3],

[4]), with
ES't ~ H5(G; H'(X; A)),

whose E_-term is associated with H*(X/G; A). Since the natural map 7: X— X/G
is proper, a limiting process again yields a spectral sequence, with

E5'HG) ~ HY(G; I'(X; A)), @

whose E.-term is associated with I*(X/G; A).

Let K be a G-free acyclic complex: Given (G, X), we form the auxiliary trans-
formation group (G, Kx X), where g(y, x) = (gy, gx), and the natural diagram

(KXK)/G
a/ \'ﬁ
K/G X/G

Since Bg*: Hi(X/G; A) ~ Hi((KxX/G); A), the formula n* = g*~1a* induces the char-
acteristic homomorphism

n*: H(G; A) — H'(X/G; A).
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A second characteristic homomorphism v*: i (G; A) —1(X/G; A) can be defined for
(G, X), by means of direct limits, in such a way that the diagram

HY(X/G; A)i 1Y(X/G; A)

N

H'(G; A)

is commutative.

4, THE THEOREM FOR A CONNECTED FIBRE

We shall prove the theorem under the assumption that the fibre is connected.
Returning to the map -y Mn—’B we choose a closed n-cell er Cc M™ W1th origin p.
Since M™ is compact, there is a closed neighborhood N, C B such that 7 1(N ) lies
in the interior of e™,

LEMMA 4.1. No fibrve in %'I(Ng) can separate p from the boundary of er.

Let us assume the contrary. Then dim F=n -1, and B 1s an open unit interval,
while B its one-point compactification, is a circle. The map 7m: M2— 8! is open,
onto and monotonic; thus p = 7-1(g) is a local cut point of M®, which is impossible
for n> 2.

LEMMA 4.2. If F is connected and the fibring [W™, B, F; 7] is compact, then
F is an H-space.

By Lemma 4.1, the fibre lying in the cell e™ does not separate the origin from
the boundary; thus it may be contracted in the complement of the origin. As ob-
served earlier, 11(Wn Q) ~ Hi(s*-1; Q). we may apply the result of Borel, referred
to in Section 2, to the spectral sequence (1) of Lemma 3.2.

LEMMA 4.3. If F is connected and the fibring [W®, B, F; 7] is compact, then
F is a rational cohomology r-spheve (r odd), and I*(B; Q) is a truncated polynomial
ring with an (r + 1)-dimensional genevator Cr

We now study H®(B; H*(F; Q)). By hypothesis, 7,(W™) = 0 and F is connected;
therefore w,(B) = 0, and it follows that

H%(B; H*(F; Q) =~ H°(B; Q).

Actually, the hypothesis 7,(W™) = 0 is slightly stronger than needed; but we have no
simple substitute condition. We may write down the parallel Gysin sequences [4 p-
328] for [wWn, B, F; 7] and {15.%},

h*
— Hn-r-Z(B; Q) - Hn-l(B; Q) - Hn—l(wn; Q) — Hn-r—l(B; Q) —
l | i* | . i |
- — —-— - h - -
- I"TAB; Q) - 17 B; Q) - N (W, Q) - P (B; Q) -
The homomorphism i}: Hi(B; Q) — Ii(B; Q) (i > 0) is onto; for the image by
transgression of the fundamental class of the fibre in [W?, B, F; 7] must map into

the generator C**+! of I*(B; Q). For r >1,dimB<n-1, and therefore
H™B; Q) = 0 and I"-1(B; Q) = I*(B; Q) = 0. Thus the homorphism
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w*: H*-1(W™; Q)— H*-T-1(B; Q)

is onto, and i}: HR-T-1(B; Q)— In-*-1(B; Q) is also onto; but since W@ 1s orientable,
the homomorphlsm i*: H-J(wn; Q- 12-1(W™; Q) is trivial; smce also if h* = h*j*,

it follows that 1*-1 (W™, Q) = 0, which contradicts the fact that 1®-1 (W™ Q) =~ Q. Th1s
proves Theorem 1 under the assumptmn that F is connected.

5. THE THEOREM IN GENERAL

To complete the argument, we shall prove a result communicated to us by Mostow.

THEOREM (Mostow). If (Zp, M*) is a transformation group on a compact mani-
fold, orientable mod p, then Zp can not have exactly one fixed point.

Suppose this is false; then, by removing the one fixed point, we get a fixed-poin;:
free transformation group (Zp, W™) on a manifold which is orientable mod p and
locally Euclidean at infinity. The quotient space Wn/Z will also be orientable
mod p, so that the homomorphism

i*: H* Y W?/2p; Zp) ~1*" U (W/Z 5 Z))
D -

is trivial. Using the characteristic homomorphism as introduced in the conclusion
of Section 3, we see that the homomorphism

. pyn-1 . —y-lpgn .
v¥: H (ZP’.ZP)‘ I (W /Zp, Zp)

is trivial. On the other hand, by using the spectral sequence (2) of Section 3, to-
gether with the fact that I{W™ Z) ~ HI(S*-!; Z;), we immediately show [4] that

v*: HY(Z 5 Zp) ~ I(WR/Z 5 Zp)  (0<i<n-1),

which is a contradiction, since gn-l (Zp; Zp) ~ Zp.

Corollary. If W™ is an open, orientable manifold which is locally Euclidean at
infinity, then W™ does not admit a nontrivial finite group of transformations without
fixed points.,

If [Wn, B, F; 7] is a compact fibration, and F is compact, it follows from Sec-
tion 4 that F consists of a finite number of points, and from our corollary, that F
is a single point, hence not proper. This concludes our proof of Theorem 1.

6. SINGULAR FIBRATIONS

Our methods may be used to generalize some results in [5] about singular fibra-
tions. We shall state the extensions without proof. By [(X, A), (Y, B), F; 7] we de-
note an open onto map 7: (X, A)— (Y, B) satisfying

(i) ~¥B) = A
(ii) 7| A—B is a homeomorphism,
(iii) 7]|X - A— Y - B is a fibre mapping with fibre F.

The map [(X, A), (Y, B), F; 7] is called a singular fibration with fibre F and singu-
lar set A. Since Lemma 4.3 is of a local nature, we may state
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THEOREM 2. If [(M™, A), (Y, B), F; 7] denotes a singular fibvation of the com-
pact manifold M™, by a fibve F of dimension less than n - 1, and if the singular set
A contains an isolated point, then the fibve is an odd-dimensional rational cohomology
sphere.

COROLLARY. If [(M®, A), (Y, B), F; ] is a singular fibration of a compact,
simply connected manifold by a fibve of dimension less than n - 1, and if the singular
sel consists of a finite number of points, then the number of points equals X(M").
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