ON A PROBLEM OF LUSIN

James A. Jenkins

1. Let the function f(z) be regular for |z| < 1. Let us denote by $\mathfrak{L}(f)$ the set of those points ζ on |z| = 1 with the property that the interior of any circle in $|z| \le 1$ and tangent to |z| = 1 at ζ is mapped by f onto a Riemann domain of infinite area. Lusin [5] conjectured the existence of a bounded function for which every point of |z| = 1 belongs to $\mathfrak{L}(f)$. Lohwater and Piranian [4] have given an example of such a function, their method being based on the use of lacunary Taylor series. In this paper we construct by geometric methods a function with the properties stated in the following

THEOREM. There exists a function f(z), regular and bounded in |z| < 1, such that

- (i) the set $\mathfrak{L}(f)$ constitutes the whole circumference |z| = 1, apart possibly from a set of measure zero and of the first category,
 - (ii) wherever the radial limit $\lim_{r \to 1} f(re^{i\theta})$ exists, it has modulus 1.
- 2. Let D denote the domain obtained from the unit circle |w| < 1 by inserting at each point $\exp(\pi i r/s)$ a radial slit of logarithmic length $s^{-1/2}$, where r, s are integers, s > 0, $|r| \le s$, and the fraction r/s is in its lowest terms. We see at once that no point of such a slit in |w| < 1 is a limit point of points on other slits. Further, no point on |w| = 1 is a vertex of a triangle in D. Let D be mapped conformally onto |z| < 1 so that the point w = 0 goes into the point z = 0. Then the set of boundary points of D on |w| = 1 goes into a set E on |z| = 1 which by a result of Lavrentiev [3, p. 822] has angular Lebesgue measure zero. The use of the result of Lavrentiev in the construction of D was suggested to me by G. Piranian. I had previously used a potential theoretic method. Domains of this general type were earlier considered in other connections by Green [1], Schaeffer [7] and af Hällström [2].
- 3. The boundary of the domain D consists of the circle |w|=1, together with a countable set of radial slits s_i ($i=1,2,\cdots$). We obtain from it a Riemann surface \Re by the following construction. For each slit s_i ($i=1,2,\cdots$) we take a domain D_i obtained from D by reflection in the diameter bearing s_i . Then we cross-join D_i to D along s_i and the corresponding slit for D_i . Let the remaining boundary slits of D_i be denoted by s_{ij} ($j=1,2,\cdots$; $j\neq i$) corresponding to s_j . Let D_{ij} be obtained from D by rotation about the origin in such a way that the slit s_j is carried into the slit s_{ij} . We cross-join D_{ij} to D_i along this slit for each admissible value of j. We continue in this way, the images of D being obtained alternately by sense-reversing and sense-preserving operations. By this process we obtain a Riemann surface \Re which has no relative boundary over |w| < 1. It is evidently simply-connected and of hyperbolic type. Thus there exists a function f(Z) regular for |Z| < 1 and mapping |Z| < 1 in a f(Z) 1 manner on the surface f(Z) Regular for f(Z) 1 and mapping f(Z) 1 in a f(Z) 2 into the point covering the origin f(Z) in the initial sheet D of f(Z) 2.

Received December 10, 1955.

Research supported in part by the Mathematics Section, National Science Foundation.

The surface \Re is invariant under the following transformations: consider any radial segment s on \Re along which two replicas D' and D" of D have been crossjoined; with any point P in D' we associate the point in D" which covers the point in the w-plane obtained from the point in the w-plane covered by P by reflection in the line above which the radial segment s lies, and conversely. The points of the replicas of D cross-joined to D' and D" along corresponding slits are associated in the same manner. Continuing in this way and extending the mapping to the points on the cross-joins by continuity we obtain the transformations in question. In particular, the points of the cross-join corresponding to the initial segment s are each invariant.

Let $\mathfrak T$ denote the set of corresponding transformations in $|\mathbf Z|<1$. Each of these is an anticonformal transformation of $|\mathbf Z|<1$ onto itself. It is thus the conjugate of a linear transformation. Also, it leaves pointwise invariant a cross-cut running from $|\mathbf Z|=1$ back to $|\mathbf Z|=1$ inside $|\mathbf Z|<1$ corresponding to the appropriate crossjoin on $\mathfrak R$. The conjugate of a linear transformation carrying $|\mathbf Z|<1$ onto itself can leave such an arc pointwise invariant only if the arc lies on a circle orthogonal to $|\mathbf Z|=1$ and the mapping in question is inversion in this circle.

4. In the mapping f of $|\mathbf{Z}| < 1$ onto \Re , the set going into the initial sheet D of \Re is a subdomain Δ of $|\mathbf{Z}| < 1$ bounded by a countable set of open arcs c_i (i = 1, 2, ...) on circles orthogonal to $|\mathbf{Z}| = 1$ (one for each slit $s_i, i = 1, 2, \cdots$) together with a set H on $|\mathbf{Z}| = 1$. If we combine the inverse of this mapping with the mapping of $|\mathbf{z}| < 1$ onto D, we obtain a mapping ϕ of $|\mathbf{z}| < 1$ onto Δ . The homeomorphic extension of the mapping ϕ to $|\mathbf{z}| = 1$ parametrizes the boundary C of Δ as a Jordan curve. Since the length of the arc of a circle orthogonal to $|\mathbf{Z}| = 1$ and contained in $|\mathbf{Z}| \le 1$ is for a suitable constant q less than q times the length of the arc which the circle intercepts on $|\mathbf{Z}| = 1$, the curve C is rectifiable. By a theorem of F. and M. Riesz [6] the set H, as the image under ϕ of the set E of angular measure zero on $|\mathbf{Z}| = 1$, has linear measure zero on C and thus angular measure zero on $|\mathbf{Z}| = 1$.

We consider now the transformations in the family $\mathfrak T$ which carry Δ into domains adjacent to it across the arcs c_i ($i=1,\,2,\,\cdots$). Next we take the transformations in $\mathfrak T$ carrying these domains into further adjacent domains. Continuing indefinitely in this way we sweep out the domain $|\mathsf Z|<1$. The images of H under the compositions of these transformations form a countable set of sets, each of angular measure zero. Thus their union K has angular measure zero. Further, H and each of its images is nowhere dense on $|\mathsf Z|=1$; thus K is of the first category.

5. Let Q be any point in the complement L of the set K on |Z|=1. We will now show that the interior \Im of any circle lying in $|Z|\leq 1$ and tangent to |Z|=1 at Q is mapped by the function f(z) onto a Riemann domain of infinite area. There exists a sequence Δ_n (n = 1, 2, ...) of distinct domains such that $\Delta_1=\Delta$, Δ_{n+1} is the image of Δ_n under a transformation in \Im , and such that all domains of sufficiently large index lie in a given neighborhood of Q relative to |Z|<1.

Let $|\mathbf{Z}|<1$ be mapped conformally onto the upper half-plane $\Im W>0$ in such a way that Q goes into the point at infinity. The domains Δ_n are carried into domains Λ_n (n = 1, 2, ...), where Λ_n and Λ_{n+1} have as common boundary a semi-circular arc Γ_n centered on the real W-axis. The domains Λ_n and Λ_{n+1} are interchanged by inversion in Γ_n , and the distance of Γ_n from W = 0 tends to infinity with n. The interior \Im of a circle lying in $|\mathbf{Z}| \le 1$ and tangent to $|\mathbf{Z}| = 1$ at Q goes into a half-plane $\Im W>t$, t>0.

For n large enough, Λ_n will meet this half-plane. In the intersection we take some set M_n of positive measure, say a closed circular disc. Let the successive

images of M_n under inversion in the circles Γ_m $(m \ge n)$ be denoted by M_m (m > n). These sets are disjoint and all lie in the half-plane $\Im W > t$. Let the corresponding sets in |Z| < 1 be denoted by N_m $(m \ge n)$. These sets are disjoint and lie in \Im . The images $f(N_m)$ of the sets N_m $(m \ge n)$ are disjoint on \Re and congruent under Euclidean transformations. Thus they all have a fixed positive area. This proves that the image of \Im has infinite area. Hence the set L is contained in $\Re(f)$. Since L has angular Lebesgue measure 2π , so does $\Re(f)$.

Finally, suppose that $\lim_{r\to 1} f(re^{i\theta})$ exists for some real θ and has the value α . Then from the form of the surface \Re it is clear that $|\alpha| < 1$ is impossible. Thus we must have $|\alpha| = 1$. Hence the function f provides the desired example.

It should be remarked that, if we use in addition the symmetry of the domain D constructed in $\S 2$ under reflection in the real axis, we can arrange that the function f(Z) should have real coefficients in its Taylor expansion about Z = 0.

REFERENCES

- 1. J. W. Green, A special type of conformal map, Duke Math. J. 10 (1943), 67-71.
- 2. G. af Hällström, On the conformal mapping of incision domains, Soc. Sci. Fenn. Comment. Phys.-Math. 16 (1952), No. 13, 1-13.
- 3. M. Lavrentiev, On some boundary problems in the theory of univalent functions, Mat. Sbornik 43 (1936), 815-844 (Russian; French summary).
- 4. A. J. Lohwater and G. Piranian, On a conjecture of Lusin, Michigan Math. J. 3 (1955-56), 63-68.
- 5. N. N. Lusin, On the localization of the principle of finite area, Dokl. Akad. Nauk SSSR 56 (1947), 447-450 (Russian).
- 6. F. and M. Riesz, Über die Randwerte einer analytischen Funktion, Quatrième Congrès des Mathématiciens Scandinaves, 1916, 27-44.
- 7. A. C. Schaeffer, An extremal boundary problem, in Contributions to the theory of Riemann surfaces, Annals of Mathematics Studies No. 30 (1953), 41-47.

University of Notre Dame