ON THE PERRON-FROBENIUS THEOREM
Hans Samelson

1. INTRODUCTION
The purpose of this note is to present another proof for the well-known theorem
of Perron and Frobenius about matrices with positive elements, or rather, for the
main part of it which says that such a matrix has exactly one positive eigenvector
(that is, one whose coordinates are all positive). In the bibliography we list a few
other proofs, including generalizations to function spaces. The proof given here is
geometric in character, and quite elementary.

2. DEFINITIONS

Let E™ denote ordinary Euclidean n-space, with points x = (x,, +-», X,), X;j real;
let A= (aij) be an nXn matrix with real positive entries aj;- We consider the
linear transformation T: E® > E?, defined by T(x) = xf = (x], -+, x!) with
x{ = Z;a;;x;. Let P denote the hyperplane {x: Zx; = 1}, and let S denote the (n - 1)-
simplex consisting of those points of P all of whose coordinates are nonnegative, that
is, the intersection of P with the positive orthant of E®. The set S is compact and
convex. The transformation T induces a transformation T of S into itself, in an ob-
vious way: for- xeS, we define T(x) to be the point of intersection of S with the
T-image of the straight line through the origin of E™ and x. It is easily verified
that T is well defined, because of the positivity of A, and that in fact T(s) is con-
tained in the interior S° of S; that is, from xeS and x'= T(x) it follows that x{ > 0
(i=1, ---, n). Moreover, it is clear (from considerations familiar in projective
geometry) that T is continuous and that it preserves collinearity and cross ratio.

3. THE CAYLEY METRIC

We set up a Cayley metric in the interior S° of S by defining, as usual, the dis-
tance d(x, y) between two distinct points x and y of S° to be the logarithm of the
cross ratio CR(x, y, a,, a,) of the four points x, y, a,, a,, where a,, a, are the two
points in which the line from y to x meets the boundary B of S (in the order a,,
¥, X, 3,); and by defining that d(x, x) = 0. It is clear that the function d(x, y) is con-
tinuous (simultaneously in x and y), and that it is positive except for x = y. For a
proof of the fact that the function d(x, y) is actually a metric, see [2, p. 158].

We now state a lemma about the cross ratio of points on a line; its proof is
elementary.

LEMMA. Let c,, d,;, y, x, d,, c, be six points on a (real) line in the order indi-
cated, with d, #y # x # d,; then CR(x, y, c,, ¢;) < CR(x, y, d,, d,), and equality oc-
curs only if c,=d, and c, = d,.
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4. PROOF OF THE THEOREM
Let x, y be two points of S°. We claim that
*) d(Tx), T) < dx, y)

if x # y; that is, T is a “contraction.”

Proof. As before, let a;, a, denote the intersections with B of the line from y
to x; let b,, b, be 51m11arly determined by the line from T(y) to T(x). By the pro-
jective invariance of the cross ratio, we have

d(x, y) = log CR(?(X), T(y), 'f(al), T(az)) .

The six points b,, T(al), T(y), T(x), T(a,), b, then have the order indicated on the
line from T(y) to T(x); moreover, by the remark at the end of §2, we have
b, # ‘f(al) b, # T(az) Inequality (*) now follows from the lemma.

Consider now the decreasing sequence S, T(S), T(T(8)) = T2(S), +-- of the iterated
images under T of S; let A be the mtersectmn of these sets. It is clear that A4 is
a nonempty compact set, and that it is contained in the interior S° [the last property
follows from the fact that T(S) € 8°). Itis also clear that T(A) = A, i.e., that 4 is

invariant under T, since n Ti(S) = n Ti(S). (Incidentally, as intersection of a
(4] 1

decreasing sequence of simplices, A itself is a simplex.) We claim that A consists
of a single point. Otherwise there exist two points x,, y, of ‘A with maximum dis-
tance (by continuity of d and compactness of 4 ):

d(xy, ¥o) = max d(x, y).
x,y€ A

Since T‘( A) = A, there exist x,,y, € A4 with T(x,) = x,, T(y,) = y,. But then, using
the inequality (*), we have the contradiction

d(x,, ¥o) < d(xy, y,) < max d(x, y) = d(x,, ¥o) -
X,Y€,

We have shown that T has a fixed point, namely A; the relation n Ti(S) =

implies that for any point xeS the sequence Ti(x) of iterated images converges to
4 (Ti(x) € Ti(S); compactness of the Ti(S) implies that for any neighborhood V of A
there exists a natural number i, with Tio(S) c V), so that no other point of S is
fixed under T. Since fixed points of T correspond to eigenvectors of T, and points
of S° correspond to positive vectors, we have proved the theorem, with the sharpen-
ing that for any nonnegative vector different from 0 the sequence of iterates under T
(normalized, e.g., by ZXx; = 1) converges to the unique positive (normalized) eigen-
vector; it is also clear that the eigenvalue corresponding to this eigenvector is
positive. '
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