ON THE PERRON-FROBENIUS THEOREM

Hans Samelson

1. INTRODUCTION

The purpose of this note is to present another proof for the well-known theorem of Perron and Frobenius about matrices with positive elements, or rather, for the main part of it which says that such a matrix has exactly one positive eigenvector (that is, one whose coordinates are all positive). In the bibliography we list a few other proofs, including generalizations to function spaces. The proof given here is geometric in character, and quite elementary.

2. DEFINITIONS

Let E^n denote ordinary Euclidean n-space, with points $\mathbf{x}=(\mathbf{x}_1,\cdots,\mathbf{x}_n)$, \mathbf{x}_i real; let $A=(a_{ij})$ be an $n\times n$ matrix with real positive entries a_{ij} . We consider the linear transformation $T\colon E^n\to E^n$, defined by $T(\mathbf{x})=\mathbf{x}'=(\mathbf{x}'_i,\cdots,\mathbf{x}'_n)$ with $\mathbf{x}'_i=\Sigma_j a_{ij}\mathbf{x}_j$. Let P denote the hyperplane $\{\mathbf{x}\colon \Sigma\mathbf{x}_i=1\}$, and let S denote the (n-1)-simplex consisting of those points of P all of whose coordinates are nonnegative, that is, the intersection of P with the positive orthant of E^n . The set S is compact and convex. The transformation T induces a transformation T of S into itself, in an obvious way: for $\mathbf{x}\in S$, we define $T(\mathbf{x})$ to be the point of intersection of S with the T-image of the straight line through the origin of E^n and \mathbf{x} . It is easily verified that T is well defined, because of the positivity of A, and that in fact T(S) is contained in the interior S^0 of S; that is, from $\mathbf{x}\in S$ and $\mathbf{x}'=T(\mathbf{x})$ it follows that $\mathbf{x}_i'>0$ ($i=1,\cdots,n$). Moreover, it is clear (from considerations familiar in projective geometry) that T is continuous and that it preserves collinearity and cross ratio.

3. THE CAYLEY METRIC

We set up a Cayley metric in the interior S^0 of S by defining, as usual, the distance d(x, y) between two distinct points x and y of S^0 to be the logarithm of the cross ratio $CR(x, y, a_1, a_2)$ of the four points x, y, a_1 , a_2 , where a_1 , a_2 are the two points in which the line from y to x meets the boundary B of S (in the order a_1 , y, x, a_2); and by defining that d(x, x) = 0. It is clear that the function d(x, y) is continuous (simultaneously in x and y), and that it is positive except for x = y. For a proof of the fact that the function d(x, y) is actually a metric, see [2, p. 158].

We now state a lemma about the cross ratio of points on a line; its proof is elementary.

LEMMA. Let c_1 , d_1 , y, x, d_2 , c_2 be six points on a (real) line in the order indicated, with $d_1 \neq y \neq x \neq d_2$; then $CR(x, y, c_1, c_2) \leq CR(x, y, d_1, d_2)$, and equality occurs only if $c_1 = d_1$ and $c_2 = d_2$.

Received May 21, 1956.

4. PROOF OF THE THEOREM

Let x, y be two points of S^0 . We claim that

(*)
$$d(\widetilde{T}(x), \ \widetilde{T}(y)) < d(x, y)$$

if $x \neq y$; that is, \widetilde{T} is a "contraction."

Proof. As before, let a_1 , a_2 denote the intersections with B of the line from y to x; let b_1 , b_2 be similarly determined by the line from $\widetilde{T}(y)$ to $\widetilde{T}(x)$. By the projective invariance of the cross ratio, we have

$$d(x, y) = \log CR(\widetilde{T}(x), \widetilde{T}(y), \widetilde{T}(a_1), \widetilde{T}(a_2)).$$

The six points b_1 , $\widetilde{T}(a_1)$, $\widetilde{T}(y)$, $\widetilde{T}(x)$, $\widetilde{T}(a_2)$, b_2 then have the order indicated on the line from $\widetilde{T}(y)$ to $\widetilde{T}(x)$; moreover, by the remark at the end of §2, we have $b_1 \neq \widetilde{T}(a_1)$, $b_2 \neq \widetilde{T}(a_2)$. Inequality (*) now follows from the lemma.

Consider now the decreasing sequence S, $\widetilde{T}(S)$, $\widetilde{T}(\widetilde{T}(S)) = \widetilde{T}^2(S)$, \cdots of the iterated images under \widetilde{T} of S; let Δ be the intersection of these sets. It is clear that Δ is a nonempty compact set, and that it is contained in the interior S^0 [the last property follows from the fact that $\widetilde{T}(S) \subset S^0$]. It is also clear that $\widetilde{T}(\Delta) = \widetilde{\Delta}$, i.e., that Δ is invariant under \widetilde{T} , since $\bigcap_{0}^{\infty} \widetilde{T}^i(S) = \bigcap_{1}^{\infty} \widetilde{T}^i(S)$. (Incidentally, as intersection of a decreasing sequence of simplices, Δ itself is a simplex.) We claim that Δ consists of a single point. Otherwise there exist two points \mathbf{x}_0 , \mathbf{y}_0 of Δ with maximum distance (by continuity of d and compactness of Δ):

$$d(x_0, y_0) = \max_{x,y \in \Delta} d(x, y).$$

Since $\widetilde{\mathbf{T}}(\Delta) = \Delta$, there exist $x_1, y_1 \in \Delta$ with $\widetilde{\mathbf{T}}(x_1) = x_0$, $\widetilde{\mathbf{T}}(y_1) = y_0$. But then, using the inequality (*), we have the contradiction

$$d(x_0, y_0) < d(x_1, y_1) \le \max_{x,y \in \hat{\Delta}} d(x, y) = d(x_0, y_0).$$

We have shown that $\widetilde{\mathbf{T}}$ has a fixed point, namely Δ ; the relation $\bigcap_0^\infty \widetilde{\mathbf{T}}^i(S) = \Delta$ implies that for any point $\mathbf{x} \in S$ the sequence $\widetilde{\mathbf{T}}^i(\mathbf{x})$ of iterated images converges to Δ ($\widetilde{\mathbf{T}}^i(\mathbf{x}) \in \widetilde{\mathbf{T}}^i(S)$); compactness of the $\widetilde{\mathbf{T}}^i(S)$ implies that for any neighborhood V of Δ there exists a natural number i_0 with $\widetilde{\mathbf{T}}^i(S) \subset V$), so that no other point of S is fixed under $\widetilde{\mathbf{T}}$. Since fixed points of $\widetilde{\mathbf{T}}$ correspond to eigenvectors of T, and points of S^0 correspond to positive vectors, we have proved the theorem, with the sharpening that for any nonnegative vector different from 0 the sequence of iterates under T (normalized, e.g., by $\Sigma \mathbf{x}_i = 1$) converges to the unique positive (normalized) eigenvector; it is also clear that the eigenvalue corresponding to this eigenvector is positive.

BIBLIOGRAPHY

- 1. P. Alexandroff and H. Hopf, Topologie I, Berlin, 1935, p. 480.
- 2. H. Busemann and P. J. Kelly, Projective geometry and projective metrics, New York, 1953.
- 3. G. Frobenius, Über Matrizen aus positiven Elementen I, II, S.-B. kgl. Preuss. Akad. Berlin, (1908), 471-476; (1909), 514-518.
- 4. R. Jentzsch, Über Integralgleichungen mit positivem Kern, J. Reine Angew. Math. 141 (1912), 235-244.
- 5. O. Perron, Zur Theorie der Matrices, Math. Ann. 64 (1907), 248-263.
- 6. M. A. Rutmann, Sur les opérateurs totalement continus linéaires laissant invariant un certain cône, Mat. Sbornik N.S. 8 (50), 77-96 (1940).
- 7. H. Wielandt, Unzerlegbare, nicht negative Matrizen, Math. Z. 52 (1950), 642-648.
- 8. J. L. Ullman, On a theorem of Frobenius, Michigan Math. J. 1 (1952), 189-193.

University of Michigan